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Abstract 

A method based on constricted Particle Swarm Optimization (CPSO) 

algorithm to design a non-uniformly spaced collinear array of thin 

dipole antennas of unequal height is proposed. This paper presents a 

method for computing the appropriate excitation and geometry of 

individual array elements to generate a pencil beam in the vertical 

plane with minimum Standing Wave Ratio (SWR) and fixed Side 

Lobe Level (SLL). Coupling effect between any two collinear center-

fed thin dipole antennas having sinusoidal current distributions is 

analyzed using induced EMF method and minimized in terms of 

SWR. DRR of excitation distribution is fixed at a lower value for 

further mitigation of the coupling effect. Phase distribution for all the 

elements is kept at zero degree for broadside array.  Optimization 

results show the effectiveness of the algorithm for the design of the 

array. Moreover method seems very conducive for estimating the 

mutual impedance between any two collinear center-fed thin dipole 

antennas having sinusoidal current distributions. 
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1. INTRODUCTION

Array pattern synthesis is achieved by appropriately 

computing the excitation and geometric configuration of its 

radiating elements. Many methods have been used to achieve 

specified radiation pattern for non-uniformly excited, non-

uniformly spaced linear arrays [1-12]. The analysis of non-

uniformly spaced linear arrays was proposed by Unz[1], who 

developed a matrix formulation to obtain the current distribution 

necessary to generate a desired radiation pattern [1]. Skolnik [2] 

employed dynamic programming to design a unequally spaced 

array. Mailloux and Cohen [3] utilized the statistical thinning of 

arrays with quantized element weights to improve side lobe level 

performance. Different global optimization algorithms such as 

Genetic Algorithm (GA), Simulated Annealing (SA) and pattern 

search algorithm were used to thin an array [4–8]. Non-

uniformly spaced array was further synthesized by randomly 

positioning the array element along the desired direction. 

Harrington developed an iterative method to reduce the sidelobe 

level of uniformly excited linear arrays by employing unequal 

spacing [9]. His method reduces the sidelobe level effectively 

without increasing the beamwidth of the mainbeam as obtained 

by uniformly spaced linear array. Literature described in [10-12] 

proposed different conventional and soft computing techniques 

for synthesis of non-uniformly spaced array.  

In article [10], the particle swarm optimization was applied 

for optimization of non-uniformly spaced antenna arrays and 

side lobe level was reduced. Neural Network (NN) and least 

mean square technique was used to design non-uniformly spaced 

array [11,12]. However most of the works consider the 

minimization of the side lobe level without considering mutual 

coupling effect. In recent works driving point impedance 

matching has been derived with unequal spacing of elements 

[13,14]. King [15] presented a method for evaluating the real 

and imaginary components of mutual impedance between any 

two thin dipole antennas, with an emphasis on antennas having 

sinusoidal current distributions. In the proposed work, we 

synthesize a non-uniformly spaced array consists of radiators of 

unequal heights. 

In our wok, CPSO is used for the synthesis of pencil beam 

pattern with specified SLL, DRR and minimum SWR value by 

optimizing the excitation and geometry of the individual array 

element. Coupling effect is compensated by minimizing standing 

wave ratio along with fixing dynamic ranges of excitation 

current amplitude distributions to a lower value. Impedance 

matrix is calculated using induced EMF method [15, 16]. 

2. THEORETICAL FORMULATION

We consider an array of 2N collinear wire dipoles oriented in 

the vertical direction. All the dipoles are assumed non-identical 

and have very thin radii. The radiation pattern in the vertical 

plane depends on the geometry of the array as well as on the 

excitation currents applied at the center of the dipoles. The 

geometry of the array is specified by the lengths nl (n = 1,…., N) 

of the dipoles and the inter element spacing 1, nnd (n = 2,. . . , N) 

between them. Array elements are placed symmetrically on each 

side of the origin. Excitation and geometry both are assumed 

symmetric with respect to the origin. Assuming sinusoidal 

current distribution of a very thin dipole antenna directed along 

Z-axis, the element pattern is given by Eq. (1). 
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The far-field pattern [16] F(θ) in the vertical plane 

considering the element pattern with symmetric amplitude 

distributions is given by Eq.(2) 

      Elepat
N

n
nkpnIF 



 
1

coscos2 (2) 

Normalized power pattern in dB can be expressed as follows. 
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Fig.1 Collinear array of unequal length dipoles 

Here n is the element number, k = 2π/λ = free-space wave 

number, λ = wavelength at the design frequency, θ is the polar 

angle of far-field measured from z-axis, pn = distance from 

origin to center of n-th dipole, In = excitation current of n-th 

element,  V  the voltage matrix of size N x 1 is obtained from

the Eq. (4), 

V = Z I (4) 

where [Z] is the impedance matrix of size N by N. 

Self-impedances Znn and mutual impedances Znm of Z matrix 

are calculated by induced emf method [15-16], which assume 

the current distribution on the dipoles to be sinusoidal.  

The value of Znm depends on the geometry of the dipoles and 

distance between them.  

Constricted particle swarm optimization technique combined 

with induced emf method is used to optimize the antenna array 

shown in Fig.1. The radiation patterns (pencil beam) produced 

by the array is required to satisfy the condition of low SLL, 

SWR, and optimum fixed dynamic range ratio. In order to 

optimize the antenna arrays according to the above three 

conditions, a cost function J is formed as a weighted sum of 

three respective terms and is minimized using CPSO, as given 

by the following equation: 

2
3max2

2
1 )()( dd DRRDRRwSWRwSLLSLLwJ   (5)   

where SWRmax is the maximum SWR value (SWR is different 

for different element). SLL, SLLd, DRR, DRRd are obtained and 

desired values of corresponding terms. DRR is defined as a ratio 

of maximum to minimum excitation amplitude.  

Impedance matching condition stated above is achieved by 

minimizing SWR. The input impedance Zn of n-th element is 

defined as 
n

n
n I

V
Z  [15, 16]. Thus nZ  generated for an array

of 20 elements has to be as close as possible to the characteristic 

impedance 0Z  (50Ω) of the transmission line that feeds the 

element for efficient radiation. Reflection coefficient at the input 

of the n -th element is derived by the expression.
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Using Rn value we calculate SWR at the input of the n-th 

element. 
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Impedance matching is obtained if Zn = Z0 i.e., when 

SWR=1. For practical purpose maximum tolerable value of 

SWR is 2. The coefficients w1, w2 and w3 are weight factors and 

they describe the importance of the corresponding terms that 

compose the cost function. CPSO attempts to minimize the cost 

function to meet the desired pattern specification. 

In the proposed method we carried out simultaneous 

optimization of excitation and geometry of individual array 

elements to reduce SLL and SWR value. The geometry concerns 

the lengths and inter-element distances of the elements, while 

the excitation concerns the amplitude of the currents applied to 

the elements through appropriate feeding network. To generate 

desired pencil beam, length of each element is varied in the 

range 0.4 to 0.6 wavelengths, and spacing is varied in the range 

0.6 to 1.2 wavelengths. Excitation current phase is kept fixed at 

0 degree for all the elements. Excitation current amplitude is 

varied in the range 0 to 1. Excitation and geometry both are 

assumed symmetric about the center of the array. CPSO is run 

for several iterations to optimize the collinear array. 

3. OVERVIEW OF PARTICLE SWARM

OPTIMIZATION 

3.1 BASIC PARTICLE SWARM OPTIMIZATION 

The CPSO used here is same as reported in the paper [21] 

and this is reproduced here entirely from [21]. Particle swarm 

optimization [17–21] emulates the swarm behavior of insects, 

animals herding, birds flocking, and fish schooling where these 

swarms search for food in a collaborative manner. Each member 

in the swarm adapts its search patterns by learning from its own 

experience and other member’s experiences. A good example to 

understand the swarm intelligence is the behavior of a swarm of 

bees. The target of the bees is to find the location with the 

highest density of flowers. Each bee makes random movements 

with random velocities looking for flowers. The bee has the 

ability to remember the position where it found the most flowers 

and is aware in some way of the positions where the other bees 

found plenty of flowers. During flight, each bee adjusts its 
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position according to its own experience, and according to the 

experience of the neighboring bees. In fact, the bee takes into 

account the best positions encountered by itself and by its 

neighbors. So, its movement is an attempt to balance exploration 

and exploitation. Finally, this behavior leads the bees to a point 

where the highest density of flowers is found. Unable to find any 

other place where the flower concentration is even higher, the 

bees go back to this point. The modeling of the above behavior 

results in the PSO method. In PSO terminology, every individual 

in the swarm is called “particle” or “agent”. The number S of the 

particles that compose the swarm is called “population size”. 

The experience indicates that a population size between 10 and 

50 is optimal for many problems. Particles act in the same way 

like bees do, i.e., they move in the search space and update their 

velocity according to the best positions already found by 

themselves and by their neighbors, trying to find an even better 

position. Each particle is treated as point in an N-dimensional 

space. The position of the i-th particle (i = 1, . . . , S) is 

represented as xi = (xi1, xi2, . . . , xiN), where xin (n = 1, . . . , N) 

are the position coordinates. Each coordinate xin may be limited 

in the respective (n-th) dimension between an upper boundary 

Un and a lower boundary Ln, so that Ln ≤ xin ≤ Un (n =1, . . . , N). 

The difference Rn = Un − Ln between the two boundaries is 

called “dynamic range” of the n-th dimension. The performance 

of each particle is measured according to a predefined 

mathematical function J called “cost function”, which is related 

to the problem to be solved. The value of the cost function 

depends on the position coordinates, i.e., J = J(xi ) = J(xi1, xi2, . . 

. , xiN). Actually, the particle position is considered to be 

improved as the value of the cost function is minimized. The 

best previous position (pbest position) of the i-th particle is 

recorded and represented as pi = (pi1, pi2, . . . , piN). The change 

of xi is ∆xi = vi ∆t, where ∆t is the time interval, vi = (vi1, vi2, . . . 

, viN) is the velocity of the i-th particle and vin (n = 1, . . . , N) are 

the velocity coordinates. The calculation of the velocity is 

explained below. Considering that ∆t = 1, the position change 

becomes ∆xi = ∆vi. Thus, the new position of i-th particle after a 

time step is given by Eq. (8). 

)1()()1(  tvtxtx iii  (8) 

Particle swarms have been studied in two types of 

neighborhood, namely “gbest” and “lbest”. In the gbest 

neighborhood, every particle is attracted to the best position 

found by any particle of the swarm. This position, called “gbest 

position” and represented as g = (g1, g2, . . . , gN ) and 

corresponds to the minimum cost Jmin = J(g) =J(g1, g2, . . . , gN ) 

found so far by the swarm. The gbest neighborhood is equivalent 

to a fully connected social network. Every individual is able to 

compare the performances of every other member of the 

population, imitating the very best. In the lbest neighborhood, 

each (i-th) individual is affected by the best performance of its Ki 

immediate neighbors, i.e., the i-th individual is attracted to the 

best position found by its Ki neighbors. This position, called 

“lbest position” and represented as li = (li1, li2, . . . , liN) and 

corresponds to the minimum value Jmin,i = J(li ) = J(li1, li2, . . . , 

liN) of the cost function found so far by the Ki  neighbors of the i-

th particle. These Ki neighbors are not necessarily particles who 

are near the individual in the parameter space, but rather ones 

that are near it in a topological space. The optimal pattern of 

connectivity among individuals depends on the problem being 

solved. Using the gbest neighborhood the swarm tends to 

converge more rapidly on optima, but it is more susceptible to 

convergence on local optima. 

As mentioned above, individuals are influenced by their own 

previous behavior and by the successes of their neighbors. So, 

the particle’s velocity depends on its previous velocity and the 

distance between the particle’s position and the best position 

found by the particle so far and finally on the distance between 

the particle’s position and the best position found so far by the 

swarm (for gbest model) or by the particle’s neighborhood (for 

lbest model). According to the gbest model, the velocity of the i-

th particle after a time step is given by 
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where  is a positive parameter called “inertia weight”, c1 and c2 

are positive parameters called respectively “cognitive 

coefficient” and “social coefficient”, and rand(t) is a function 

that generates random numbers drawn from a uniform 

distribution between 0 and 1. According to the lbest model, the 

only change is to substitute li for g. Thus, Eq. (9) is modified as 

follows: 
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The weight  usually has fixed values between 0 and 1 and 

controls the impact of the previous values of velocity on the 

current velocity. A larger  facilitates global exploration, while 

a smaller  tends to facilitate local exploration to fine-tune the 

current search area. Suitable choices of  provide a balance 

between global and local exploration abilities and thus require 

less iteration to find the optimum [18]. A good approach is to 

decrease  linearly from 0.9 to 0.4 during the course of a 

simulation [19]. The same value of  is used for all dimensions 

of all particles in a given population. The coefficient c1 

determines how much the particle is influenced by the memory 

of its best location, while c2 determines how much the particle is 

influenced by the swarm (for gbest model) or by its neighbors 

(for lbest model). It was suggested that the best choice for both 

c1 and c2 is 2 [20]. 

It is easy to realize that the changes in the velocity are 

stochastic and an undesirable effect is that the particle’s 

trajectory can expand into wider and wider cycles through the 

problem space, eventually approaching infinity. One method of 

solving the problem is to implement a maximum allowed 

velocity vmax =(vmax,1, vmax,2, . . . , vmax,N). So, for each (i-th) 

particle and each (n-th) dimension, if vin > vmax,n then vin = vmax,n, 

and also if vin < −vmax,n then vin = −vmax,n. vmax has the beneficial 

effect of preventing explosion and scales the exploration of the 

particle’s search. Unfortunately, the choice of a value for vmax 

depends on the problem. For example, the particle will be 

trapped if a step larger than vmax is required to escape a local 

optimum. However, in approaching an optimum it is better to 

take smaller steps. It was found that if  =1 it is better to set

each coordinate vmax,n around 10–20% of the dynamic range Rn 

of the respective dimension, and if   < 1 it is better to set  vmax,n

= Rn (n =1, . . . , N) [20]. 
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A recent analysis of the PSO presents an alternative way of 

calculation of the velocity [21]. The modified methodology is 

referred as CPSO. 

3.2 CONSTRICTED PARTICLE SWARM 

OPTIMIZATION 

The CPSO used here is same as reported in the paper [21] 

and this is reproduced here entirely from [21]. This approach 

uses a new parameter k called the constriction factor for 

ensuring the convergence. According to the gbest model, the 

velocity of the i-th particle after a time step is calculated by 
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while, according to the lbest model, the velocity is given by 
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In the above equations, the parameter k is called “constriction 

coefficient” and is defined by the following expression. 
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where the parameter φ, sometimes called “acceleration 

constant”, must be greater than 4 (φ > 4) and is calculated by the 

expression. 

21   (14) 

where the parameters φ1 and φ2 have the same meaning like c1 

and c2, respectively. A standard choice recommended for both φ1 

and φ2 is 2.05 [20]. The use of the constriction coefficient was 

another attempt to eliminate the need for vmax, but most authors 

agree that it is still better to use vmax in order to keep the particles 

in bounds. Nevertheless, the above parameters , k, and vmax are

not always able to confine the particles within the search space, 

i.e  Ln ≤ xin ≤ Un (n = 1, . . . , N). To solve this problem, three

different boundary conditions have been suggested: 

(a) The absorbing walls: when a particle hits Un or Ln, vin 

becomes zero and the particle is pulled back toward the 

search space, i.e., if xin > Un then xin = Un and vin = 0, and 

also if xin < Ln then xin = Ln and vin = 0. In that manner, the 

energy of the particles that try to escape the search space is 

considered to be absorbed by the boundary walls. 

(b) The reflecting walls: when a particle hits Un or Ln, vin is 

reversed (becomes −vin) and the particle is reflected back 

toward the search space.  

(c) Invisible walls: the particles are allowed to move inside or 

outside the search space without any restriction, but the 

fitness function is not evaluated for those particles being 

outside the search space. Actually, this technique saves 

computational time because the cost function is calculated 

only for the particles inside the search space. 

Using the theory described above, the algorithm was 

developed to synthesize the proposed array. 

Initialization 

Step-1: Initialize counters t (for time steps), n (for dimensions), 

and i (to count particles). 

Step-2:   Set random number seed. 

Step-3:  Set the values of N, S, Ki , φ1,  φ2,, tmax (total number of 

iterations) and the values of Ln,Un, vmax,n for n=1,… , N. 

Step-4:  Randomly initialize the particle positions xi (i=1,. . . , S) 

inside the search space, so that Ln ≤xin ≤ Un (n=1,.., N). 

Step-5: Randomly initialize the particle velocities vi (i=1,...,S). 

If vin > vmax,n then vin = vmax,n, and also if vin < −vmax,n 

then vin = −vmax,n. 

Step-6:  Evaluate the values of the fitness function J(xi) (i = 1, . 

. . , S) for all the particles. 

Step-7:  Set pi = xi and J(pi) = J(xi) for i = 1, . . . , S (the first 

position of each particle is considered as pbest 

position). 

Step-8:  Find the minimum value Jmin among the J(pi) (i = 1, . . . 

,S). The position that corresponds to Jmin is the gbest 

position, so that Jmin = J(g). 

Optimization 

Step-1: For each (i-th) particle, find randomly Ki  particles, 

which are the neighbors of the i-th particle. 

Step-2: Find the individual that gives the minimum cost value 

Jmin,i among the Ki neighbors of each (i-th) particle. The 

position of this individual is the lbest position li in the 

neighborhood of the i-th particle, so that Jmin,i = J(li). 

Step-3: Update the particle velocities vi (i = 1,. . . . . ., S) using 

Eq.(12). If vin > vmax,n then vin = vmax,n, and also if vin < 

−vmax,n then vin = −vmax,n. 

Step-4:  Update the particle positions xi (i = 1, . . . , S) using 

Eq.(8), and apply the absorbing walls condition. 

Step-5:  Evaluate the cost value J(xi ) (i = 1, . . . , S) for all the 

particles. 

Step-6:  For each (i-th) particle, if J(xi ) < J(pi ) (i =1, . . . S) 

then pi = xi (the new position becomes pbest position of 

the i-th particle). 

Step-7: For each (i-th) particle, if J(pi ) < J(g) (i =1, . . . , S) 

then g = pi (the pbest position with the minimum cost 

value in the swarm becomes gbest position). 

Step-8:  Increase the counter t by 1. 

Step-9: If t < tmax and J(g) was improved then go to Step-2. If t 

< tmax and J(g) was not improved then go to Step-1 of 

initialization part (meaning that the lbest neighborhood 

must be reinitialized for each particle). 

4. RESULTS AND DISCUSSION

We consider a collinear array of 20 dipole antennas of radius 

0.005λ. Array elements are randomly placed along z-axis. To 

generate a pencil beam in the vertical plane, all excitation 

current phases are kept fixed at 0 degree and excitation current 

amplitude, inter element spacing and antenna length of each 

element are varied in the range 0 to 1, 0.6 to 1.2 and 0.4 to 0.6 

respectively. Desired DRR value of amplitude distribution is 

prefixed at 7. 

Because of symmetry, only ten amplitudes, nine inter 

element distances and ten antenna height are to be optimized 

using CPSO. The algorithm is designed to generate a vector of 
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29 real values between zero and one. The first 10 values of the 

vector are mapped and scaled to desired amplitude weight (0 to 

1) range and next nine values are mapped and scaled to desired

intermediate spacing weight (0.6 to 1.2) range and last ten values 

are mapped and scaled to desired length weight (0.4 to 0.6) 

range. We consider inter element distances from center to center 

and place first element at a prefixed distance from the origin.  

A swarm size of 32 particles (S = 32) is used in the 

algorithm. The velocity is calculated by eqn. (12) according to 

the lbest model, where each particle is affected by three neighbors 

(Ki = 3, for i = 1, . . . , S). The parameters φ1 and φ2 are chosen 

equal to 2.05, and thus φ = 4.10. Then, eqn. (13) yields k = 0.73. 

Finally, the values of k, φ1 and φ2 are used in eqn. (12). The 

algorithm makes use of vmax, where vmax,n = 0.20Rn (n = 1, . . . , 

N). Also, the absorbing walls condition is used in order to 

confine the particles within the search space. 

Table.1 shows the desired and obtained results in absence of 

ground plane. There is a good agreement between the desired 

and synthesized results. For optimization purpose we consider 

10 array elements and calculate the SWR values of individual 

elements.  Maximum SWR value is minimized in each step. We 

also calculate the average SWR value and it is found to be 1.79. 

SLL value also closely meets the desired specification of SLLd (-

30 dB). DRR of excitation distribution is found to be 7.64. 

Table.1. Desired and obtained result for the array 

Design Parameters 
Pencil Beam 

Desired Obtained 

SLL (dB) -30.00 -28.90 

Average SWR NA 1.79 

DRR 7 7.64 

Table.2. Current Amplitude, antenna height, inter element 

spacing and SWR for the array 

n 

Non-Uniformly spaced array 

Amplitude 

In 

Antenna 

Height 
Spacing SWRn 

1 0.9088 0.5078 
0.4539 

(from origin) 
1.8015 

2 0.7331 0.53106 0.81051 2.3022 

3 0.7881 0.53294 0.80244 2.3069 

4 0.8344 0.44132 0.84389 1.0613 

5 0.6153 0.47256 0.80798 1.0971 

6 0.5311 0.50036 0.80462 1.4588 

7 0.5575 0.45666 0.80003 1.0935 

8 0.2874 0.54022 0.89568 2.8924 

9 0.2556 0.43392 0.90479 1.1489 

10 0.1189 0.51072 0.78424 2.7658 

Parameters obtained from the simulation are shown in 

Table.2. It shows the length of the individual dipoles, inter-

element distances and finally the SWRs at the feeding points of 

the dipoles. It must be noted that the first dipole is placed 

arbitrarily 0.4539 wavelength away from the origin (z=0). In 

broadside case, the excitation phases are not subject to 

optimization because the dipoles of broadside arrays are always 

in phase and thus the phase is kept at zero degree. The DRR of 

the excitation is found to be 7.64. Because of symmetry, 

remaining ten elements are also excited with the same 

parameters. 

The optimized result shows good matching with desired 

specification. 

Fig.2. Normalized absolute power patterns in dB 

Fig.2 shows the normalized absolute power patterns (pencil-

beam) in dB for non-uniformly spaced collinear array antennas. 

Average SWR value remains within the range from 1 to 2. 

The optimization process is capable of finding a structure where 

all the dipoles are closely matched to the feeding network. 

Introduction of constriction coefficient in PSO results in a quick 

convergence of the particles over time. 

5. CONCLUSIONS

The use of constricted particle swarm optimization in the 

synthesis of non-uniformly spaced collinear array of unequal 

length is presented. An appropriate geometry and excitation 

distribution is chosen in order to satisfy the specified criterion. 

Phase is set at zero degree for all the elements. It is seen that 

perturbing the inter-element spacing significantly enhances array 

performance. The method used here remains limited for 

infinitely thin antennas having sinusoidal current distributions. 

The excitation and geometry both are symmetric in nature that 

greatly simplifies the feed network. Driving point impedance of 

each element is varied suitably by optimizing array geometry 

and excitation. Thus active impedances become matched with 

feed network and mutual coupling effect is compensated to the 

extent possible. There is a very good agreement between desired 

and obtained results using constricted PSO. The algorithm is 

capable of optimizing more complex geometries.  
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