
ISSN 2229-6956(ONLINE)
DOI: 10.21917/ijsc.2010.0004

 ICTACT JOURNAL ON SOFT COMPUTING, JULY 2010, VOLUME: 01, ISSUE: 01

MULTI-DOCUMENT TEXT SUMMARIZATION USING CLUSTERING TECHNIQUES

AND LEXICAL CHAINING

S.Saraswathi
1
 and R.Arti

2

1
Department of Information Technology, Pondicherry Engineering College, Pondicherry, India

E-mail: swathimuk@yahoo.com
2
Microsoft R&D India Private Limited, Hyderabad, India

E-mail: arti_lakshmi@yahoo.co.in

Abstract

This paper investigates the use of clustering and lexical chains to

produce coherent summaries of multiple documents in text format to

generate an indicative, less redundant summary. The summary is

designed as per user’s requirement of conciseness i.e., the documents

are summarized according to the percentage input by the user. For

achieving the above, various clustering techniques are used.

Clustering is done at two levels, one at single document level and then

at multi-document level. The clustered sentences are scored based on

five different methods and lexically linked to produce the final

summary in a text document.

Keywords:

Hierarchical Clustering, Lexical Chaining, Precision, Recall �

1. INTRODUCTION

Text summarization is the process of distilling the most

important information from a source to produce an abridged

version for a particular user or task. The rapid growth of the

Internet has resulted in enormous amounts of information that

has become more difficult to access efficiently. Internet users

require tools to help and manage this vast quantity of

information. This paper discusses on a method to create an

efficient and effective tool that is able to summarize multiple

documents with good efficiency. With the advent of efficient

search engines and abundance of online information, it becomes

necessary to give concise answers to user queries. Keyword

search is the most popular information discovery method

because the user does not need to know either a query language

or the underlying structure of the data. The search engines

available today provide keyword search on top of sets of

documents. As the number of documents available on users’

desktops and the Internet increases, so does the need to provide

high-quality summaries in order to allow the user to quickly

locate the desired information. Users are presented with vast

information which suffers from redundancy and irrelevance.

Also there may be situations where time and space may be of

immense concern. Under such circumstances, summarized text

comes very handy. This efficiency is necessary in Internet search

applications where many large documents may need to be

summarized at once, and where the response time to the end user

is extremely important. Hence summarization is usually coupled

with search engines to provide effective output. Text summaries

can also be categorized into two types:

Query-relevant summaries: The summary is created based on

the terms in the input query. As they are “query-biased”, they do

not provide an overall sense of the document content.

Generic summaries: A generic summary provides an overall

sense of the document’s contents and determines which category

it belongs to. A good generic summary should contain the main

topics of the document while keeping redundancy to a minimum.

MEAD a summarization tool uses Sentence Extraction

concept. It involves assigning salience scores to some units–

usually sentences or paragraphs–of a document or a set of

documents and extracts these with the highest scores [1]. MEAD

is a publicly available toolkit for multi-lingual summarization

and evaluation. The toolkit implements multiple summarization

algorithms (at arbitrary compression rates) such as position-

based, TF*IDF, and query-based methods. Methods for

evaluating the quality of the summaries include co-selection

(precision/recall, kappa, and relative utility) and content-based

measures (cosine, word overlap, bigram overlap). MEAD is

written in Perl and requires several XML-related Perl modules

and an external software package to run. Because of the

inconsistencies in encodings, it has been tested in Mandarin

Chinese, on certain versions of the Solaris operating system and

some versions of Linux.

The goal of SUMMARIST, a summarization tool is to create

summaries of arbitrary text in English and selected other

languages [2]. By eschewing language-specific methods for the

relatively surface-level processing, it is possible to create a

multi-lingual summarizer fairly easily. Eventually, however,

SUMMARIST will include language-specific techniques of

parsing and semantic analysis, and will combine robust NLP

processing (using Information Retrieval and statistical

techniques) with symbolic world knowledge embodied in the

concept thesaurus SENSUS [3,4], derived from WordNet [5] and

augmented by dictionaries and similar resources, to overcome

the problems endemic to either approach alone. These problems

arise because existing robust NLP methods tend to operate at the

word level, and hence miss concept-level generalizations (which

are provided by symbolic world knowledge), while on the other

hand symbolic knowledge is too difficult to acquire in large

enough scale to provide adequate coverage and robustness.

The automatic text summarizer proposed in this paper

discusses the use of multiple clustering techniques for reducing

redundancy. Hierarchical Clustering at single document level

and Fuzzy C Means Clustering for topic word identification at

multi-document level have been employed. The application of

semantic cosine similarity which takes care of the clustering

based on the presence of words, meanings and related words

ensures that clustering is more meaningful. The ranking of

sentences within each cluster is done on five different

dimensions which enable to retrieve the most deserving

sentences into the summary. Finally the sentences with a higher

rank within each cluster are picked and lexically chained based

on the topic to which it corresponds according to an ordering in

the topic word and their location in the sentence. The techniques

23

S.SARASWATHI AND R.ARTI: MULTI-DOCUMENT TEXT SUMMARIZATION USING CLUSTERING TECHNIQUES AND LEXICAL CHAINING

together produce a summary that captures the important

sentences to a high precision level. Further it overcomes the

prime drawbacks of other existing systems like redundancy, lack

of cohesion, etc. The approach has been tested in Software

Engineering domain and a high precision level in the resulting

summary has been observed.

Section 2 gives the overall structure of the system and

description about various modules comprising the system.

Section 3 deals with the performance measures and their

interpretation. Section 4 gives the conclusion and scope for

future work.

2. PROPOSED SYSTEM

The overall architecture of the proposed system is depicted in

Fig.1.

Pre-processing: The documents to be summarized are presented

to the POS Tagger.

Automatic Text Summarizer: The following steps are involved

in this module

1. The tagged documents are input to the Automatic Text

Summarizer

2. Hierarchical Clustering is applied at single document level,

The Hierarchical Clustering for the multiple documents is

carried out parallel and the output is a set of clusters from

all the documents. Semantic Cosine Similarity is used for

Hierarchical Clustering i.e. clustering is accomplished by

comparing the presence of words and their meanings and

related words

3. The clusters from step 2 are subjected to Topic Word and

Subtopic word identification using Fuzzy C Means

Clustering. A sentence is categorized into a particular

topic/subtopic based on the presence of certain words. The

sentences are reclustered based on the topic/subtopic and

hierarchical clustering index

4. The sentences in the newly formed clusters are ranked on 5

different dimensions and a rank is assigned for each

sentence in the cluster

5. The sentences with a high rank are picked from each

cluster according to the percentage of summarization

specified by the user

6. The sentences which have been picked are lexically

chained according to the order of topic words to which they

have been categorized and according to their line number

in the original document

The system is organized into the following phases:

1. Hierarchical Clustering using Semantic Cosine Similarity

2. Fuzzy C Means Clustering for topic word identification

3. Sentence Ranking

4. Lexical Chaining based on Topic Word order

The system has been decomposed into the following modules

like cosine similarity measure, grouping of clusters and lexical

chains as depicted in Fig.2, Fig.3 and Fig.4.

2.1 PRE PROCESSING

This work deals in summarizing text documents related to

Software Engineering domain. The pre-processing involves

collection of relevant documents.

2.2 PARTS OF SPEECH TAGGING

The documents collected are tagged using a POS tagger,

namely the tree tagger [6]. For example, if the input document

contains the sentence, “Users will have lots of questions and

software problems which lead to the next phase of software.”

The tagged output will be as follows:

Users NNS

Will MD

Have VH

Lots NNS

Of N

Questions NNS

And CC

Software NN

Problems NNS

Which WDT

Leads VVZ

To TO

The DT

Next JJ

Phase NN

Of IN

Software NN

. SENT

2.3 COSINE SIMILARITY

Cosine similarity is a technique to find out the similarity

between pairs of sentences in a document [7]. First of all, the

keywords in each pair of sentences i.e. nouns; adjectives are

extracted and stored separately. The presence of these words or

their meanings in the considered pair of sentences is found out.

The absence of the keyword is indicated by 0 and the presence is

indicated by the number of occurrences, this account for giving

more weightage to a word occurring more than once.

Let Pi and Pj be the vectors that indicate the presence of

keywords.

Pi= (1, 1, 1, 1, 1, 1, 1, 0)

Pj= (1, 0, 1, 1, 0, 0, 0, 1)

Using the vectors Pi and Pj, the cosine similarity value is

calculated using the following formula:

() () ()jijiji PPPPPPcos **, = (1)

Where, Pi * Pj is the vector dot product of vectors Pi and Pj.

The Fig.2 indicates the calculation of Cosine Similarity. The

dictionary lookup was speeded up using a cache and initiating

computations which can go on simultaneously in parallel. This

was accomplished by leveraging Multi-Threading in Java.

24

ISSN 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2010, VOLUME: 01, ISSUE: 01

Fig.1. Overall system flow represented in diagrammatic form

Fig.2. Semantic Cosine Similarity Calculation using Cache and Multithreading

Pre-processing

POS Tagger

Cluster 1

Documents to be submitted

Tagged Documents Percentage of summarization

Hierarchical clustering using

semantic cosine similarity

Hierarchical clustering using

semantic cosine similarity

Hierarchical clustering using

semantic cosine similarity

Document t1 Document t2 Document tn

Cluster 2
Cluster n

Fuzzy C means clustering for topic word identification

Clustering with topic and sub-topic

Sentence ranking within each cluster

Lexical chainning

Final summary

Automatic Text Summarizer

Cache Dictionary

Cache lookup
Dictionary lookup

(if data missing in cache)

Cosine similarity calculation

of sentence 1 and 2

Cosine similarity calculation

of sentence 1 and 3

Cosine similarity calculation

of sentence 1 and 4

Cosine similarity calculation

of sentence 1 and n

Cosine similarity calculation

of sentence 2 and 3

Cosine similarity calculation

of sentence 2 and 4

Cosine similarity calculation

of sentence 2 and 5

Cosine similarity calculation

of sentence 2 and n

Cosine

similarity

calculation of

sentence n-1

and n

Tagged

sentences

in a

document

Cosine

similarity

Matrix

25

S.SARASWATHI AND R.ARTI: MULTI-DOCUMENT TEXT SUMMARIZATION USING CLUSTERING TECHNIQUES AND LEXICAL CHAINING

Fig.3. Cache Algorithm

Fig.4. Grouping of clusters and Sentence Ranking

Topic word

database

Cosine similarity

matrix

Cosine similarity

matrix

Cosine similarity

matrix

Hierarchical clustering of

sentences in document 1
using cosine similarity

(using average linkage)

Hierarchical clustering of

sentences in document 1
using cosine similarity

(using average linkage)

Hierarchical clustering of

sentences in document 1
using cosine similarity

(using average linkage)

Clusters Clusters Clusters

Topic word identification and re-clustering using fuzzy c-means

Clustering with corresponding topic and sub-topic words

Sentence ranking within each cluster

Lexical Chainning

Summary

26

ISSN 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2010, VOLUME: 01, ISSUE: 01

The Fig.3 indicates the cache algorithm which was

employed for calculating Cosine Similarity of m*m+1 to m*n

which occur in parallel and the words in sentence m which will

be used frequently in near future will be stored in cache.

Subsequently, when Cosine Similarity calculation of m+1*m+2

to m*n starts, words in cache corresponding to m will be

replaced by words of sentence m+1. Also every third lookup of

the cache for the same word causes it to be loaded into cache.

2.4 HIERARCHICAL CLUSTERING

Using the cosine similarity values, the sentences in the

document are clustered [8]. The following steps are involved:

� Start by assigning each item to a cluster, so that if you have

N items, you now have N clusters, each containing just one

item. Let the distances (similarities) between the clusters be

the same as the distances (similarities) between the items

they contain.

� Find the closest (most similar) pair of clusters and merge

them into a single cluster, so that now you have one cluster

less.

� Compute distances (similarities) between the new cluster

and each of the old clusters.

� Repeat 2nd and 3rd steps until all items are clustered into a

single cluster of size N.

3rd step can be done in different ways, viz. single-linkage,

complete-linkage and average-linkage clustering. We have used

Average-linkage clustering; we consider the distance between

one cluster and another cluster to be equal to the average

distance from any member of one cluster to any member of the

other cluster.

2.5 TOPIC AND SUBTOPIC IDENTIFICATION

A fuzzy algorithm is used for identifying the topic and

subtopic of each cluster generated by hierarchical clustering.

An extensive topic database was designed. This database

consisted of three tables namely, topic, subtopic and word. The

topic table contains all the topics in the order of lexical

connectivity. The subtopic table contains the subtopic numbers,

subtopic names and also which topic they come under. In word

table, the important words under each subtopic are listed along

with a weight which indicates the importance of the word under

the topic. The clusters so formed in the previous stage are

assigned topic and subtopic after comparing the presence of

words from the word database. For doing the same, the most

frequently occurring words in the cluster are identified along

with their number of occurrences, and each word is compared

with the words under each subtopic. A weight is generated by

using the equation (2):

() () ()
j

k

j

ji WweightWfreqclusterWC �
=

=
0

* (2)

where, Wj : word 	 (clusteri
 wordt)

freq (Wj) : number of occurrences of Wj in cluster i.

weight(Wj) : weight of Wj under the t
th

 subtopic

clusteri : words in i
th

 cluster

k : no of words that occur in clusteri

The above calculation is repeated for all the subtopics. The

degree to which a cluster is part of a subtopic is categorized by

WC(clusteri). The topic with maximum number of subtopics

will have weights greater than the average and it is decided to

be the topic of the Cluster. The clusters which come under the

same subtopic and topic are grouped and ordered in ascending

order. The new clusters so formed are stored into the database.

2.6 SENTENCE RANKING

The sentences inside each cluster have to be scored for their

relevance to identify the most important sentences in the

document [9]. For this each sentence is scored based on 4

different metrics, namely,

1. Length

2. Location

3. Presence of Content Words

4. Lexical Connectivity score

5. Special Score based on presence of symbols like “ , ’ , (

,) , etc

2.7 LENGTH SCORE

The length score is computed by calculating the length of

each sentence in each cluster and subjecting them to the

sigmoid function for normalizing them. The length of the

sentence is the number of words it contains, i.e., l(S),

normalized by sigmoid function:

() ()αα −− +−= eeL 11 (3)

Where

() ()()() ()()SlstdSlSl µα −= (4)

Where

� (l(S)) is the average length of sentences

 std(l(S)) is the standard deviation of the sentence lengths.

2.8 LOCATION SCORE

The location of a sentence in a document can have

significance in determining its importance. For example the

first sentence introduces the topic and also last sentence

presents some important conclusions hence they both are given

highest score. Hence location is considered in scoring the

sentence

NXS = (5)

Where,

N is the total number of sentences in the paragraph;

X is the index of sentence S.

2.9 CONTENT-WORD SCORE

This score is based on the presence of standard content

words which ought to be present in the sentence. For computing

this we rely upon the previous phase of topic word

identification. The topic to which the considered sentence

belongs is found out and the most important words that ought to

be in that topic are identified and checked if present in the

sentence. Depending upon the presence a score is generated. To

calculate the content word score, the cluster to which the

27

S.SARASWATHI AND R.ARTI: MULTI-DOCUMENT TEXT SUMMARIZATION USING CLUSTERING TECHNIQUES AND LEXICAL CHAINING

sentence belongs i.e. the topic and sub topic of the sentence is

identified. Then depending on how many content words of that

sub topic are present in the sentence, the sentence is given a

score, which is calculated using (6).

() (1) / (1)F S e e
α α− −

= = − + (6)

where, S = sentence in the document under consideration

(() (())) / (())CW S CW S std CW Sα µ= − (7)

0

() log[()],
k

i i

i

CW S freq W where W S
=

= − ∈� (8)

where, freq (Wi) is the frequency of Wi in that document

� (CW(S)) is the mean of all the sentence scores

std (CW(S)) is the standard deviation

2.10 SPECIAL SCORE

Based on the presence of special characters like Bullets,

Quotations, figures, brackets etc, a special score is generated.

() (1) / (1)S p ecia l S e e
α α− −

= − + (9)

Where

(() (())) / (())S S S S std S Sα µ= − (10)

Where,

� (S(S)) is the mean of special score of sentence S.

std (S(S)) is the standard deviation special score of sentence

S.

0

() log[()],
k

i i

i

S S freq W where W S
=

= ∈� (11)

2.11 AVERAGE LEXICAL CONNECTIVITY (ALC)

For lexical connectivity the number of terms that the

sentence shares with other sentences is calculated and

accordingly a score is given. The assumption is that a sentence

that share more terms with other sentences is more important.

() (1) / (1)A L C S e e
α α− −

= − + (12)

Where

(() (())) / (())L S L S std L Sα µ= − (13)

where, � (L(S)) is the mean of lexical score of sentence S.

std (L(S)) is the standard deviation lexical score of

sentence S.

() ()[]�
=

∈−=
k

i

ii SWwhereWfreqSL
0

,log (14)

2.12 LEXICAL CHAINING

The user specifies the percentage of summarization.

According to the percentage specified, the number of sentences

to be picked from each cluster in every document is computed.

The required number of sentences is selected from each cluster

according to their score. The sentences selected are subjected to

hierarchical lexical chaining. Lexical chaining selects a set of

candidate words, generally nouns. Then search through the list

of chains and if a word satisfies the relatedness criteria with a

chain word then the word is added to the chain, otherwise a new

chain is created. The topics and subtopics are first ordered

according to the sequence in which they occur, for example

Software Requirements topic should occur in the beginning,

and it should be followed by design and so on. The sentences

selected for the final summary are ordered according to the

topic/subtopic to which they belong to. [10, 11].

3. PERFORMANCE ANALYSIS

Documents related to the subject Software Engineering

under the topics Requirement analysis, Project management,

risk analysis and software development were collected. The

performance measures used for the evaluation of the summary

generated by the application are precision, recall and F-score as

shown in formula (15), formula (16) and formula (17)

respectively. Precision measures the percentage of correctness

for the total number of summaries judged by the summary

assessor to be relevant. Precision also measures the usefulness

of the summarizer while recall is a measure of the completeness

of the summarizer. Recall is a measure of how effective the

system in including relevant sentences in the summary. It is 1.0

when all relevant sentences are retrieved. Precision is a measure

of how effective the system in excluding irrelevant sentences

from the summary. It is 1.0 when all documents returned to the

system's users are relevant to the summary. Meanwhile, F-

Score is a composite score that combines the precision and

recall measures.

relevant sen tences retreived sentences
precision

retreived sentences
=

� (15)

relevant sentences retreived sentences
recall

relevant sentences
=

� (16)

2 * *p r e c i s i o n r e c a l l
F S c o r e

p r e c i s i o n r e c a l l
− =

+

(17)

To obtain the results of all performance measures, a

reference output should be at hand. This section of evaluation

uses a human-generated summary. The individuals involved in

this process are the experts in area in the Software Engineering.

The summary generated by experts would be used as a

reference in obtaining the number of relevant sentences in a

particular summary. There are different summaries generated

based on the percentage of requirement from the user. Fig.5 and

Fig.6 depicts the results obtained for different percentage of

summarisation.

Fig.5. Precision graph for 80% summarization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75 100 125 150 175 200 225

P
re

ci
si

o
n

No. sentences

28

ISSN 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2010, VOLUME: 01, ISSUE: 01

Fig.6. Precision graph for 90% summarization

Table.1 Evaluation on Software Engineering Domain

Percentage of

summarization

Precision Recall F-score

10 1 1 1

20 0.94 0.93 0.93

30 0.9 0.91 0.9

40 0.88 0.84 0.86

50 0.88 0.82 0.85

60 0.85 0.84 0.84

70 0.81 0.84 0.82

80 0.79 0.8 0.79

90 0.75 0.79 0.77

Average 0.86

Based on the results shown in Table I, the average F-score

for all articles is 0.86. The summary generated for Software

Engineering domain by using machine learning algorithm

shows a similarity with the summaries generated by the expert

(human-generated summaries). Therefore, the conclusion which

have arisen from the results, suggest that this technique is

suitable for a specific topic corpus.

4. CONCLUSIONS

The project has high demand in today’s world due to the

problem of information overload. There is an abundance of

information available to the user and very less time to go

through all the available information. This project summarizes

Software Engineering documents in an efficient way

considering the importance of each sentence. Previous methods

extract only the most highly ranked sentences which would

often lead to redundancy in the final summary. Clustering the

similar sentences and choosing the best among them helped to

reduce redundancy by a significant amount. Also the clustering

was on the basis of semantic cosine similarity which provided a

more meaningful and effective clustering. An extensive

dictionary was developed and the lookup in dictionary was

speeded up using multithreading. Also to achieve logical

coherence lexical chaining was employed. The lexical chaining

was designed in such a way to cater the needs of the domain

which improved the readability of the summary. The system

can be enhanced to summarize not only text documents but also

other type of documents like word, PDF, HTML, etc. One other

enhancement that can be made is to extend it for other domains.

The Dictionary can be expanded to include antonyms,

homonyms and hyponyms, abbreviations. Using this expanded

dictionary the efficiency of the text summarizer tool can be

improved.

REFERENCES

[1] A public domain portable multi-document summarization

system, webpage: http://www.summarization.com/mead/

[2] Information Sciences Institute, The University of South

California, website:

http://www.isi.edu/naturallanguage/projects/

[3] Kevin Knight and S. Luk, 2000,“Building a large-scale

knowledge base for machine translation”, in Proc. of

AAAI'94

[4] Hovy E.H., 1998, “Combining and Standardizing Large-

Scale, Practical Ontologies for Machine Translation and

Other Uses”, in Proc. of the 1st International Conference on

Language Resources and Evaluation (LREC). Granada,

Spain.

[5] Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and

Miller, K. 1990, “WordNet: An on-line lexical database”,

International journal of lexicography, Vol. 3, No. 4:

pp. 235-244.

[6] Horacio Saggion., 2007, “SHEF: Semantic Tagging and

Summarization Techniques Applied to Cross-document Co

reference”, in Proc.of SemEval 2007.

[7] Soe-Tsyr Yuan and Jerry Sun., 2004, “Ontology Based

Structured Cosine Similarity in Speech Document

Summarization”, in Proc. of the IEEE/WIC/ACM

International Conference on Web Intelligence.

[8] Huang-Cheng Kuo, Tsung-Han Tsai and Jen-Peng Huang.,

2004, “Building a Concept Hierarchy by Heirarchical

Clustering with Join/Merge Decision”, in Proc. Of ISI

Conference, LNCS 3073, 100-133.

[9] Zhuli Xie, Xin Li, Barbara Di Eugenio, Weimin Xiao,

Thomas M. Tirpak, and Peter C. Nelson., 2004, "Using

Gene Expression Programming to Construct Sentence

Ranking Functions for Text Summarization.", in Proc. of

the 20th International Conference on Computational

Linguistics (COLING-2004). Geneva, Switzerland.

[10] H. Gregory Silber, Kathleen F. McCoy, 2000, “Efficient

Text Summarization Using Lexical Chains”, in Proc. of

the Intelligent Scalable Text Summarization Workshop

ACL Madrid.

[11] Meru Brunn, Yllias Chali, Christopher J. Pinchak., 2000,

“Text Summarization Using Lexical Chains”, in Proc. Of

ACL/EACL Workshop on Intelligent Scalable Text

Summarization, pp. 10-17.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75 100 125 150 175 200 225

P
re

ci
si

o
n

No. of sentences

29

