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Abstract 

This paper investigates the use of clustering and lexical chains to 

produce coherent summaries of multiple documents in text format to 

generate an indicative, less redundant summary. The summary is 

designed as per user’s requirement of conciseness i.e., the documents 

are summarized according to the percentage input by the user. For 

achieving the above, various clustering techniques are used. 

Clustering is done at two levels, one at single document level and then 

at multi-document level. The clustered sentences are scored based on 

five different methods and lexically linked to produce the final 

summary in a text document. 
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1. INTRODUCTION

Text summarization is the process of distilling the most 

important information from a source to produce an abridged 

version for a particular user or task. The rapid growth of the 

Internet has resulted in enormous amounts of information that 

has become more difficult to access efficiently.  Internet users 

require tools to help and manage this vast quantity of 

information.  This paper discusses on a method to create an 

efficient and effective tool that is able to summarize multiple 

documents with good efficiency.  With the advent of efficient 

search engines and abundance of online information, it becomes 

necessary to give concise answers to user queries. Keyword 

search is the most popular information discovery method 

because the user does not need to know either a query language 

or the underlying structure of the data. The search engines 

available today provide keyword search on top of sets of 

documents. As the number of documents available on users’ 

desktops and the Internet increases, so does the need to provide 

high-quality summaries in order to allow the user to quickly 

locate the desired information. Users are presented with vast 

information which suffers from redundancy and irrelevance. 

Also there may be situations where time and space may be of 

immense concern. Under such circumstances, summarized text 

comes very handy. This efficiency is necessary in Internet search 

applications where many large documents may need to be 

summarized at once, and where the response time to the end user 

is extremely important. Hence summarization is usually coupled 

with search engines to provide effective output. Text summaries 

can also be categorized into two types: 

Query-relevant summaries: The summary is created based on 

the terms in the input query. As they are “query-biased”, they do 

not provide an overall sense of the document content.  

Generic summaries: A generic summary provides an overall 

sense of the document’s contents and determines which category 

it belongs to. A good generic summary should contain the main 

topics of the document while keeping redundancy to a minimum. 

MEAD a summarization tool uses Sentence Extraction 

concept. It involves assigning salience scores to some units–

usually sentences or paragraphs–of a document or a set of 

documents and extracts these with the highest scores [1]. MEAD 

is a publicly available toolkit for multi-lingual summarization 

and evaluation. The toolkit implements multiple summarization 

algorithms (at arbitrary compression rates) such as position-

based, TF*IDF, and query-based methods. Methods for 

evaluating the quality of the summaries include co-selection 

(precision/recall, kappa, and relative utility) and content-based 

measures (cosine, word overlap, bigram overlap). MEAD is 

written in Perl and requires several XML-related Perl modules 

and an external software package to run. Because of the 

inconsistencies in encodings, it has been tested in Mandarin 

Chinese, on certain versions of the Solaris operating system and 

some versions of Linux. 

The goal of SUMMARIST, a summarization tool is to create 

summaries of arbitrary text in English and selected other 

languages [2]. By eschewing language-specific methods for the 

relatively surface-level processing, it is possible to create a 

multi-lingual summarizer fairly easily. Eventually, however, 

SUMMARIST will include language-specific techniques of 

parsing and semantic analysis, and will combine robust NLP 

processing (using Information Retrieval and statistical 

techniques) with symbolic world knowledge embodied in the 

concept thesaurus SENSUS [3,4], derived from WordNet [5] and 

augmented by dictionaries and similar resources, to overcome 

the problems endemic to either approach alone. These problems 

arise because existing robust NLP methods tend to operate at the 

word level, and hence miss concept-level generalizations (which 

are provided by symbolic world knowledge), while on the other 

hand symbolic knowledge is too difficult to acquire in large 

enough scale to provide adequate coverage and robustness.  

The automatic text summarizer proposed in this paper 

discusses the use of multiple clustering techniques for reducing 

redundancy. Hierarchical Clustering at single document level 

and Fuzzy C Means Clustering for topic word identification at 

multi-document level have been employed. The application of 

semantic cosine similarity which takes care of the clustering 

based on the presence of words, meanings and related words 

ensures that clustering is more meaningful. The ranking of 

sentences within each cluster is done on five different 

dimensions which enable to retrieve the most deserving 

sentences into the summary. Finally the sentences with a higher 

rank within each cluster are picked and lexically chained based 

on the topic to which it corresponds according to an ordering in 

the topic word and their location in the sentence. The techniques 
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together produce a summary that captures the important 

sentences to a high precision level. Further it overcomes the 

prime drawbacks of other existing systems like redundancy, lack 

of cohesion, etc. The approach has been tested in Software 

Engineering domain and a high precision level in the resulting 

summary has been observed. 

Section 2 gives the overall structure of the system and 

description about various modules comprising the system. 

Section 3 deals with the performance measures and their 

interpretation. Section 4 gives the conclusion and scope for 

future work. 

2. PROPOSED SYSTEM

The overall architecture of the proposed system is depicted in 

Fig.1. 

Pre-processing: The documents to be summarized are presented 

to the POS Tagger. 

Automatic Text Summarizer: The following steps are involved 

in this module 

1. The tagged documents are input to the Automatic Text

Summarizer

2. Hierarchical Clustering is applied at single document level,

The Hierarchical Clustering for the multiple documents is

carried out parallel and the output is a set of clusters from

all the documents. Semantic Cosine Similarity is used for

Hierarchical Clustering i.e. clustering is accomplished by

comparing the presence of words and their meanings and

related words

3. The clusters from step 2 are subjected to Topic Word and

Subtopic word identification using Fuzzy C Means

Clustering. A sentence is categorized into a particular

topic/subtopic based on the presence of certain words. The

sentences are reclustered based on the topic/subtopic and

hierarchical clustering index

4. The sentences in the newly formed clusters are ranked on 5

different dimensions and a rank is assigned for each

sentence in the cluster

5. The sentences with a high rank are picked from each

cluster according to the percentage of summarization

specified by the user

6. The sentences which have been picked are lexically

chained according to the order of topic words to which they

have been categorized and according to their line number

in the original document

The system is organized into the following phases: 

1. Hierarchical Clustering using Semantic Cosine Similarity

2. Fuzzy C Means Clustering for topic word identification

3. Sentence Ranking

4. Lexical Chaining based on Topic Word order

The system has been decomposed into the following modules 

like cosine similarity measure, grouping of clusters and lexical 

chains as depicted in Fig.2, Fig.3 and Fig.4. 

2.1 PRE PROCESSING 

This work deals in summarizing text documents related to 

Software Engineering domain. The pre-processing involves 

collection of relevant documents. 

2.2 PARTS OF SPEECH TAGGING 

The documents collected are tagged using a POS tagger, 

namely the tree tagger [6]. For example, if the input document 

contains the sentence, “Users will have lots of questions and 

software problems which lead to the next phase of software.” 

The tagged output will be as follows: 

Users NNS 

Will MD 

Have VH 

Lots NNS 

Of N 

Questions NNS 

And CC 

Software NN 

Problems NNS 

Which WDT 

Leads VVZ 

To TO 

The DT 

Next JJ 

Phase NN 

Of IN 

Software NN 

. SENT 

2.3 COSINE SIMILARITY 

Cosine similarity is a technique to find out the similarity 

between pairs of sentences in a document [7]. First of all, the 

keywords in each pair of sentences i.e. nouns; adjectives are 

extracted and stored separately. The presence of these words or 

their meanings in the considered pair of sentences is found out. 

The absence of the keyword is indicated by 0 and the presence is 

indicated by the number of occurrences, this account for giving 

more weightage to a word occurring more than once. 

Let Pi and Pj be the vectors that indicate the presence of 

keywords. 

Pi= (1, 1, 1, 1, 1, 1, 1, 0) 

Pj= (1, 0, 1, 1, 0, 0, 0, 1) 

Using the vectors Pi and Pj, the cosine similarity value is 

calculated using the following formula: 

( ) ( ) ( )jijiji PPPPPPcos **, = (1) 

Where, Pi * Pj is the vector dot product of vectors Pi and Pj. 

The Fig.2 indicates the calculation of Cosine Similarity. The 

dictionary lookup was speeded up using a cache and initiating 

computations which can go on simultaneously in parallel. This 

was accomplished by leveraging Multi-Threading in Java. 
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Fig.1. Overall system flow represented in diagrammatic form 

Fig.2. Semantic Cosine Similarity Calculation using Cache and Multithreading 
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Fig.3. Cache Algorithm 

Fig.4. Grouping of clusters and Sentence Ranking 
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The Fig.3 indicates the cache algorithm which was 

employed for calculating Cosine Similarity of m*m+1 to m*n 

which occur in parallel and the words in sentence m which will 

be used frequently in near future will be stored in cache. 

Subsequently, when Cosine Similarity calculation of m+1*m+2 

to m*n starts, words in cache corresponding to m will be 

replaced by words of sentence m+1. Also every third lookup of 

the cache for the same word causes it to be loaded into cache.  

2.4 HIERARCHICAL CLUSTERING 

Using the cosine similarity values, the sentences in the 

document are clustered [8]. The following steps are involved: 

� Start by assigning each item to a cluster, so that if you have 

N items, you now have N clusters, each containing just one 

item. Let the distances (similarities) between the clusters be 

the same as the distances (similarities) between the items 

they contain. 

� Find the closest (most similar) pair of clusters and merge 

them into a single cluster, so that now you have one cluster 

less. 

� Compute distances (similarities) between the new cluster 

and each of the old clusters. 

� Repeat 2nd and 3rd steps until all items are clustered into a 

single cluster of size N. 

3rd step can be done in different ways, viz. single-linkage, 

complete-linkage and average-linkage clustering. We have used 

Average-linkage clustering; we consider the distance between 

one cluster and another cluster to be equal to the average 

distance from any member of one cluster to any member of the 

other cluster.  

2.5 TOPIC AND SUBTOPIC IDENTIFICATION 

A fuzzy algorithm is used for identifying the topic and 

subtopic of each cluster generated by hierarchical clustering. 

An extensive topic database was designed. This database 

consisted of three tables namely, topic, subtopic and word. The 

topic table contains all the topics in the order of lexical 

connectivity. The subtopic table contains the subtopic numbers, 

subtopic names and also which topic they come under. In word 

table, the important words under each subtopic are listed along 

with a weight which indicates the importance of the word under 

the topic. The clusters so formed in the previous stage are 

assigned topic and subtopic after comparing the presence of 

words from the word database. For doing the same, the most 

frequently occurring words in the cluster are identified along 

with their number of occurrences, and each word is compared 

with the words under each subtopic. A weight is generated by 

using the equation (2): 

( ) ( ) ( )
j

k

j

ji WweightWfreqclusterWC �
=

=
0

* (2) 

where, Wj : word  	  (clusteri  
 wordt) 

freq (Wj )   :  number of occurrences of Wj in cluster i. 

weight(Wj) : weight of Wj  under the t
th

 subtopic

clusteri           : words in i
th

 cluster

k                : no of words that occur in clusteri 

The above calculation is repeated for all the subtopics. The 

degree to which a cluster is part of a subtopic is categorized by 

WC(clusteri). The topic with maximum number of subtopics 

will have weights greater than the average and it is decided to 

be the topic of the Cluster. The clusters which come under the 

same subtopic and topic are grouped and ordered in ascending 

order. The new clusters so formed are stored into the database.  

2.6 SENTENCE RANKING 

The sentences inside each cluster have to be scored for their 

relevance to identify the most important sentences in the 

document [9]. For this each sentence is scored based on 4 

different metrics, namely, 

1. Length

2. Location

3. Presence of Content Words

4. Lexical Connectivity score

5. Special Score based on presence of  symbols like    “ , ’ , (

, ) , etc

2.7 LENGTH SCORE 

The length score is computed by calculating the length of 

each sentence in each cluster and subjecting them to the 

sigmoid function for normalizing them. The length of the 

sentence is the number of words it contains, i.e., l(S), 

normalized by sigmoid function: 

( ) ( )αα −− +−= eeL 11 (3) 

Where 

( ) ( )( )( ) ( )( )SlstdSlSl µα −=  (4) 

Where 

� (l(S)) is the average length of sentences

 std(l(S)) is the standard deviation of the sentence lengths. 

2.8 LOCATION SCORE 

The location of a sentence in a document can have 

significance in determining its importance. For example the 

first sentence introduces the topic and also last sentence 

presents some important conclusions hence they both are given 

highest score. Hence location is considered in scoring the 

sentence 

NXS =  (5) 

Where, 

N is the total number of sentences in the paragraph; 

X is the index of sentence S.  

2.9 CONTENT-WORD SCORE 

This score is based on the presence of standard content 

words which ought to be present in the sentence. For computing 

this we rely upon the previous phase of topic word 

identification. The topic to which the considered sentence 

belongs is found out and the most important words that ought to 

be in that topic are identified and checked if present in the 

sentence. Depending upon the presence a score is generated. To 

calculate the content word score, the cluster to which the 
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sentence belongs i.e. the topic and sub topic of the sentence is 

identified. Then depending on how many content words of that 

sub topic are present in the sentence, the sentence is given a 

score, which is calculated using (6). 

( ) (1 ) / (1 )F S e e
α α− −

= = − + (6) 

where, S = sentence in the document under consideration 

( ( ) ( ( ))) / ( ( ))CW S CW S std CW Sα µ= − (7) 

0

( ) log[ ( )],
k

i i

i

CW S freq W where W S
=

= − ∈� (8) 

where,   freq (Wi) is the frequency of Wi in that document 

� (CW(S)) is the mean of all the sentence scores 

std (CW(S)) is the standard deviation 

2.10 SPECIAL SCORE 

Based on the presence of special characters like Bullets, 

Quotations, figures, brackets etc, a special score is generated. 

( ) (1 ) / (1 )S p ecia l S e e
α α− −

= − +            (9)

Where 

( ( ) ( ( ))) / ( ( ))S S S S std S Sα µ= − (10) 

Where, 

� (S(S)) is the mean of special score of sentence S. 

std (S(S)) is the standard deviation special score of sentence 

S. 

0

( ) log[ ( )],
k

i i

i

S S freq W where W S
=

= ∈�  (11) 

2.11 AVERAGE LEXICAL CONNECTIVITY (ALC) 

For lexical connectivity the number of terms that the 

sentence shares with other sentences is calculated and 

accordingly a score is given. The assumption is that a sentence 

that share more terms with other sentences is more important. 

( ) (1 ) / (1 )A L C S e e
α α− −

= − + (12) 

Where 

( ( ) ( ( ))) / ( ( ))L S L S std L Sα µ= − (13) 

where, � (L(S)) is the mean of lexical score of sentence S.

std (L(S)) is the standard deviation lexical score of

sentence S.

( ) ( )[ ]�
=

∈−=
k

i

ii SWwhereWfreqSL
0

,log (14)

2.12 LEXICAL CHAINING 

The user specifies the percentage of summarization. 

According to the percentage specified, the number of sentences 

to be picked from each cluster in every document is computed. 

The required number of sentences is selected from each cluster 

according to their score. The sentences selected are subjected to 

hierarchical lexical chaining. Lexical chaining selects a set of 

candidate words, generally nouns. Then search through the list 

of chains and if a word satisfies the relatedness criteria with a 

chain word then the word is added to the chain, otherwise a new 

chain is created. The topics and subtopics are first ordered 

according to the sequence in which they occur, for example 

Software Requirements topic should occur in the beginning, 

and it should be followed by design and so on. The sentences 

selected for the final summary are ordered according to the 

topic/subtopic to which they belong to. [10, 11].  

3. PERFORMANCE ANALYSIS

Documents related to the subject Software Engineering 

under the topics Requirement analysis, Project management, 

risk analysis and software development were collected. The 

performance measures used for the evaluation of the summary 

generated by the application are precision, recall and F-score as 

shown in formula (15), formula (16) and formula (17) 

respectively. Precision measures the percentage of correctness 

for the total number of summaries judged by the summary 

assessor to be relevant. Precision also measures the usefulness 

of the summarizer while recall is a measure of the completeness 

of the summarizer. Recall is a measure of how effective the 

system in including relevant sentences in the summary. It is 1.0 

when all relevant sentences are retrieved. Precision is a measure 

of how effective the system in excluding irrelevant sentences 

from the summary. It is 1.0 when all documents returned to the 

system's users are relevant to the summary.  Meanwhile, F-

Score is a composite score that combines the precision and 

recall measures. 

relevant sen tences retreived sentences
precision

retreived sentences
=

� (15)

relevant sentences retreived sentences
recall

relevant sentences
=

� (16)

2 * *p r e c i s i o n r e c a l l
F S c o r e

p r e c i s i o n r e c a l l
− =

+

(17)

To obtain the results of all performance measures, a 

reference output should be at hand. This section of evaluation 

uses a human-generated summary. The individuals involved in 

this process are the experts in area in the Software Engineering. 

The summary generated by experts would be used as a 

reference in obtaining the number of relevant sentences in a 

particular summary. There are different summaries generated 

based on the percentage of requirement from the user. Fig.5 and 

Fig.6 depicts the results obtained for different percentage of 

summarisation. 

Fig.5. Precision graph for 80% summarization 
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Fig.6. Precision graph for 90% summarization 

Table.1 Evaluation on Software Engineering Domain 

Percentage of 

summarization 

Precision Recall F-score 

10 1 1 1 

20 0.94 0.93 0.93 

30 0.9 0.91 0.9 

40 0.88 0.84 0.86 

50 0.88 0.82 0.85 

60 0.85 0.84 0.84 

70 0.81 0.84 0.82 

80 0.79 0.8 0.79 

90 0.75 0.79 0.77 

Average 0.86 

Based on the results shown in Table I, the average F-score 

for all articles is 0.86. The summary generated for Software 

Engineering domain by using machine learning algorithm 

shows a similarity with the summaries generated by the expert 

(human-generated summaries). Therefore, the conclusion which 

have arisen from the results, suggest that this technique is 

suitable for a specific topic corpus. 

4. CONCLUSIONS

The project has high demand in today’s world due to the 

problem of information overload. There is an abundance of 

information available to the user and very less time to go 

through all the available information. This project summarizes 

Software Engineering documents in an efficient way 

considering the importance of each sentence. Previous methods 

extract only the most highly ranked sentences which would 

often lead to redundancy in the final summary. Clustering the 

similar sentences and choosing the best among them helped to 

reduce redundancy by a significant amount. Also the clustering 

was on the basis of semantic cosine similarity which provided a 

more meaningful and effective clustering. An extensive 

dictionary was developed and the lookup in dictionary was 

speeded up using multithreading. Also to achieve logical 

coherence lexical chaining was employed. The lexical chaining 

was designed in such a way to cater the needs of the domain 

which improved the readability of the summary. The system 

can be enhanced to summarize not only text documents but also 

other type of documents like word, PDF, HTML, etc. One other 

enhancement that can be made is to extend it for other domains. 

The Dictionary can be expanded to include antonyms, 

homonyms and hyponyms, abbreviations. Using this expanded 

dictionary the efficiency of the text summarizer tool can be 

improved. 
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