
SOWMIYA MURTHY: CRYPTOGRAPHIC SECURE CLOUD STORAGE MODEL WITH ANONYMOUS AUTHENTICATION AND AUTOMATIC FILE RECOVERY

DOI: 10.21917/ijsc.2014.0120

844

CRYPTOGRAPHIC SECURE CLOUD STORAGE MODEL WITH ANONYMOUS

AUTHENTICATION AND AUTOMATIC FILE RECOVERY

Sowmiya Murthy
Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, India

E-mail: sowmiyamurthy@gmail.com

Abstract

We propose a secure cloud storage model that addresses security and

storage issues for cloud computing environments. Security is achieved

by anonymous authentication which ensures that cloud users remain

anonymous while getting duly authenticated. For achieving this goal,

we propose a digital signature based authentication scheme with a

decentralized architecture for distributed key management with

multiple Key Distribution Centers. Homomorphic encryption scheme

using Paillier public key cryptosystem is used for encrypting the data

that is stored in the cloud. We incorporate a query driven approach

for validating the access policies defined by an individual user for

his/her data i.e. the access is granted to a requester only if his

credentials matches with the hidden access policy. Further, since data

is vulnerable to losses or damages due to the vagaries of the network,

we propose an automatic retrieval mechanism where lost data is

recovered by data replication and file replacement with string

matching algorithm. We describe a prototype implementation of our

proposed model.

Keywords:

Access Policies, Anonymous Authentication, Decentralized

Architecture, Distributed Key Management, Homomorphic

Encryption

1. INTRODUCTION

Cloud computing is a collection of scalable resources and

computing infrastructure which provides services to users with

the “pay only for use” strategy. This kind of technology helps

users in handling resources effectively on-site. Though the

advantages are clear, the critical factor in the present data

outsourcing scenario is the enforcement of strong security

mechanisms for data storage, transfer and processing in the

cloud.

The data that are stored in the cloud are often sensitive in

nature. For example, medical records and user-driven data

generated in social networks are often stored in public or private

clouds. Ensuring privacy and security of such data is important

for users to trust the service providers. For achieving that,

adequate authentication and access control techniques must be

employed. A high level security system also ensures that only

verified and valid services are provided to authorized users.

Indeed, the process of authentication must be initiated for all

valid transactions that are performed through the cloud.

The first goal of our work is to implement anonymous

authentication of users. In [1], the authors discuss anonymous

authentication of users and highlight its importance. The privacy

settings of users must be followed in such a manner that the

identity of the user should not become evident to either the cloud

service providers or to other users. Thus, the anonymity of users

is preserved.

To provide secure data storage, the cloud data needs to be

encrypted. The second goal of our work is to ensure data privacy

and security. Many homomorphic techniques have been

discussed [2], [3]. This kind of encryption ensures that during

the time that computations are performed on the data by a

cloud’s computing resources, they are not able to read the data.

For this, the data must be suitably encoded before being

encrypted.

Cloud servers are prone to failures and attacks. Service

providers should provide reliable and uninterrupted services to

users by providing efficient retrieval mechanisms. Our third goal

is to enhance the availability of cloud services. Wang et al.

addressed the issue of secure and dependable cloud storage [4].

They specifically discussed about Byzantine failure, where the

storage servers fail in arbitrary ways leading to data

modification and loss. We deal with this issue by replicating

data using backup files and recovering lost data with string

matching algorithm.

The rest of the paper is organized as follows. In section 2, we

review prior work in the relevant domain .In section 3, we

elaborate upon the details of our present work. In section 4, we

describe a prototype implementation of our scheme. In section 5,

we do a cryptanalysis of our system and assess its performance.

We conclude our work in section 6 and project directions for

further research.

2. PRIOR WORK

We now take a brief survey of the existing approaches for

handling various security issues such as key distribution, access

control and authentication.

2.1 KEY DISTRIBUTION ARCHITECTURES

The centralized architecture model implements a single Key

Distribution Center (KDC) for key distribution as well as for

incorporating security mechanism. Several existing works

discuss about centralized access control mechanisms [5], [6],

[7], [8], [17]. Though implementation of a single KDC structure

is convenient, but it faces many potential problems:

 A critical problem is that of single point failure which is

not at all desirable in a cloud environment where there are

large numbers of active users.

 Significant overheads occur since a single KDC is used to

distribute secret keys and attributes to all users.

Furthermore, the schemes discussed in [10] and [7] do not

support authentication. In [10], the security system supports only

single write and read operation.

In view of the above problems, a decentralized cloud

approach is emphasized where the task of key management is

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING:

SPECIAL ISSUE ON DISTRIBUTED INTELLIGENT SYSTEMS AND APPLICATIONS, OCTOBER 2014, VOLUME: 05, ISSUE: 01

845

done by multiple KDCs. A decentralized architecture for

distributed key management is presented in [1]. However, in this

work, access policies defined by a user from other users of the

file. Thus, access rights associated with individual users are not

hidden from the cloud.

2.2 AUTHENTICATION TECHNIQUES

In [1], the authors describe anonymous authentication where

users are authenticated without their identity being revealed.

This approach is very useful in a real time scenario where users

want to post some sensitive information without being

recognized. Nevertheless, users should be able to prove that

he/she is a valid user who has posted the information.

For achieving anonymous authentication of users,

cryptographic techniques and protocols are used. Digital

signatures can uniquely authenticate the users and also help in

detecting any unauthorized modifications to the data. Digital

Signature Standard provides a framework for generating digital

signatures. Some commonly used signature techniques are ring,

mesh and group signatures [11]. None of these techniques are

quite feasible solutions for providing authentication for cloud

users as the number of users is typically very large. Group

signatures are also not possible in cloud services since

predefined groups should be assumed which is usually not the

case in cloud services. Similarly in mesh signatures, the

identification of the exact source of information is not possible

which makes the system vulnerable to colluding attacks.

2.3 DATA SECURITY

As discussed earlier, most of the data that are outsourced are

sensitive in nature. They are stored in servers located externally

in different locations. The cloud service providers should adopt

and use strong cryptographic techniques for handling the data

with utmost security and safety. Though the paper [1] presented

a decentralized architecture with anonymous authentication the

data access policies and attributes associated with individual

users are not hidden from cloud.

2.4 ACCESS CONTROL TECHNIQUES

The following types of access controls techniques are

commonly used:

 User Based Access Control (UBAC) [11] – An Access

Control List contains the details of access rights defined for

all users on different resources that are offered by the

computing system. This method is not suitable for cloud

services because of scalability issues [1]. It is difficult to

update, maintain and store Access Control List (ACL).

Moreover, for every operation the ACL needs to be

referenced, which creates a performance bottleneck.

 Mandatory Access Control (MAC) [11] [14] – Users alone

do not have the right to decide on their access control

privileges. Rather, it is based on the combination of (i) The

security levels associated with the data itself. These are

defined by the metadata security labels according the

sensitivity of data within a Multi-Level Secure (MLS)

framework [15] (ii) The security clearance given to the

individual processes that access data. MAC is designed for

military based security applications and is not suitable for

commercial cloud based applications.

 Discretionary Access Control (DAC) [16] – The owners of

the resources decide on the access rights for different users

for these resources. The DAC technique is not always a

suitable form of security mechanism for cloud services

because with multiple users sharing information, it

becomes very tedious to define the rights for each user.

 Attribute Based Access Control (ABAC) – The users get

access to various resources based on user attributes that

include the corresponding access policy. This too is not

suitable for secure cloud-based applications as the access

policies depend only upon user attributes and cannot be

defined or changed dynamically for each user. Moreover, it

is not possible to maintain anonymity of users.

In our proposed security framework, we implement the Role

Based Access Control (RBAC) model [11]. We preferred the

RBAC access control method where users are classified based

on their roles and the access rights are defined accordingly. The

implementation of anonymous authentication in RBAC is a

challenging process and forms a new combination of secure

cryptosystem in a cloud environment.

There is a centralized administered control that defines the

structure for interaction between “subjects” and “objects”. The

subjects are entities to which execution can be attributed such as

users, processes, threads, or even procedure activations. Objects

are entities on which operations are defined including storage

abstractions such as memory or files with read, write, and

execute operations and code abstractions, such as modules or

services with operations to initiate or suspend execution.

Distinct privileges are typically associated with distinct

operations on different objects [17].

In Table.1, we show a comparison of a number of past

approaches for access control with the scheme proposed by us. It

is quite evident that our decentralized scheme given in the last

row is powered by the maximum number of features. It has

multiple read and multiple write access, homomorphic

encryption and performs anonymous authentication while hiding

user attributes.

Table.1. Comparison of Proposed scheme with other Access

Control schemes

Ref

Paper
Architecture

Write/read

access

Type of

Encryption

Privacy

preserving

authentication

User

Revocation

[6] Centralized 1-W-M-R

Symmetric

key
cryptography

No

Authentication
No

[7] Centralized 1-W-M-R ABE
No

Authentication
No

[10] Decentralized 1-W-M-R ABE
No

Authentication
Yes

[12] Centralized 1-W-M-R ABE
No

Authentication
Yes

[8] Decentralized 1-W-M-R ABE
No privacy
preservation

No

[1] Decentralized M-W-M-R ABE Authentication Yes

Our
Scheme

Decentralized M-W-M-R

Homomorphic

Encryption
combined with

ABE

Authentication

with attribute
based hidden

policy

Yes

 Legend: W- Write, M- Multi, R- Read, ABE- Attribute Based Encryption [1,6]

SOWMIYA MURTHY: CRYPTOGRAPHIC SECURE CLOUD STORAGE MODEL WITH ANONYMOUS AUTHENTICATION AND AUTOMATIC FILE RECOVERY

846

3. PROPOSED WORK

3.1 OVERVIEW

The Fig.1 gives an overview of our proposed work. We focus

on improving upon two main areas as discussed below.

3.1.1 Security Related Improvements:

1) We implement a decentralized architecture is

implemented with multiple Key Distribution Centre

(KDC) structure [1].

2) We implement a Role Based Access Control (RBAC)

[11].

3) We achieve anonymous authentication is achieved by

implementing a strong digital signature algorithm

(SHA -1 hash function) where the attributes of users

are hidden from cloud [13].

4) The access policies that are set by users are hidden

from other users by implementing Query driven

approach.

Fig.1. Overview of Proposed Work

3.1.2 Storage Related Improvements:

1) For secure storage of data, we implement a strong

encryption and decryption technique.

2) We use Homomorphic encryption technique where

Paillier public key cryptosystem is used.

3) We implement automatic data retrieval in which string

matching algorithm is used for recovery of lost data.

3.2 PROPOSED SYSTEM ARCHITECTURE

The proposed architecture is a decentralized one where

multiple numbers of KDCs are present for key distribution and

management. These KDCs are geographically dispersed.

In Fig.2 few users a scenario is presented with user 1 as

owner of the file, user 2 as reader and user 3 as writer. These

users are organized according to their roles based on their

designation in the organization. If the user 1 wants to upload his

file to the cloud he first needs to get registered to his

corresponding KDCs. The output of this registration process is

the generation of a unique user identifier for that user by the

KDC. This user ID will be further used for all operations being

performed by the user in the cloud. First level of authentication

is achieved by a registration process where the users are

identified as a legitimate.

Now the user needs to go in for a second level authentication,

which is done by the trustee system. The trustee can be assumed

as a trusted third party such as a government organization who

uniquely identifies the users with some proof for instance,

passport, vote id, driving license etc. This trustee system will

generate a token for the user once he produces his unique Id to

the trustee system. The generated token is further passed on to

the corresponding KDC for generating the keys for encryption

and decryption of the file that needs to be uploaded and/or

downloaded.

For secure file storage, a Homomorphic encryption technique

is adopted which implements an asymmetric key cryptography

called Paillier Cryptosystem [13], [18]. This Cryptosystem is

computationally strong and highly resistive to key-based attacks.

It uses a series of complex mathematical functions for producing

a single parameter. Now the files are encrypted using keys that

are uniquely generated for this file according the access policy

that has been defined by the owner of the file. The file is

encrypted with keys that are generated by KDCs and also based

on the access policy that is defined for that user by the owner of

the file. Based on user authentication and claim policy, the files

are encrypted and stored in the cloud. Before being encrypted,

all files are encoded using Base64 encoder and a copy of the

original encrypted file is stored in backup files.

Fig.2. Overall View of Proposed Architecture

When some other user in cloud is interested in reading or

writing the files, the access will be permitted based on the access

policy defined for that particular user. Similar to the upload

operation, the user sends a request for downloading the file from

the cloud. He is authenticated and keys for decrypting the files

are obtained using which the files are retrieved back. Before

being downloaded, the cloud checks for the integrity of the file.

If the file is found to be corrupted or changed, it will perform an

automatic recovery operation. The file recovery process is

carried out in two steps. First, the file’s integrity is checked by

using a string matching algorithm. Then, if found to be

corrupted it is then recovered by file replacement of original file

that is kept in backup.

Multiple KDC-Distributed

Key Management

KDC1 KDC2 KDCn

U
se

r

R
eg

is
tr

at
io

n

w
it

h
 K

D
C

User 1 User 2 User 3

Encrypt/Decrypt File (Using

Secret Keys)

File Upload/Download

Token Secret Keys

User Domain

Cloud Storage

TRUSTEE DOMAIN

Trustee
Authentication

Token

Generation

Checking

Validity of

User

Verified

(Valid

User)
Token

Request

(user

ID)

Token

Request (user

ID, Base key,

Rand key,

Signature)

Secure Cloud

Storage Model

Security Related

Concerns

Storage Related

Concerns

Architecture

Attribute &

Access Hiding

Anonymous

Authentication

Data

Encryption

Lost Data

Recovery

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING:

SPECIAL ISSUE ON DISTRIBUTED INTELLIGENT SYSTEMS AND APPLICATIONS, OCTOBER 2014, VOLUME: 05, ISSUE: 01

847

3.3 FUNCTIONAL MODULES

3.3.1 User Enrolment Access Control Techniques:

The users get registered to a particular KDCs by creating

individual accounts by giving necessary details like user name,

user id, password, email id and phone number. A successful

registration is possible only if the user given details match with

the KDC details. The KDC associated with this particular user

will authenticate the user and allow for further user operation.

Role Based Access Control (RBAC) model is implemented

where users are classified based on individual roles. The RBAC

can be adopted for implementing various important techniques

like separation of duties, data abstraction and least privilege. The

roles are defined by the system. The proposed work focuses on

the RBAC technique, as anonymity of users is greatly preserved

in this scheme.

3.3.2 Anonymous Authentication and Token Generation:

As shown in Fig.2, all users initially register with their KDCs

with their own unique identity UID. The KDC draws at random,

key KBASE ∈ G, where a generator g generates random group of

cyclic keys G. Let K0 = KBASE
1/a0

. Now the token is generated

typically as a combination of above parameters i.e. the user’s

UID, key and user’s signature. The output token is γ = (UID,

KBASE, K0, ρ). Here ρ is the signature of the token generated using

the authentication algorithm Digital Signature Standards with

Secure Hash Algorithm (SHA-1). Hence the user details are

hidden from cloud. In this way, an anonymous authentication is

achieved.

3.3.3 Trustee and User Accessibility:

After the registration process, users can log into their

individual accounts with their credentials. Once the user logs in,

specific operations such as file upload, file download, listing of

files, revocation list and key details associated with that user can

be performed.

Third party authentication is done by a trustee where the user

needs to get a token from the trustee for carrying out further

operations. The contents of the token are again a typical

combinations of user’s user id, key and user signature. The hash

function used for generating the user signature is Secure Hash

Algorithm (SHA-1). Digital signatures are of great use in

identifying the users uniquely and for checking the integrity of

the content in case of tampering. In the proposed system the

signature is generated by taking the user’s UID as input and

finally the signature is obtained in a condensed format called

message digest. This is obtained as a result of applying the hash

function, and is computationally difficult to interpret at any point

of time.

3.3.4 File Encryption and Upload:

After the trustee’s issuance of tokens to users, the users send

their tokens to their respective KDC’s for getting the keys for

encryption and decryption of the files. The Paillier cryptosystem

is implemented here for generating keys. The users now encrypt

their files with the keys received keys. They also set their own

access policies, i.e. privileges to the file. The access policies set

by individual users for their files are hidden from other users by

implementing a query driven approach. The query-driven

approach is an SQL coding written for the cloud database.

Herein, the attributes and privileges of users are hidden from the

cloud as their details are stored in encrypted format.

3.3.5 File Decryption and Download:

In this phase, the users can download the files from the cloud

according to the access policies defined by the owners of the

concerned files. The users satisfying access policy conditions

can download a file and decrypt it using his private keys

obtained from the corresponding KDC. This process is similar to

file encryption and upload.

3.3.6 File Recovery:

The files stored in cloud are prone to various attacks that

may result in data loss or data corruption. In order to retrieve the

exact file that was stored by the user, the cloud server invokes

the file recovery function. All files that are stored in the cloud

have a separate backup copy in the backend server. Before

downloading, the cloud server initial checks the integrity. If the

file is found to be corrupted, then it automatically invokes String

matching algorithm function to compare the contents of

corrupted file with original file copy. Finally it replaces the lost

data in file and retrieves back the original content.

3.4 PAILLIER CRYPTOSYSTEM

The Paillier cryptosystem, which is a type of public key

cryptography, enables high security with symmetric key data

encryption. One of the striking features of the asymmetric

algorithm is that the key used for encryption are different from

the key used for decryption, so that users have separate sets of

private and public keys. The public key is made available widely

whereas the private key is kept secret. The files are encrypted

using the pubic key but can be decrypted only using the

corresponding private key. Even though the attributes of public

and private keys are mathematically related but the private key

cannot be derived from the public key.

The Table.2 presents the notations used in the Paillier algorithm.

The algorithms for the Pallier system are given in Fig.3.

Table.2. Notations used in Algorithm

Symbols Computation

ℤ𝑛2 *
 set of integers co - prime to 𝑛2

ℤ𝑛
*
 set of integers co - prime to n

ℤ𝑛 set of integers n

4. PROTOTYPE IMPLEMENTATION

We developed a prototype model of proposed system and

executed it as a cloud application by connecting 10 computer

nodes using intranet. To host the developed application, we used

the freeware eye OS private cloud application platform that

provides web based desktop interface to run the system [19].

Since our model is based on RBAC access control method, it

follows strictly designation based control and distinguished

power. We developed an application for universities where the

hierarchical roles of dean, secretary, principal, professors,

assistant professors, lecturers and students have defined access

rights according to their respective role.

SOWMIYA MURTHY: CRYPTOGRAPHIC SECURE CLOUD STORAGE MODEL WITH ANONYMOUS AUTHENTICATION AND AUTOMATIC FILE RECOVERY

848

Fig.3. The Paillier Cryptosystem description

Registration and Access Rights definition: Initially

everyone registers with the KDC which is in the integrated

server when manual verification is done at the First Level

Verification. Individual colleges of the University maintain their

own KDCs where users have defined access rights according to

their role. Also, file owners have discretionary access control to

the files that is uploaded by them. For example, suppose, the

principal of the college wants to upload some file which he

wants to get notified to all faculty members but not to the

students - here he can set privilege for the file that he has

uploaded by defining appropriate access rights to the users such

as: read/write/download.

File Upload: For uploading data, a user needs to log-in to his

domain by giving his correct username and user-id and then

perform operations like uploading, downloading or deleting files

and revoking the rights previously defined by him etc. To upload

the files the token need to be generated. The unique token is

generated by trustee which is the third party verification domain.

Only valid users will get the token. Here the Second Level

Verification is done where the user details are verified by trustee

by cross checking the details with the registered KDCs.

For generating token, the user-id is converted into a unique

signature by using message digest using SHA-1 algorithm. This

signature, a Random key and a Base Key forms the token

contents. Now when the verified user passes the token to KDC,

keys are generated and the file is encrypted. For

encryption/decryption, we have implemented the Paillier

algorithm. This provides the Third Level Verification.

Note that the privileges set by owner of the files are not

viewed by the other users who do not have privilege to view.

This system has advantage for Whistle Blowers who bring to the

notice of higher authority of the organization without being their

identity being revealed. At the same time the users must

authenticated one. The rights that are previously defined by a

user say principle can be dynamically reassigned by him/her

later.

Data recovery: All files that are uploaded to the cloud

database are encoded using Base64 encoding algorithm and then

encrypted. For data recovery, we have implemented the concept

of data replication and file replacement with string matching

algorithm. Before being stored in the cloud database, a copy of

the encrypted file is stored in the backup database. While

processing any file download request, the file is checked for

correctness by comparing with its backup copy. If any error is

found, an automatic replacement of the lost data with original

data takes place by running a string matching algorithm.

One of the limitations of our existing prototype system is that

currently, file size up to only 100 MB can be uploaded at a time.

We are making changes to our scheme to increase the size of the

file that is to be uploaded.

5. QUALITATIVE ANALYSIS

Let us analyse the strength of the security mechanisms in our

proposed system and its time-wise performance.

5.1 BREAKING OF SYSTEM SECURITY

The system security can be analyzed based on the

cryptographic algorithm that is used for encryption of data. In

the proposed system a strong Homomorphic algorithm (Paillier)

is implemented which uses very large prime numbers for

generating keys.

Even if the keys are hacked the contents cannot be

decrypted, this is possible because of the Homomorphic additive

or multiplicative property of the Paillier algorithm. Compared

with the symmetric key encryption, the Paillier algorithm is

strictly resilient to brute force attacks.

The algorithm has a distinguished characteristic of semantic

security which protects the information from being extracted,

even if the data on which computation is performed is known.

The Paillier cryptosystem is secure as it is probabilistic

polynomial time algorithm (PPTA), this property makes sure

that no partial information is obtained even when part of cipher

text for certain message and its length in given.

Thus, the algorithm implemented in the system is strongly

resilient against cryptanalysis attacks such as chosen cipher text

and adaptive chosen cipher text attacks. This way a secure cloud

storage model is developed, where the encrypted file remains

secure against data losses.

5.2 PERFORMANCE ANALYSIS

The efficiency of the system can be analyzed in terms of

encryption and decryption time of the algorithm. We compare

the performance of the system with a symmetric key encryption

(3DES) system.

In Table.4 shows the encryption and decryption time of

different file size. From the Table.3 it is clear that the amount of

encryption time taken by Paillier algorithm is almost half as

compared to that of 3DES algorithm for the same input.

A) Key Generation

1) Choose two large prime numbers p and q,

such that gcd (pq, (p-1) (q-1)) = 1.

2) Compute n = pq, λ = lcm (p-1, q-1).

3) Select random integer g such that 𝑔∈ ℤ∗
𝑛

2
.

4) Calculate the following modular

multiplicative inverse

5) 𝜇 = (L (g
λ

mod n
2)

)
-1

 mod n, where the

function L is defined as L(u) = u – 1/n.

6) The public (encryption) key is (n, g).

7) The private (decryption) key is (λ,).

B) File Encryption

1) Let m be a message to be encrypted where

𝑚∈ℤ𝑛.

2) Select random r where 𝑟∈ℤ∗
 .

3) Compute cipher text as, 𝑐 = 𝑔𝑚∙𝑟𝑛 𝑚od n
2

C) File Decryption

1) Cipher text 𝑐 ∈ ℤ∗
𝑛

2

2) Compute message, 𝑚 = L(c
λ

mod n
2
) 𝜇

mod n

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING:

SPECIAL ISSUE ON DISTRIBUTED INTELLIGENT SYSTEMS AND APPLICATIONS, OCTOBER 2014, VOLUME: 05, ISSUE: 01

849

Similarly the amount of decryption time is also half when

compared to 3DES algorithm.

We can see that the proposed system is at par with

performance when compared to symmetric key based system

when files of different size were given as input and encrypted.

The results show the encryption and decryption time is fast when

compared with the symmetric algorithm based system.

Thus the proposed system is fast and secure in terms of file

recovery and file encryption. The time required to find the files

been corrupted is also fast and the recovery of corrupted files

back to original takes reduced amount of time.

6. CONCLUSION AND FUTURE WORK

In this paper, we addressed the security and storage issues

simultaneously based on the type of architecture, access control

methods and the authentication techniques. The key distribution

is done in a distributed way by implementing multiple KDC

structure. The users are anonymously authenticated and their

attributes are hidden from the cloud by implementing digital

signature algorithm. The access policies associated with

individual files are hidden from other users by implementing a

Query based approach. Further, storage related security issues

are enhanced by implementing a Homomorphic encryption

technique to encrypting the outsourced data. Also, the cloud

servers are prone to various types of attacks that can cause data

loss or leakage. This issue is addressed by implementing a string

matching algorithm that detects deviations and automatically

retrieves the lost data using backed-up data.

The proposed scheme in the system uses strong authentication

mechanism, where the users claim is validated at three levels.

Initially, the users need to get themselves authenticated with KDC.

For keys generation, a trusted third party verifies the user’s

credentials and gives back the secure token. Finally a message

digest of the UID is generated using SHA-1 and the file to be

uploaded is encrypted using Pallier cryptosystem. In this manner, a

three way authentication is achieved.

We are currently working towards extending our prototype to

a larger-scale realization with more storage and distributed

resources. We will verify its scalability in terms of performance

and computation and communication overheads.

Table.4. Performance analysis of 3DES and Paillier algorithm

with varied File size

Input

File

Size

(KB)

Encryption Time Decryption Time

Symmetric

Key

Algorithm

(3DES)

Asymmetric

Key

Algorithm

(Paillier)

Symmetric

Key

Algorithm

(3DES)

Asymmetric

Key

Algorithm

(Paillier)

3 3.54 2.26 3.53 2.24

5 5.76 2.35 5.81 2.33

7 8.31 1.77 8.21 1.73

11 13.78 7.99 13.65 7.87

16 22.19 8.65 21.89 8.64

21 28.28 19.06 27.99 17.99

REFERENCES

[1] S. Ruj, M. Stojmenovic and A. Nayak, “Decentralized

Access Control with Anonymous Authentication of Data

Stored in Clouds”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 25, No. 2, pp. 556-563, 2013.

[2] J. Hur and Kun Noh, “Attribute-Based Access Control with

Efficient Revocation in Data Outsourcing Systems”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 22,

No. 7, pp. 1214-1221, 2010.

[3] C. Gentry, “A fully homomorphic encryption scheme”,

Ph.D., Dissertation, Stanford University, 2009.

[4] C. Wang, Q. Wang, K. Ren, N. Cao and W. Lou, “Toward

Secure and Dependable Storage Services in Cloud

Computing”, IEEE Transactions on Services Computing,

Vol. 5, No. 2, pp. 220-232, 2012.

[5] G. Wang, Q. Liu and J. Wu, “Hierarchical attribute-based

encryption for fine-grained access control in cloud storage

services”, ACM Conference on Computer and

Communications Security, pp.735-737, 2010.

[6] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and

efficient access to outsourced data”, ACM Cloud

Computing Security Workshop (CCSW), pp. 55-66, 2009.

[7] M. Li, S. Yu, K. Ren, and W. Lou, “Securing personal

health records in cloud computing: Patient-centric and fine-

grained data access control in multi-owner settings”,

Security and Privacy in Communication Networks Lecture

Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering, Vol. 50,

pp. 89-106, 2010.

[8] F. Zhao, T. Nishide and K. Sakurai, “Realizing fine-

grained and flexible access control to outsourced data with

attribute-based cryptosystems”, Information Security

Practice and Experience Lecture Notes in Computer

Science, Vol. 6672, pp. 83-97, 2011.

[9] Matt Bishop, “Computer Security: Arts and Science”,

Section 1.3.1 - Goals of Security, Addison-Wesley

Professional, 2003.

[10] S. Ruj, A. Nayak and I. Stojmenovic, “DACC: Distributed

access control in clouds”, IEEE International Conference

on Trust, Security and Privacy in Computing and

Communications, pp. 91-98, 2011.

[11] Michael E. Whitman and Herbert J. Mattord, “Principles of

Information Security”, Cengage Learning, Fourth Edition,

2011.

[12] Kan Yang, Xiaohua Jia and Kui Ren, “DAC-MACS:

Effective Data Access Control for Multi-Authority Cloud

Storage Systems”, IACR Cryptology ePrint Archive, pp.

419, 2012.

[13] William Stallings, “Cryptography and Network Security,

Principles and Practice”, Pearson Education, Fourth

Edition, 2005.

[14] http://en.m.wikipedia.org/wiki/Mandatory_access_control

[15] www.cis.syr.edu/~wedu, Accessed on: 9 July 2014.

[16] http://en.m.wikipedia.org/wiki/Discretionary_access_contr

ol, Accessed on: 13 July 2014.

[17] https://www.cs.cornell.edu, Accessed: 17 July 2014.

[18] www.cs.rit.edu, Accessed on: 20 July 2014.

[19] Eye OS Applications, www.eyeos-apps.org, Accessed on: 3

September 2014.

http://www.cs.rit.edu/

