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Abstract 

The control of prosthetic limb would be more effective if it is based on 

Surface Electromyogram (SEMG) signals from remnant muscles. The 

analysis of SEMG signals depend on a number of factors, such as 

amplitude as well as time- and frequency-domain properties. Time 

series analysis using Auto Regressive (AR) model and Mean 

frequency which is tolerant to white Gaussian noise are used as 

feature extraction techniques. EMG Histogram is used as another 

feature vector that was seen to give more distinct classification. The 

work was done with SEMG dataset obtained from the NINAPRO 

DATABASE, a resource for bio robotics community. Eight classes of 

hand movements hand open, hand close, Wrist extension, Wrist 

flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite 

to little finger are taken into consideration and feature vectors are 

extracted. The feature vectors can be given to an artificial neural 

network for further classification in controlling the prosthetic arm 

which is not dealt in this paper. 
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1. INTRODUCTION

Prosthesis is a field of biomechatronics, the science of fusing 

mechanics with human muscle, skeleton and nervous system to 

assist or enhance motor control lost by trauma, disease or defect. 

One of the main requirements of prosthetic arm is that it should 

be as near as possible to a natural arm. The artificial arm can 

either be mechanical, electrical or myoelectric. 

Myoelectric control is based on the myoelectric signal, or 

electromyogram (EMG), which is a measure of neuromuscular 

activity detected directly from within the muscle or from the 

skin surface. Myoelectric signals have an advantage that they 

can be detected on the skin surface without any injury to the 

patient. A myoelectric control system maps a set of features 

drawn from the myoelectric signal to a particular function, such 

as flexion of a prosthetic wrist. This type of control system has 

been frequently used in the field of powered prostheses, as it 

provides a user with the potential for naturally-evoked 

movement control [1], [6]. A successful myoelectric control 

system is one in which three key issues are sufficiently 

addressed: accuracy, intuitive control, and acceptable response 

time, the probability of rejection of a prosthesis by the user is 

strongly influenced by these factors. 

The myoelectric signal represents the temporal and spatial 

summation of motor unit action potentials within the pickup 

region of the recording electrode. The muscle fibres of a motor 

unit are innervated by a single motor nerve and contract together 

upon receiving an electrical stimulus, called an action potential, 

which is sent from the motor cortex of the brain to the muscle 

fibres via the motor nerve. The summation of the action 

potentials in the single fibres of the motor unit is called the 

Motor unit action potential (MUAP). 

Many factors contribute to the difficulty in extracting 

sufficient information from the EMG for prosthetic control such 

as electrode placement, electrode type, skin preparation and 

subcutaneous fat between the electrode and the muscle. These 

problems can be overcome by extracting data from multiple 

EMG sites and by using efficient feature extraction techniques. 

Autoregressive model tolerant to electrode placement noise [2], 

[3] and mean frequency which is tolerant to white Gaussian 

noise [1] are used. 

The paper is organised as follows, the section 2 deals with 

system architecture for prosthetic arm and data acquisition. 

Feature extraction concepts in section 3, the simulation results 

are given in section 4 followed by conclusion in section 5. 

2. SYSTEM ARCHITECTURE AND DATA

ACQUISITION

The EMG signals are acquired after proper skin preparations 

and are amplified before being filtered and sampled. The pre-

processed signals are then used to extract features and 

subsequently the extracted features are given to a classifier as 

shown in Fig.1. 

Fig.1. System architecture of prosthetic arm 

2.1 DATA ACQUISITION 

NINAPRO database consists of kinematic and SEMG data 

from the upper limbs of 27 intact subjects while performing 52 

finger, hand and wrist movements. The database is publicly 

available to download in standard ASCII format [5]. Surface 

EMG was collected from a subject’s forearm skin while 

performing a number of movements of interest, or producing 

force patterns of interest. While intact subjects were examined 

by recording SEMG from the same arm, in the case of amputees 

recording of SEMG was from a stump while eliciting 

movements of interest either by imitation or bilateral 

coordinated motion. Surface EMG activity was gathered using 

ten active double-differential OttoBock MyoBock 13E200 
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surface EMG electrodes which had an amplification factor of 

14000 [5]. 

The 52 movements were divided into four main classes as 

given in Table.1. 

Table.1. Upper limb movements in the NINAPRO database 

CLASSES MOVEMENTS 

Basic finger 

movements 

Flexions and 

Extensions 

Isometric and 

isotonic movements 
Hand postures 

Wrist movements 
Abduction , pronation 

and supination 

Functional 

movements 
Grasping movements 

The data in the NINAPRO database was acquired by the 

following procedure: The subject sits comfortably on an 

adjustable chair, in front of a table with a large screen. The 

SEMG electrodes, data glove and inclinometer are worn on the 

right hand. The subjects are presented with short movies 

appearing on the screen and are asked to simply replicate the 

movements depicted in the movies as accurately as possible. 

After the training phase, a sequential series of ten repetitions of 

each class of movements is presented to the subject while data 

are recorded. Each movie lasts five seconds and three seconds of 

rest are allowed in-between movements. In order to avoid 

muscle fatigue and its influence on the SEMG signal, 5 minutes 

of rest are allowed between the training sequence and the first 

exercise and between each exercise and the following one. In 

total, the experiment lasts about 100 minutes. 

2.2 FILTERING AND SAMPLING 

The EMG signals for various classes of hand movements 

have to be filtered to extract the region of EMG activity. In the 

spectrum of EMG signals most of information is contained in 

frequencies up to 500 HZ. Second order Butterworth band pass 

filter with cut off frequencies 20 Hz and 500 Hz is used. 

Butterworth filter exhibits a maximally flat response without any 

ripples in the pass band region. With amplitude distinction being 

very critical in EMG analysis, low distortion Butterworth filter is 

preferred. Sampling is done in accordance with the nyquist 

criterion the signal is then sampled at 2 KHZ. 

3. FEATURE EXTRACTION 

EMG signals can be used to control prosthetic limbs. In a 

real time system considering the memory constrains the original 

signal dimensions have to be minimized by mathematically 

modeling it [6]. Feature extraction techniques are one among the 

signal modeling techniques that represent an EMG signal with 

lesser vector space in a way that it would still be distinguishable. 

3.1 AUTOREGRESSIVE MODELLING 

Different movements correspond to various modes of muscle 

contraction and hence, the time signature of raw EMG signal 

varies. Hence, time series analysis would serve the purpose of 

feature extraction. Time series is a chronological sequence of 

observations of a particular variable, in this case, the amplitude 

of the raw EMG signal. The time series is based on the modeling 

of a signal to predict future values as a linear combination on its 

past values and the current value. A model that depends only on 

the previous outputs of the system is called an autoregressive 

model (AR). A model that depends only on the inputs to the 

system is called a moving average model (MA). And finally, a 

model based on the inputs and on the outputs is considered an 

autoregressive-moving-average model (ARMA). 

The advantages of modeling the signal using autoregressive 

mode are 

 Variations in the positioning of the electrodes on the 

surface of the muscle do not severely affect the AR 

coefficients. 

 The amount of information to be presented to the 

classifier is greatly reduced so additional dimensionality 

reduction techniques are not required. Therefore, the total 

processing time is also reduced. 

3.1.1 Model Order: 

Any time series signal can be approximated by an AR model 

of finite order M. The order of an autoregressive model 

represents the amount of information necessary to predict an 

estimate of the signal. The lowest frequency that can be 

represented by a model is given by   1/ (MT), where M is the 

model order and T is sampling period. For a lowest frequency of 

500Hz and sampling period of 0.5 ms, the model order required 

would be 4 implying that the.EMG signal would be represented 

by four AR coefficients. 

3.1.2 Least Mean Squares Approach: 

AR model is specified by linear prediction formulas that 

attempt to predict an output y[n] of a system based on the 

previous outputs (y[n-1], y[n-2], ...) and on the inputs (x[n],x[n-

1], x[n-2], ...). Deriving the linear prediction model involves 

determining the coefficients a1, a2… , aM.  

The below Eq.(1) defines the AR model,  

 
( )

( 1)
My a Xi k i kik

  
  

(1) 

where,  

yk is the estimated signal in a discrete time k. 

ai is the AR-coefficient. 

ωk is the error of the calculation process. 

M is the order of the model. 

A common strategy to calculate the AR-coefficients is to use 

the least mean square (LMS) algorithm. It provides an iterative 

and fast method to figure out the parameters of the AR-model 

adaptively. Algorithm to compute AR coefficients, 

 Initialize the filter coefficients with zeros. 

 Calculate the predicted value of the input signal ˆ( )y n   
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0
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 (2) 

 Estimate the prediction error e(n) using the Eq.(3) and 

Eq.(4) 

 e(n) = y(n) - ˆ( )y n   (3) 

 e(n) = y(n) + a1(n)y(n-1) +…+ aM(n)y(n-m)  (4)            
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 Update the AR-coefficients using the constant of 

convergence μ. 

 am(n+1) = am(n)2*µ*e(n)y(n-m)  (5)    

3.2 EMG HISTOGRAM AS A FEATURE VECTOR                   

EMG histogram is an extension of zero crossing method 

which compares a single threshold to the EMG signal. Since 

EMG signal deviates highly from its base line when the muscle 

is in high contraction levels, it would be informative to measure 

the frequency with which EMG signal reaches multiple 

amplitude levels. 

The voltage range is subdivided symmetrically about the 

baseline and they are grouped into bins. The frequency of 

occurrence of each bin range is computed. This is visually 

represented as a bar graph. Increasing the number of bins would 

increase classification accuracy. Trial and error methods showed 

that fixing nine bins would provide sufficient distinction 

between different classes of movements. 

3.3 MEAN FREQUENCY  

White Gaussian noise (WGN) is one of the major interfering 

random signals in electromyogram acquisition. Since white 

Gaussian noise has a spectral component that is spread out in the 

entire frequency domain, removal of it through typical filtering 

would mean loss of useful information.   

Noise reduction algorithms need to be implemented in the 

pre-processing stage to eliminate white Gaussian noise. Mean 

frequency of an EMG signal is a global parameter that distinctly 

differentiates one movement from another even in the presence 

of white Gaussian noise, 

The mean frequency is computed as follows, 

 Initialize two variables say sum and a to be zero. 

 The amplitude spectrum of the EMG signal is computed 

using FFT algorithm. 

 The variables sum and a are updated in a loop running till 

the length of the  amplitude spectrum using the Eq.(6) 

and Eq.(7) 

 sum = sum + |(Y(k))  (f(k))|  (6) 

 a = a + |Y(k)|   (7) 

 Mean frequency = (sum/a)  (8) 

where,  

Y(k) is the amplitude spectrum at k
th

 instant 

f(k) is the corresponding frequency at k
th

 instant 

4. IMPLEMENTATION RESULTS 

The EMG signals are analysed using the MATLAB version 

7.8.0.347 (R2009a). The EMG database for different class of 

hand movements are taken from the NINAPRO database and 

.MAT files are created from them. The created files are loaded 

into the MATLAB workspace. The database contains 

information from fifteen electrodes of which the first five 

channels represent signals corresponding to transition of muscle 

from rest to motion and the last five correspond to transition 

from motion to rest. Of the remaining five channels electrode 

data corresponding to seventh channel was chosen and the data 

from corresponding column is extracted. 

As mentioned earlier the EMG signals are band pass filtered 

from 20 to 500 HZ and subsequently sampled at 2 KHz nyquist 

frequency. The pre-processed EMG signals for hand open and 

wrist extension movements are shown in Fig.2 and Fig.3.  

 

Fig.2. EMG Signal for hand open 

 

Fig.3. EMG Signal for wrist extension 

4.1 SIMULATION RESULTS AND DISCUSSION 

The original signal spaces is modelled in such a way that, 

different classes of hand movements are represented with 

minimum feature vectors and are still distinctly distinguishable. 

Three different feature vectors are extracted from the pre-

processed EMG signals. 

4.1.1 Autoregressive Coefficients: 

Auto regressive coefficients of order four are extracted for all 

the eight classes of hand movements and the results are 

presented in the Table.2. Different hand movements can be 

identified based on those values of four auto regressive 

coefficients. 
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Table.2. Autoregressive Coefficients 

MOVEMENTS AR COEFFICIENTS 

Hand close -2.4364     2.6442 -1.6197     0.4573  

Hand open -2.2168     2.1844 -1.3331     0.4078 

Wrist flexion -2.1940 1.9738 -1.0069     0.2598 

Wrist extension -2.5332     2.8102 -1.7290     0.4770 

Thumbs up -2.3941     2.5991 -1.6104 0.4604  

Thumbs oppose -2.5056     2.7063    -1.6072     0.4391 

Pointing index -2.1124     2.0157    -1.1514     0.3181 

Ulnar deviation -2.6588     3.0647 -1.9109     0.5229  

4.1.2 Mean Frequency: 

The mean frequency corresponding to eight classes of hand 

movements are extracted from the pre-processed EMG signals 

and the results are presented in Table.3. From the tabulated 

results it is seen that the hand, wrist and thumb movements mean 

frequency are distributed at equal intervals whereas pointing 

index and Ulnar deviation lies in the maximum and minimum 

frequencies. 

From the values obtained as mean frequency is used to find 

the corresponding hand movements. 

Table.3. Mean Frequency for Eight Classes of Hand Movements 

MOVEMENTS MEAN FREQUENCY 

Hand close 74.2074 

Hand open 73.9951 

Wrist flexion 65.3644 

Wrist extension 63.3118 

Thumbs up 77.6220 

Thumbs opposite 

to little finger 
65.0770 

Pointing index 86.7386 

Ulnar deviation 59.7719 

4.1.3 EMG Histogram: 

The pre-processed EMG signals are divided into nine 

symmetric voltage bins(X axis) and the frequency of occurrence 

of different amplitude values (Y axis) are calculated and plotted 

as a bar graph. The results for eight classes of hand movements 

are shown in plot1and plot2. In this work EMG histogram has 

the highest clarity among the available feature extraction 

techniques. Different hand movements can be easily found by 

observing the EMG histogram plots. 
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4(b). Hand Open 

 
4(c). Hand Close 
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4(d). Wrist Flexion 

Fig.4. EMG Histogram plot1 

 
5(a). Ulnar Deviation 

 
5(b). Thumbs Up 

 
5(c). Thumbs Opposite 

 
5(d). Pointing Index 

Fig.5. EMG Histogram plot2 

5. CONCLUSION 

The work presented here considers eight classes of hand 

movements including hand open, hand close, Wrist extension, 

Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, 

Thumb opposite to little finger and three feature extraction 

techniques, auto regressive modeling, mean frequency and EMG 

histogram were used. From the results it was seen that EMG 

histogram provided much better distinction between different 

classes of movements. So it is suggested that apart from four 

auto regressive coefficients, the feature vectors obtained from 

EMG histogram and mean frequency be combined and given as 

input to neural network. Multilayer perceptron (MLP) that uses 

gradient descent backpropogation algorithm for training could 

be used as a classifier because unlike support vector machine 

which is a binary classifier, the adaptability of multilayer 

perceptron is high when the numbers of classes are increased.  
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