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Abstract 

This research introduces a groundbreaking approach to low-power 

CMOS VLSI design by leveraging the principles of federated learning 

and adiabatic switching. The escalating demand for energy-efficient 

integrated circuits necessitates innovative methodologies to mitigate 

power consumption while maintaining performance. Existing VLSI 

designs often face challenges in achieving optimal power efficiency, 

resulting in a research gap that this study aims to address. Our 

proposed method integrates federated learning, a decentralized 

machine learning paradigm, with the adiabatic switching principle, 

which involves gradual energy transitions. By employing federated 

learning for optimizing power consumption at distributed nodes and 

implementing adiabatic switching for energy-efficient transitions 

between logic states, the novel VLSI design promises to revolutionize 

low-power consumption in CMOS circuits. Results from simulations 

and experiments demonstrate substantial reductions in power 

consumption without compromising performance. The federated 

learning-based adiabatic switching principle achieves a significant 

breakthrough in low-power VLSI design, offering a viable solution to 

the current challenges in energy efficiency. This research paves the 

way for the development of next-generation, environmentally friendly 

integrated circuits with improved power efficiency and performance. 
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1. INTRODUCTION 

In semiconductor technology, the demand for energy-efficient 

VLSI designs has escalated due to the increasing ubiquity of 

portable electronic devices. While traditional CMOS VLSI 

designs have made significant strides in performance, challenges 

persist in optimizing power consumption. The persistent need for 

enhanced energy efficiency has led to a critical research gap that 

this study aims to bridge [1]. 

The landscape of VLSI design has witnessed remarkable 

advancements, yet achieving a balance between performance and 

power efficiency remains an ongoing challenge [2]. Current 

designs often fall short of the desired low-power thresholds, 

prompting the exploration of novel methodologies to address this 

predicament [3]-[4]. 

The primary challenge lies in developing VLSI designs 

capable of minimizing power consumption without 

compromising performance. Existing approaches encounter 

limitations in achieving the optimal balance required for energy-

efficient semiconductor devices. These challenges underscore the 

necessity for innovative solutions that can revolutionize the field 

of CMOS VLSI design. 

The core problem addressed in this research is the inefficiency 

of current VLSI designs in meeting the growing demand for low-

power consumption. The inability to strike an ideal balance 

between power efficiency and performance hinders the progress 

of semiconductor technology, necessitating a reevaluation of 

design methodologies. 

The primary objectives of this study include formulating a 

novel VLSI design method that integrates federated learning and 

adiabatic switching principles. The aim is to achieve substantial 

reductions in power consumption while maintaining or even 

enhancing overall performance. This research seeks to provide a 

viable solution to the persistent challenges associated with low-

power CMOS VLSI design. 

This research contributes a pioneering approach to VLSI 

design, leveraging federated learning and adiabatic switching to 

address the current gaps in power efficiency. By proposing a 

novel method, this study lays the foundation for a paradigm shift 

in semiconductor technology, offering a pathway towards more 

sustainable and energy-efficient CMOS VLSI designs. 

2. REVIEW OF LITERATURE 

Numerous studies have explored innovative approaches to 

enhance power efficiency in VLSI designs. Previous research has 

delved into alternative methodologies such as dynamic voltage 

and frequency scaling, subthreshold voltage operation, and 

architectural optimizations to mitigate power consumption. 

Additionally, investigations into emerging technologies, 

including quantum-dot cellular automata and reversible logic 

gates, have sought to redefine the landscape of low-power CMOS 

VLSI design [5]. 

Some researchers have explored the potential of machine 

learning techniques, specifically neural networks, for optimizing 

power consumption [6]. These studies have shown promise in 

adapting dynamic power management strategies, demonstrating 

the efficacy of artificial intelligence in addressing power-related 

challenges [7]. Federated learning has emerged as a decentralized 

paradigm, holding the potential to revolutionize VLSI designs by 

enabling collaborative optimization across distributed nodes. 

Adiabatic switching, characterized by gradual energy 

transitions, has been examined for its potential in reducing power 

dissipation during logic state changes [8]. The synergy between 

federated learning and adiabatic switching principles remains a 

relatively unexplored frontier, presenting a unique opportunity for 

groundbreaking advancements in low-power VLSI design [9]-

[10]. 

  



J MURALIDHARAN et al.: NOVEL LOW-POWER CMOS VLSI DESIGN USING FEDERATED LEARNING BASED ADIABATIC SWITCHING PRINCIPLE  

1694 

While existing literature offers valuable insights into 

individual aspects of power optimization, this study aims to 

integrate federated learning and adiabatic switching in a cohesive 

manner, presenting a novel approach that holds promise for 

overcoming the current challenges in low-power CMOS VLSI 

design. 

3. PROPOSED CMOS VLSI DESIGN 

The devised method for low-power CMOS VLSI design 

hinges on a symbiotic integration of federated learning and 

adiabatic switching principles. In the initial phase, the federated 

learning paradigm is strategically employed to distribute the 

optimization process across multiple nodes within the system. 

This decentralized approach enables collaborative model training, 

fostering the development of energy-efficient algorithms tailored 

to each specific node characteristics. 

 

Fig.1. Adiabatic Switching Principle for various switching time 

 

Fig.2. Adiabatic Switching Principle for Different Gates 

The adiabatic switching principle is employed to orchestrate 

gradual energy transitions during logic state changes. By 

implementing this gradual energy modulation, the proposed 

method minimizes energy dissipation associated with abrupt state 

transitions, further contributing to overall power savings. 

The collaborative power optimization achieved through 

federated learning is synchronized with the adiabatic switching 

mechanism, ensuring a harmonized and efficient approach to low-

power VLSI design. This innovative integration aims to exploit 

the strengths of both paradigms, resulting in a synergistic solution 

that surpasses the limitations of conventional methodologies. 

3.1 ADIABATIC SWITCHING  

Adiabatic switching refers to a method employed in electronic 

systems that involves transitioning between logic states in a 

manner designed to minimize energy dissipation during the 

process. Unlike conventional switching methods, adiabatic 

switching strives to achieve this transition gradually, allowing the 

system to adapt its energy levels in tandem with the changing 

logic state. 

The fundamental principle underlying adiabatic switching is 

to synchronize the manipulation of electrical signals with the 

system energy dynamics. By ensuring a smooth and gradual shift 

between logic states, this technique seeks to minimize the 

generation of heat, which is a common source of energy loss in 

traditional switching mechanisms. 

Adiabatic switching takes advantage of the adiabatic process, 

where changes occur slowly enough to allow the system to adjust 

without dissipating energy as heat. This gradual transition 

involves careful modulation of voltage levels and timing, 

optimizing the energy profile during state changes. 

In electronic systems, adiabatic switching holds promise for 

mitigating power consumption during critical operations. The 

method aims to strike a balance between maintaining 

computational efficiency and minimizing energy dissipation, 

thereby contributing to the overall goal of designing more energy-

efficient circuits and systems. The implementation of adiabatic 

switching principles represents a unique approach to addressing 

the challenges associated with power consumption in electronic 

devices. 

 

Fig.3. DC Characteristics for Various Gates using Adiabatic 

Switching Principle with Federated Learning at 22 nm 

Technology 

Adiabatic switching involves modulating voltage levels and 

timing during logic state transitions to minimize energy 
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dissipation. The energy dynamics during adiabatic switching can 

be expressed using: 

 E=C⋅V2 (1) 

where: 

E is the energy stored in the system, 

C is the capacitance, 

V is the voltage. 

For adiabatic processes, where changes occur slowly enough 

to allow the system to adapt without dissipating energy as heat, 

the rate of change of energy (dE/dt) can be minimized. This is 

achieved by controlling the voltage modulation over time, 

typically following a sinusoidal or other smooth waveforms. 

 dE/dt≈0 (2) 

In more advanced models, the power dissipation during 

switching (Ps) can be described using the formula: 

 Ps = C⋅V⋅[dV/dt] 

where: 

Ps is the power dissipation during switching, 

dV/dt is the rate of change of voltage. 

Adiabatic Switching Algorithm: 

1) Set initial conditions and parameters. 

a) Specify the capacitance (C) and initial voltage (Vi). 

2) Find the time duration (ts)for the adiabatic switching process. 

3) Choose a smooth waveform (e.g., sinusoidal) for voltage 

modulation. 

 V(t)=Vi⋅sin(ωt),  (4) 

where ω=ts2π. 

4) Use E=C⋅V2 to calculate the energy at each time step. 

5) Ensure that the rate of change of energy (dE/dt) is minimal 

throughout the switching process. 

6) Adjust the voltage modulation V(t)) to achieve a gradual and 

adiabatic transition between logic states. 

7) Calculate power dissipation (Ps) using:  

 Ps = C⋅V⋅[dV/dt]. (5) 

3.2 ADIABATIC SWITCHING WITH FL 

Adiabatic Switching with Federated Learning (FL) is a novel 

approach that combines the principles of adiabatic switching with 

the decentralized learning paradigm of federated learning. In this 

method, the traditional adiabatic switching technique, which aims 

to minimize energy dissipation during logic state transitions, is 

enhanced by leveraging the collaborative and distributed nature 

of federated learning.  

Adiabatic Switching with Federated Learning Algorithm: 

1) Set initial conditions and parameters, including the 

capacitance (C) and initial voltage (Vi). 

a) Specify federated learning parameters, such as 

communication rounds and learning rates. 

2) Determine the time duration ts for the adiabatic switching 

process. 

3) Choose V(t)=Vi⋅sin(ωt)  

//Federated Learning Initialization 

4) Distribute learning models to decentralized nodes. 

//Iterative Optimization with FL 

5) Conduct iterative federated learning rounds. 

6) Nodes collaboratively optimize their models based on local 

data. 

7) Update the voltage modulation strategy based on the 

aggregated insights from federated learning. 

8) Calculate E=C⋅V2 at each time step. 

9) Minimize Rate of Change of Energy 

10) Control Voltage Modulation V(t) with FL 

11) Find Power Dissipation Ps = C⋅V⋅[dV/dt] during Switching 

Adiabatic Switching with Federated Learning (FL) represents 

a pioneering method that merges the energy-efficient principles 

of adiabatic switching with the decentralized learning paradigm 

of federated learning. The approach seeks to optimize power 

consumption during logic state transitions by leveraging the 

collaborative capabilities inherent in federated learning. 

To initiate the process, the system is initialized with essential 

parameters, including the capacitance (C) and initial voltage (Vi). 

Additionally, federated learning parameters, such as 

communication rounds and learning rates, are specified. The 

duration for the adiabatic switching process (ts) is determined, and 

a smooth voltage waveform, often sinusoidal, is generated to 

facilitate voltage modulation V(t)=Vi⋅sin(ωt). 

Federated learning is then initiated, distributing learning 

models to decentralized nodes. Through iterative optimization 

rounds, nodes collaboratively optimize their models based on 

local data. The voltage modulation strategy is concurrently 

updated based on aggregated insights from the federated learning 

process. This dynamic integration of FL optimizes the voltage 

modulation in real-time, harnessing the distributed intelligence of 

the system to enhance overall energy efficiency. 

Throughout the process, the energy (E) is calculated using 

E=C⋅V2, ensuring that the rate of change of energy (dE/dt) remains 

minimal. The control of voltage modulation, informed by 

federated learning insights, plays a crucial role in achieving a 

harmonized and energy-efficient transition between logic states. 

Power dissipation during switching (Ps) is calculated. 

4. POWER OPTIMIZATION IN CMOS VLSI 

Power optimization in CMOS VLSI, particularly in logic 

gates, involves a set of techniques and strategies aimed at 

minimizing power consumption while maintaining or improving 

overall performance. This is crucial in the design of integrated 

circuits to address the growing demand for energy-efficient 

electronic devices.  

One fundamental strategy for power optimization in CMOS 

VLSI is dynamic power management. This involves dynamically 

adjusting the supply voltage and clock frequency based on the 

workload, ensuring that power is scaled according to the actual 

computational requirements. By adapting the operating 

conditions in real-time, dynamic power management effectively 

reduces power dissipation during periods of lower computational 

demand. 
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Another widely employed technique is optimizing the sizing 

and architecture of logic gates. By carefully selecting transistor 

sizes and configuring gate structures, designers can strike a 

balance between speed and power consumption. Techniques such 

as sizing optimization and gate restructuring contribute to 

achieving an optimal compromise, ensuring that the logic gates 

meet the desired performance specifications with minimal power 

dissipation. 

The exploration of advanced circuit design methodologies, 

including the use of low-power and multiple-threshold CMOS 

technologies, contributes to power optimization. These 

technologies offer alternative transistor configurations and lower 

threshold voltages, reducing power consumption without 

compromising performance. 

The utilization of sleep modes and power gating techniques 

during idle states minimizes power wastage by selectively 

shutting down specific sections of the circuit when not in use. This 

effectively conserves energy, especially in scenarios where the 

device is not actively processing information. 

Dynamic power consumption Pd in CMOS circuits is a major 

component and can be calculated using the following:  

 Pd =0.5CeffVDD
2fclk  (6) 

where: 

Ceff is the effective capacitance. 

VDD is the supply voltage. 

fclk is the clock frequency. 

Static power consumption Ps arises from leakage currents in the 

transistors and is given by:  

 Ps = Il⋅VDD (7) 

where: 

Il is the leakage current. 

The energy-delay product is often used as a figure of merit in 

power optimization. It is the product of energy consumption and 

the delay in the circuit:  

 EDP=Pd⋅tclk (8)  

where: 

tclk is the clock period. 

Sizing Optimization: 

The sizing of transistors in a CMOS circuit affects both 

performance and power consumption. The drain current (Id) in a 

MOSFET is given by:  

 Id=0.5μCoxWL-1(VGS−Vth)2 (9)  

where, 

μ is the carrier mobility. 

Cox is the oxide capacitance per unit area. 

W and L are the width and length of the transistor. 

VGS is the gate-source voltage. 

Vth is the threshold voltage. 

5. POWER OPTIMIZATION IN CMOS VLSI  

Power optimization in CMOS VLSI using Adiabatic 

Switching with Federated Learning (FL) involves a unique and 

innovative approach that integrates the energy-efficient principles 

of adiabatic switching with the collaborative learning capabilities 

of federated learning. In this context, the optimization process 

aims to minimize power consumption during logic state 

transitions through gradual and controlled energy modulation.  

Adiabatic Switching with FL initiates with the establishment 

of initial conditions and parameters, including capacitance (C), 

initial voltage (Vi), and specific FL parameters. The concept of 

adiabatic switching is introduced to facilitate a gradual transition 

between logic states, thereby minimizing power dissipation 

during these critical transitions. This is achieved by synchronizing 

the manipulation of electrical signals with the system energy 

dynamics. 

The federated learning into the optimization process brings a 

collaborative and decentralized dimension. Federated learning 

distributes learning models to various nodes within the system, 

allowing them to optimize their models based on local data. 

Through iterative rounds of collaboration, these nodes 

collectively contribute insights, enhancing the overall intelligence 

of the system. 

The federated learning insights are then leveraged to 

dynamically adjust the voltage modulation strategy during 

adiabatic switching. This integration ensures that the power 

optimization process is informed by the collective intelligence of 

the decentralized nodes, resulting in a more adaptive and context-

aware approach to energy-efficient CMOS VLSI design. 

The federated learning contributes to real-time adjustments in 

the voltage modulation strategy, aligning the optimization process 

with the current computational demands. This unique 

combination of adiabatic switching and federated learning thus 

offers a promising avenue for achieving optimal power efficiency 

in CMOS VLSI, addressing the critical challenges of energy 

consumption in modern semiconductor technologies. 

6. EXPERIMENTAL SETTINGS 

The proposed method, Adiabatic Switching with Federated 

Learning, was validated through comprehensive simulations 

using a Xilinx design tool. The simulations were conducted in a 

controlled environment with parameters set to mimic real-world 

scenarios. The VLSI design tool employed for these experiments 

provided a robust platform for modeling and evaluating the power 

optimization techniques in CMOS circuits. The experiments 

involved configuring the federated learning parameters, adiabatic 

switching settings, and various system-specific parameters to 

observe the impact on power consumption during logic state 

transitions. 

6.1 PERFORMANCE METRICS 

To assess the effectiveness of the proposed method, a set of 

performance metrics were employed, including dynamic power 

consumption, energy efficiency, and the energy-delay product. 

The experimental results were rigorously compared with existing 

power optimization methods such as Dynamic Voltage and 

Frequency Scaling (DVFS), Subthreshold Voltage Operation, and 

Quantum-Dot Cellular Automata (QCA). The comparison 

involved evaluating power efficiency under varying workloads 
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and scenarios, showcasing the advantages and limitations of each 

method.  

Table.1. Experimental Setup Parameters 

Parameter Value 

ts 100 ns 

Vi 1.2 volts 

FL Rounds 10 

Node Count in FL 5 

The results obtained from the simulations demonstrate 

significant advancements in power optimization for the proposed 

Adiabatic Switching with Federated Learning method compared 

to existing techniques, including DVFS, Subthreshold Voltage 

Operation, Quantum-Dot Cellular Automata, and ANN Power 

Optimization. Throughout the varied switching times, the 

proposed method consistently outperformed the alternatives, 

showcasing its robustness and adaptability. 

 

Fig.4. Dynamic Power Consumption for various switching time 

 

Fig.5. Energy Efficiency for various switching time 

 

Fig.6. Computational Complexity for various switching time 

 

Fig.7. Area Occupancy for various switching time 

 

Fig.8. Latency for various switching time 
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Fig.9. EDP for various switching time 

In terms of dynamic power consumption, the proposed method 

exhibited a remarkable percentage improvement, averaging 

around 15% to 20% across different switching times when 

compared to traditional methods such as DVFS and Subthreshold 

Voltage Operation. This improvement is particularly noteworthy 

as it directly contributes to reduced energy dissipation during 

logic state transitions. 

The energy efficiency analysis further emphasizes the 

superiority of the proposed method, showcasing an average 

percentage improvement of approximately 25% compared to 

Quantum-Dot Cellular Automata and ANN Power Optimization. 

This enhancement in energy efficiency is crucial for meeting the 

growing demand for power-conscious semiconductor 

technologies. 

Moreover, the Energy-Delay Product (EDP) results 

underscore the efficiency gains achieved by the proposed method. 

With an average percentage improvement of about 18% to 22% 

over DVFS and Subthreshold Voltage Operation, the proposed 

method proves its efficacy in striking an optimal balance between 

energy consumption and system performance. 

The area occupancy analysis revealed a notable reduction in 

the physical footprint of the proposed method, leading to a 

percentage improvement of around 10% to 15% compared to 

Quantum-Dot Cellular Automata and ANN Power Optimization. 

This reduction in occupied area holds significant implications for 

compact and resource-efficient VLSI designs. 

7. CONCLUSION 

The proposed Adiabatic Switching with Federated Learning 

method presents a promising and innovative approach to address 

the challenges of power optimization in CMOS VLSI design. 

Through comprehensive simulations and analyses, the results 

consistently demonstrated substantial improvements across 

various key metrics when compared to existing methods, 

including DVFS, Subthreshold Voltage Operation, Quantum-Dot 

Cellular Automata, and ANN Power Optimization. 

The method showcased superior dynamic power consumption 

performance, with an average improvement ranging between 15% 

to 20%. Additionally, energy efficiency metrics exhibited a 

remarkable improvement of around 25% compared to Quantum-

Dot Cellular Automata and ANN Power Optimization, 

underscoring the potential of the proposed approach for reducing 

overall energy dissipation during logic state transitions. 

The Energy-Delay Product (EDP) analysis reinforced the 

efficiency gains achieved by the proposed method, with an 

average percentage improvement of approximately 18% to 22% 

over traditional methods such as DVFS and Subthreshold Voltage 

Operation. This improvement signifies a more balanced trade-off 

between energy consumption and system performance, crucial for 

the advancement of low-power semiconductor technologies. 

Furthermore, the proposed method demonstrated a notable 

reduction in area occupancy, with a percentage improvement of 

approximately 10% to 15% compared to Quantum-Dot Cellular 

Automata and ANN Power Optimization. This reduction holds 

significant implications for compact and resource-efficient VLSI 

designs, addressing the growing demand for miniaturization and 

efficiency in modern semiconductor technologies. 
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