
ISSN: 2395-1680 (ONLINE)                                                                                                             ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2024, VOLUME: 09, ISSUE: 04 
DOI: 10.21917/ijme.2024.0295 

1705 

DESIGN AND OPTIMIZATION OF HETEROGENEOUS SYSTEM-ON-CHIP 

ARCHITECTURE USING SELF-ADAPTIVE NEURAL NETWORK ACCELERATOR 

B. Ebenezer Abishek1, C. Sharanya2, S. Gopalakrishnan3 and J. Jency Rubia4  
1Department of Electronics and Communication Engineering, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College, India 

2Department of Electronics and Communication Engineering, Vels Institute of Science, Technology and Advanced Studies, India 
3Department of Medical Electronics Engineering, Sengunthar Engineering College, India  

4Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, India 

Abstract 

In response to the escalating demand for energy-efficient and 

high-performance computing, this research explores the design 

and optimization of a heterogeneous System-on-Chip (SoC) 

architecture employing a self-adaptive neural network 

accelerator. Addressing the current limitations in 

heterogeneous SoC designs, we identify the need for dynamic 

adaptation to varying workloads. Our proposed methodology 

integrates a self-adaptive neural network accelerator that 

autonomously adjusts its architecture based on real-time 

workload characteristics. Through extensive simulations, we 

demonstrate significant improvements in both energy efficiency 

and performance compared to traditional static architectures. 

This research bridges the existing gap in adaptive computing, 

providing a promising avenue for future energy-efficient 

heterogeneous SoC designs. 
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1. INTRODUCTION 

The demand for high-performance computing has led to the 

proliferation of heterogeneous System-on-Chip (SoC) 

architectures, blending various processing units to optimize 

diverse workloads. However, existing designs face challenges in 

dynamically adapting to varying computational requirements, 

leading to suboptimal energy efficiency. This research addresses 

the critical need for self-adaptation within heterogeneous SoC 

architectures, aiming to enhance both energy efficiency and 

performance [1]. 

Challenges in current heterogeneous SoC designs arise from 

the static nature of accelerators, limiting their adaptability to 

evolving workloads. As a consequence, these architectures 

struggle to strike a balance between computational power and 

energy consumption, hindering their overall efficiency [2]-[3]. 

This research identifies the need for a self-adaptive neural 

network accelerator, capable of autonomously adjusting its 

architecture in real-time based on workload characteristics [4]. 

The primary problem addressed in this study is the lack of 

dynamic adaptability in existing heterogeneous SoC 

architectures, leading to inefficient resource utilization. By 

introducing a self-adaptive neural network accelerator, we aim to 

overcome this limitation, enabling the system to automatically 

optimize its configuration for varying computational demands. 

This research include the design, implementation, and 

evaluation of a self-adaptive neural network accelerator within a 

heterogeneous SoC architecture. The study seeks to assess the 

impact of dynamic adaptation on energy efficiency and 

performance, comparing the proposed approach against 

traditional static architectures. 

The novelty of this research lies in the integration of a self-

adaptive neural network accelerator within a heterogeneous SoC, 

marking a departure from conventional static architectures. The 

proposed methodology introduces an autonomous mechanism for 

real-time adjustment, providing a more efficient and versatile 

solution to address the challenges associated with varying 

workloads. 

The contributions of this research extend beyond the mere 

development of a self-adaptive architecture. By demonstrating the 

effectiveness of the proposed approach through extensive 

simulations, we aim to provide valuable insights into the potential 

of self-adaptive neural network accelerators for future energy-

efficient and high-performance heterogeneous SoC designs. 

2. RELATED WORKS 

Prior research in the realm of heterogeneous SoC architectures 

has primarily focused on optimizing computational efficiency and 

energy consumption. Various studies have explored the 

integration of accelerators to enhance performance, with a 

particular emphasis on neural network accelerators [5]-[6]. These 

accelerators aim to address the increasing demand for efficient 

processing of machine learning workloads. 

Several researchers have investigated static architectures, 

analyzing their strengths and limitations in the context of diverse 

applications [7]. These studies highlight the challenges associated 

with rigid configurations that struggle to adapt dynamically to 

varying workloads. The need for flexibility and adaptability in 

SoC designs has been a recurring theme in the literature, 

prompting researchers to explore novel approaches [8]. 

Recent advancements in self-adaptive computing have 

spurred interest in developing architectures capable of 

autonomously adjusting to changing computational demands. 

Dynamic adaptation mechanisms, especially those leveraging 

neural network accelerators, have shown promise in improving 

both energy efficiency and performance. Researchers have 

explored the implementation of self-adaptive components within 

heterogeneous SoCs, aiming to create systems that can optimize 

their configurations in real-time [9]. 

Despite these strides, a research gap persists in understanding 

the full potential and practical implications of self-adaptive neural 

network accelerators in heterogeneous SoC architectures [10]. 

The current body of work highlights the need for comprehensive 

evaluations and benchmarks to assess the efficacy of these 
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adaptive mechanisms across a diverse range of workloads. This 

study aims to contribute to the existing knowledge by providing 

insights into the performance and energy efficiency gains 

achievable through the integration of a self-adaptive neural 

network accelerator within a heterogeneous SoC architecture. 

3. PROPOSED METHOD 

The proposed method centers on enhancing heterogeneous 

SoC architectures through the integration of a self-adaptive neural 

network accelerator. This adaptive mechanism aims to overcome 

the limitations of conventional static configurations by enabling 

real-time adjustments to the accelerator's architecture based on 

dynamic workload characteristics. To implement the self-

adaptive neural network accelerator, the study leverages advanced 

algorithms capable of monitoring and analyzing the ongoing 

computational demands. These algorithms enable the accelerator 

to autonomously optimize its architecture, such as adjusting the 

number of processing units or modifying neural network layer 

configurations, to better align with the current workload. The 

method involves designing and embedding a control mechanism 

that facilitates communication between the accelerator and the 

rest of the SoC components. This control mechanism acts as a 

feedback loop, continuously assessing workload requirements 

and triggering adaptive changes within the neural network 

accelerator to ensure optimal performance and energy efficiency. 

3.1 HETEROGENEOUS SOC  

A heterogeneous SoC refers to a semiconductor device that 

incorporates a diverse set of specialized processing units or 

components onto a single integrated circuit. These components, 

often of distinct architectures and functionalities, collaborate to 

perform various tasks efficiently. Heterogeneous SoCs leverage 

the strengths of different processing units, such as CPUs, GPUs, 

accelerators, or custom-designed cores, to address specific 

computational requirements within a unified system. This 

approach enables the optimization of performance and energy 

efficiency by allocating tasks to the most suitable processing unit 

based on their inherent strengths, resulting in a more versatile and 

effective computing platform. 

Table.1. SOC 

Compone

nt 
Type 

Architect

ure 

Clock 

Speed 

(GHz) 

Power 

Consumption 

(W) 

CPU 
Quad-

Core 

ARM 

Cortex-

A76 

2.5 15 

GPU 
Graphics  

Core 
Mali-G76 1.2 10 

Neural 

Processor 

Accelerat

or 

NPU 

(Custom) 
1.8 5 

DSP 
Digital  

Signal 

Hexagon 

685 
1 7 

Fabric 

Interconne

ct 

Interconne

ct 
AXI - - 

Memory 

Controller 

Memory 

Interface 

LPDDR4

X 
- - 

Cache L3 Cache Shared - - 

Storage 

Controller 

Flash 

Interface 
UFS 2.1 - - 

I/O 

Interface 
Peripheral 

USB 3.1, 

PCIe 4.0 
- - 

3.1.1 Power Consumption (P): 

 Pt=PCPU+PGPU+PNPU+PDSP+PIC+PM+PC+PS+PI/O (1) 

Power consumption can be calculated using various factors 

such as clock speeds, core counts, and specific benchmarks for 

each component. 

3.1.2 Energy Efficiency (EE): 

Energy Efficiency can be expressed as the performance 

achieved per unit of power consumed.  

3.1.3 Memory Bandwidth (MB): 

Memory Bandwidth can be calculated based on the memory 

interface and clock speed of the Memory Controller. 

4. CONTROL MECHANISM USING 

ACCELERATOR   

A control mechanism using an accelerator refers to a system 

designed to govern and regulate the functionality of an accelerator 

within a larger computing framework. This mechanism acts as a 

coordination system, facilitating communication and 

synchronization between the accelerator and other components of 

the computing system. The control mechanism is responsible for 

overseeing the operations of the accelerator in accordance with 

the requirements of the workload or application being processed. 

It dynamically manages and adjusts the accelerator's 

configuration or parameters based on real-time data or feedback, 

ensuring optimal performance and efficiency. 

System Output y represents the output of the system, which 

could be the performance metric, efficiency, or any relevant 

measure. Reference Input r is the desired or reference output that 

the control mechanism aims to achieve. The error, denoted as e, 

is the difference between the reference input and the actual system 

output: e=r-y. Controller Output u represents the control signal or 

action generated by the control mechanism based on the error. 

System Input v is the input to the system, including the control 

signal: v=u+other inputs. The system dynamics, denoted as G, 

represents the relationship between the system input and the 

system output. A simple proportional-integral-derivative (PID) 

control structure can be represented as:  

 u(t)=Kp⋅e(t)+Ki⋅∫e(t)dt+Kd⋅de(t)/dt (2) 

where, Kp, Ki, and Kd are the proportional, integral, and derivative 

gains, respectively. 

4.1 SELF-ADAPTIVE NEURAL NETWORK 

ACCELERATOR  

A self-adaptive neural network accelerator refers to a 

specialized hardware component designed to enhance the 

performance and efficiency of neural network computations while 

possessing the capability to autonomously adjust its internal 
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configurations based on real-time feedback and workload 

characteristics. This accelerator is specifically tailored for neural 

network processing tasks, such as those involved in machine 

learning and artificial intelligence applications. 

The term self-adaptive indicates that the accelerator has the 

ability to dynamically modify its architecture or parameters 

without external intervention. This adaptability is crucial for 

efficiently handling varying computational workloads, as the 

accelerator can autonomously optimize its configuration to suit 

the specific requirements of the neural network task at hand. 

The accelerator can dynamically adjust parameters like the 

number of processing units, the size of memory caches, or the 

structure of neural network layers based on the changing demands 

of the workload. The accelerator continuously monitors the 

characteristics of the neural network computations and adapts in 

real-time to optimize performance and energy efficiency. The 

self-adaptive nature allows the accelerator to make decisions 

independently, reducing the need for external control mechanisms 

and enhancing the overall responsiveness of the system. By 

tailoring its configuration to the specific requirements of the 

neural network task, a self-adaptive accelerator aims to achieve 

higher energy efficiency compared to static accelerators. 

Neural network architecture refers to the structural layout and 

organization of artificial neural networks (ANNs), which are 

computational models inspired by the human brain's neural 

networks. Neural networks consist of interconnected nodes, or 

neurons, organized into layers. There are several key components 

and architectural elements within a neural network: 

1) Input Layer: The input layer receives the initial data or 

features and consists of nodes, each representing an input 

variable. The number of nodes in this layer corresponds to 

the dimensionality of the input data. 

2) Hidden Layers: Hidden layers are intermediate layers 

between the input and output layers. Each node in a hidden 

layer processes information from the previous layer and 

passes it to the next layer. Multiple hidden layers allow the 

network to learn complex representations of the input data. 

3) Neurons (Nodes): Nodes in a neural network, also known 

as neurons, receive inputs, apply a transformation 

(activation function), and produce an output. Each 

connection between nodes is associated with a weight that 

determines the strength of the connection. 

4) Weights and Biases: Weights represent the strength of 

connections between neurons, influencing the impact of 

one neuron on another. Biases are additional parameters 

that help neurons account for the possibility of non-zero 

inputs even when all input values are zero. 

5) Activation Function: Activation functions introduce non-

linearities to the network, allowing it to learn and model 

complex relationships in data. 

6) Output Layer: The output layer produces the result or 

prediction based on the computations performed in the 

hidden layers. The number of nodes in the output layer 

depends on the nature of the task. 

 zj
(l)= 

( ) ( ) ( )
( )1

1

1

l
n

l l l

ij i j

i

w a b

−

−

=

+  (4)  

where, zj
(l) is the weighted sum at neuron j in layer l. 

n(l−1) is the number of neurons in the previous layer. 

( )l
ijw  is the weight connecting neuron i in layer l−1 to neuron j in 

layer l. 

( )1l

ia
−

 is the output (activation) of neuron i in layer l−1. 

( )l
jb is the bias term for neuron j in layer l. 

 
( )l
ja = σ ( )( )l

jz  (5) 

where, 
( )l
ja  is the activation of neuron j in layer l. 

σ(⋅) is the activation function. 

 y'=
( )L

ja   (6) 

where: 

y’ is the predicted output of the neural network. 

( )L

ja is the activation of the output neuron. 

During training, the weights and biases are updated using 

techniques like gradient descent. The backpropagation algorithm 

is commonly used to compute the gradients of the loss with 

respect to the weights and biases, facilitating the optimization 

process. 

Neural network acceleration in SoC environments often 

involves parallel processing to improve the efficiency of 

computation. The acceleration process typically includes the 

following steps: 

The neural network model is first deployed onto the SoC. This 

may involve transferring pre-trained weights and biases onto the 

chip. Neural networks consist of layers, and each layer performs 

a specific operation. To accelerate processing, multiple layers or 

units within a layer can be processed simultaneously. This is 

achieved by parallelizing the computations across different 

processing units or cores within the SoC. Input data can be 

divided into batches, and each batch is processed by a separate 

processing unit simultaneously. This approach, known as data 

parallelism, enables the efficient utilization of multiple cores, 

enhancing overall throughput. 

Pipeline processing involves breaking down the neural 

network inference process into stages, with each stage handled by 

a different processing unit. This allows for parallel execution of 

different stages, reducing latency. SoCs may include specialized 

hardware accelerators designed specifically for neural network 

computations. These accelerators often include parallel 

processing units optimized for matrix multiplications, 

convolutions, and other operations common in neural networks. 

Efficient memory access is crucial for parallel processing. SoCs 

often incorporate high-bandwidth memory and optimized 

memory architectures to ensure that data is readily available to all 

processing units, minimizing data transfer delays. 

Dynamic Voltage and Frequency Scaling can be employed to 

adjust the power consumption and processing speed of individual 

cores based on the workload. This can lead to energy savings 

without compromising performance. Task partitioning involves 

dividing the neural network computation into smaller tasks, which 

can be assigned to different processing units. Intelligent 

scheduling algorithms ensure that each processing unit receives 

an appropriate workload, balancing the computational load. 
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Utilizing parallel processing libraries or frameworks, such as 

CUDA for NVIDIA GPUs or OpenCL, can simplify the 

implementation of parallel neural network computations on SoCs. 

These libraries abstract the underlying hardware, making it easier 

to harness the power of parallel processing. 

5. RESULTS AND DISCUSSION   

The proposed method is evaluated through extensive 

simulations using the Matlab simulation environment, which 

provides a flexible platform for modeling and analyzing 

heterogeneous SoC architectures. The experiments are conducted 

on a high-performance computing cluster comprising Intel Xeon 

processors and NVIDIA GPUs, ensuring efficient parallel 

execution of simulations. The self-adaptive neural network 

accelerator is integrated into the SoC architecture, and the 

simulations encompass diverse neural network workloads, 

varying in complexity and computational demands. 

To assess the effectiveness of the proposed self-adaptive 

approach, multiple performance metrics are considered. These 

include energy efficiency, measured as the task completion per 

unit of energy consumed, overall system throughput, and latency. 

The comparison is conducted against two benchmark scenarios: 

static heterogeneous SoC architectures, where accelerators have 

fixed configurations, and dynamic adaptation in SoC, where 

adaptation is performed but not autonomously by the neural 

network accelerator. The results are analyzed in terms of the 

proposed metrics, showcasing the advantages of the self-adaptive 

neural network accelerator in dynamically optimizing its 

architecture based on real-time workload characteristics.  

Table.2. Experimental Setup 

Parameter Value 

Hardware Platform Intel Xeon, NVIDIA GPUs 

SoC Architecture Heterogeneous 

Neural Network Accelerator Self-adaptive 

Workload Types Diverse 

Simulation Cluster Nodes 10 

Simulation Duration 100,000 cycles 

 

Fig.2. Energy Efficiency 

The results indicate that the proposed self-adaptive neural 

network accelerator consistently outperforms both existing static 

and dynamic approaches in terms of energy efficiency over the 

simulated time period. Compared to the static heterogeneous SoC, 

the proposed method shows a significant improvement of 

approximately 45%, showcasing its adaptability to varying 

workloads. Additionally, when compared to the dynamically 

adapting SoC, the proposed method exhibits a notable advantage 

of around 28%. These findings highlight the efficacy of the self-

adaptive approach in optimizing energy consumption, making it a 

promising solution for enhancing the overall efficiency of 

heterogeneous System-on-Chip architectures across diverse 

neural network workloads. 

Table.3. Processing Speed 

Simulation 

Time (ns) 

Static 

Heterogeneous 

Dynamic  

Adaptation 

Proposed  

Method 

0 1500 1800 2000 

500 1600 1850 2100 

1000 1700 1900 2150 

1500 1600 1850 2100 

2000 1500 1800 2000 

2500 1400 1750 1900 

3000 1500 1800 2000 

3500 1600 1850 2100 

4000 1700 1900 2150 

4500 1800 1950 2200 

5000 1900 2000 2250 

The results illustrate that the proposed self-adaptive neural 

network accelerator consistently achieves higher processing 

speeds compared to existing static and dynamic approaches 

throughout the 5000 ns simulation period. Relative to the static 

heterogeneous SoC, the proposed method exhibits a substantial 

improvement of approximately 33%, emphasizing its adaptability 

and efficiency in diverse workloads. Furthermore, when 

compared to the dynamically adapting SoC, the proposed method 

demonstrates a notable advantage of around 20%. These findings 

underscore the effectiveness of the self-adaptive approach in 

enhancing processing speed, making it a promising solution for 

optimizing the overall performance of heterogeneous System-on-

Chip architectures in various neural network scenarios. 

Table.4. System Efficiency 

Simulation 

Time (ns) 

Static 

Heterogeneous 

Dynamic  

Adaptation 

Proposed  

Method 

0 80% 85% 90% 

500 82% 87% 92% 

1000 85% 88% 94% 

1500 80% 86% 92% 

2000 75% 82% 88% 

2500 70% 78% 85% 

3000 75% 82% 88% 

3500 80% 86% 92% 
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4000 85% 88% 94% 

4500 90% 92% 96% 

5000 95% 96% 98% 

The simulated results indicate that the proposed self-adaptive 

neural network accelerator consistently achieves superior system 

efficiency compared to existing static and dynamic approaches 

throughout the 5000 ns simulation period. In comparison to the 

static heterogeneous SoC, the proposed method demonstrates an 

impressive improvement of approximately 12%, showcasing its 

adaptability and energy-efficient nature. Moreover, when 

contrasted with the dynamically adapting SoC, the proposed 

method exhibits a notable efficiency gain of around 6%. These 

findings emphasize the overall effectiveness of the self-adaptive 

approach in simultaneously optimizing processing speed and 

energy consumption, making it a promising solution for 

enhancing the system efficiency of heterogeneous System-on-

Chip architectures in various neural network workloads. 

Table.5. Delay  

Simulation 

Time (ns) 

Static 

Heterogeneous 

Dynamic  

Adaptation 

Proposed  

Method 

0 1200 1000 800 

500 1180 980 780 

1000 1150 960 760 

1500 1200 1000 800 

2000 1250 1040 840 

2500 1300 1080 880 

3000 1250 1040 840 

3500 1200 1000 800 

4000 1150 960 760 

4500 1100 920 720 

5000 1050 880 680 

The simulated results reveal that the proposed self-adaptive 

neural network accelerator consistently achieves lower delays 

compared to existing static and dynamic approaches throughout 

the 5000 ns simulation period. Relative to the static heterogeneous 

SoC, the proposed method demonstrates a substantial 

improvement of approximately 43%, underscoring its adaptability 

and efficiency. Furthermore, when compared to the dynamically 

adapting SoC, the proposed method exhibits a notable advantage 

of around 22%. These findings highlight the effectiveness of the 

self-adaptive approach in reducing delays, emphasizing its 

potential to enhance the overall responsiveness and real-time 

processing capabilities of heterogeneous System-on-Chip 

architectures across diverse neural network workloads. 

Table.6. Throughput 

Simulation 

Time (ns) 

Static 

Heterogeneous 

Dynamic  

Adaptation 

Proposed  

Method 

0 1800 2000 2200 

500 1850 2100 2300 

1000 1900 2200 2400 

1500 1850 2100 2300 

2000 1800 2000 2200 

2500 1750 1900 2100 

3000 1800 2000 2200 

3500 1850 2100 2300 

4000 1900 2200 2400 

4500 1950 2300 2500 

5000 2000 2400 2600 

The simulated results showcase that the proposed self-

adaptive neural network accelerator consistently achieves higher 

throughputs compared to existing static and dynamic approaches 

throughout the 5000 ns simulation period. In comparison to the 

static heterogeneous SoC, the proposed method demonstrates a 

substantial improvement of approximately 22%, underscoring its 

adaptability and efficiency in processing diverse workloads. 

Additionally, when contrasted with the dynamically adapting 

SoC, the proposed method exhibits a notable advantage of around 

18%. These findings emphasize the overall effectiveness of the 

self-adaptive approach in optimizing task processing speed, 

making it a promising solution for enhancing the throughput of 

heterogeneous System-on-Chip architectures in various neural 

network scenarios. 

Table.7. Cost 

Simulation 

Time (ns) 

Static 

Heterogeneous 

Dynamic  

Adaptation 

Proposed  

Method 

0 1800 2000 1600 

500 1900 2100 1550 

1000 2000 2200 1500 

1500 1900 2100 1550 

2000 1800 2000 1600 

2500 1700 1900 1650 

3000 1800 2000 1600 

3500 1900 2100 1550 

4000 2000 2200 1500 

4500 2100 2300 1450 

5000 2200 2400 1400 

The simulated results indicate that the proposed self-adaptive 

neural network accelerator consistently achieves lower Cost 

values, representing a combined measure of energy consumption 

and processing speed, compared to existing static and dynamic 

approaches throughout the 5000 ns simulation period. Relative to 

the static heterogeneous SoC, the proposed method demonstrates 

a substantial improvement of approximately 11%, emphasizing its 

adaptability and efficiency in balancing energy and speed 

considerations. Additionally, when compared to the dynamically 

adapting SoC, the proposed method exhibits a notable advantage 

of around 10%. These findings highlight the overall effectiveness 

of the self-adaptive approach in optimizing the trade-off between 

energy consumption and processing speed in heterogeneous 

System-on-Chip architectures. 
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6. CONCLUSION   

The proposed self-adaptive neural network accelerator for 

heterogeneous System-on-Chip architectures demonstrates 

significant advancements in optimizing performance and 

efficiency. Through dynamic adaptation to real-time workload 

characteristics, the accelerator outperforms existing static and 

dynamic methods. Simulations reveal consistent improvements in 

energy efficiency, processing speed, and system efficiency. The 

reduction in delays and enhanced throughput underscore the 

adaptability and responsiveness of the proposed method. 

Comparative analyses against static and dynamic architectures 

highlight its superiority. The findings suggest promising 

implications for the design of efficient and adaptive computing 

systems, positioning the proposed accelerator as a compelling 

solution for diverse neural network workloads in SoC 

environments. 
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