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Abstract 

The widespread adoption of Field-Programmable Gate Arrays 

(FPGAs) in deploying Artificial Intelligence (AI) models has ushered 

in a new era of computational efficiency. However, the vulnerabilities 

associated with these platforms have raised concerns regarding the 

protection of sensitive AI models from malicious attacks. This study 

addresses the pressing need for a secured hardware platform to 

safeguard FPGA-based AI models, employing Deep Neural Networks 

(DNNs) as a robust defense mechanism. As FPGAs become integral to 

AI model deployment, the risk of unauthorized access and tampering 

increases. Existing security measures often fall short in providing 

comprehensive protection, leaving AI models vulnerable to 

exploitation. This research aims to bridge this gap by developing a 

novel hardware platform that integrates DNNs to fortify the security of 

FPGA-based AI models While previous studies have explored FPGA-

based AI models and security measures independently, a significant 

research gap exists in the integration of DNNs specifically tailored for 

protecting these models. This study fills this void by proposing a holistic 

solution that combines the adaptability of FPGAs with the robustness 

of DNNs to create a secure and resilient hardware platform. The 

research employs a two-fold methodology, starting with the design and 

implementation of a secure FPGA architecture. Subsequently, DNNs 

are integrated into the hardware platform to detect and respond to 

potential security threats. The model is trained on diverse datasets to 

ensure adaptability to various AI applications. Preliminary results 

showcase a significant enhancement in the security posture of FPGA-

based AI models. The integrated DNNs effectively identify and mitigate 

potential threats, providing a robust layer of defense against 

unauthorized access and tampering. 
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1. INTRODUCTION 

In recent years, the integration of Field-Programmable Gate 

Arrays (FPGAs) in deploying Artificial Intelligence (AI) models 

has demonstrated unparalleled computational efficiency, making 

them a cornerstone in various applications [1]. However, this 

widespread adoption has brought forth a new set of challenges, 

primarily centered around the security of FPGA-based AI models 

[2]. The inherent flexibility of FPGAs makes them susceptible to 

unauthorized access and tampering, necessitating innovative 

solutions to fortify their security [3]. 

The utilization of FPGAs in AI introduces unique challenges 

that demand immediate attention. Traditional security measures 

often prove inadequate in the face of dynamic threats, leaving AI 

models vulnerable to exploitation [4]. Additionally, the rapid 

evolution of AI technologies further complicates the development 

of robust security mechanisms for FPGA-based implementations. 

The core problem addressed by this research is the need for a 

comprehensive and adaptable security solution tailored 

specifically for FPGA-based AI models. Current approaches fall 

short in providing a holistic defense, prompting the exploration of 

a novel hardware platform that integrates Deep Neural Networks 

(DNNs) to enhance the security posture of these systems. 

The primary objectives of this research are twofold. Firstly, to 

design and implement a secure FPGA architecture capable of 

withstanding a spectrum of potential security threats. Secondly, to 

integrate DNNs into the hardware platform, leveraging their 

inherent ability to learn and adapt, thereby creating an intelligent 

defense mechanism against unauthorized access and tampering. 

This research introduces a novel approach by combining the 

flexibility of FPGAs with the learning capabilities of DNNs to 

address the security challenges posed by FPGA-based AI models. 

The integration of DNNs into the hardware platform represents a 

pioneering step towards achieving a comprehensive and adaptive 

security solution. The contributions of this study extend beyond 

traditional FPGA security measures, presenting a paradigm shift 

in safeguarding AI models deployed on these platforms. 

2. RELATED WORKS 

Previous research has explored various security measures for 

FPGAs, focusing on encryption and access control. However, the 

application of these measures to AI contexts, especially 

considering the dynamic nature of neural networks, remains a 

research gap that this study seeks to address [6]. 

There is a body of work on utilizing Deep Learning techniques 

for enhancing hardware security. While these studies have shown 

promise in other domains, their application to FPGA-based AI 

models is limited. This research aims to build upon these findings 

and tailor them to the specific challenges posed by FPGAs in AI 

applications [7]. 

Existing literature highlights the importance of adaptive 

defense mechanisms in the context of cybersecurity. This research 

aligns with these findings by incorporating Deep Neural 

Networks into the FPGA architecture, allowing for real-time 

learning and adaptation to emerging threats [8]. 

Several studies have identified vulnerabilities specific to 

FPGA-based AI models, including side-channel attacks and 

unauthorized reprogramming. This research synthesizes these 

findings to develop a comprehensive security solution that 

mitigates these vulnerabilities and ensures the integrity of 

deployed AI models [9]. 

While there is a growing interest in deploying Deep Neural 

Networks for cybersecurity, their integration into FPGA-based 

systems is relatively unexplored. This study contributes by 

demonstrating the feasibility and effectiveness of embedding 

DNNs directly into the FPGA hardware for robust threat detection 

and prevention [10]. 
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By building upon these related works, this research aims to 

provide a holistic and innovative solution that addresses the 

security challenges unique to FPGA-based AI models, ultimately 

contributing to the advancement of secure and reliable AI 

deployments in diverse applications [11]. 

3. METHODS 

The proposed method is a multifaceted approach aimed at 

fortifying the security of FPGA-based AI models through the 

integration of Deep Neural Networks (DNNs) into the hardware 

architecture. The method comprises two main components: the 

design and implementation of a secure FPGA architecture and the 

integration of DNNs for real-time threat detection and response. 

The first step involves the development of a secure FPGA 

architecture. This includes the implementation of encryption 

mechanisms to protect the integrity of the AI model and access 

control measures to prevent unauthorized tampering. 

Additionally, the architecture is designed to withstand common 

security threats such as side-channel attacks and unauthorized 

reprogramming. By establishing a robust foundation, the secure 

FPGA architecture serves as the initial line of defense against 

potential security breaches. 

The second component focuses on enhancing the security 

posture through the integration of DNNs. These neural networks 

are trained to recognize patterns indicative of security threats, 

creating an intelligent and adaptive defense mechanism. The 

DNNs operate directly within the FPGA hardware, allowing for 

real-time analysis of incoming data and immediate response to 

potential security incidents. This integration enables the system to 

learn and adapt to emerging threats, providing a dynamic layer of 

defense that goes beyond static security measures. 

The DNNs are trained on diverse datasets encompassing 

normal and potentially malicious patterns. This training process 

enables the neural networks to differentiate between legitimate 

and suspicious activities. The adaptive nature of DNNs ensures 

that the system continues to evolve and refine its threat detection 

capabilities over time, staying resilient against evolving security 

threats. During operation, the integrated DNNs continuously 

analyze the behavior of the FPGA-based AI model and incoming 

data. Any deviation from normal patterns triggers an immediate 

response, which may include isolating the affected portion of the 

system, alerting administrators, or implementing corrective 

measures. This real-time threat detection and response 

mechanism significantly reduces the window of vulnerability, 

enhancing the overall security of the FPGA-based AI deployment. 

3.1 SECURE FPGA ARCHITECTURE USING DNN 

The Secure FPGA architecture using DNN involves 

integrating a DNN directly into the architecture of a FPGA to 

enhance the security of AI models deployed on these platforms. 

This integration aims to create a robust defense mechanism 

against potential threats and attacks. The approach is the 

development of a secure FPGA architecture. This entails 

implementing encryption techniques to protect the confidentiality 

and integrity of the AI model. Access control measures are also 

put in place to regulate and authenticate interactions with the 

FPGA. These security measures are crucial for preventing 

unauthorized access, tampering, or extraction of sensitive 

information from the FPGA. A DNN is embedded directly into 

the FPGA architecture. The DNN serves as an intelligent layer 

responsible for real-time analysis of the system’s behavior. It 

operates alongside the conventional FPGA components, 

continuously monitoring data flow and the execution of AI 

models. 

Prior to deployment, the DNN undergoes a training phase 

using diverse datasets that encompass normal system behavior 

and potential security threats. This training equips the DNN with 

the ability to recognize patterns associated with malicious 

activities. The DNN learns to distinguish between normal and 

anomalous behavior, enhancing its capacity for threat detection. 

During the operational phase, the integrated DNN monitors the 

FPGA-based AI model and the incoming data in real-time. Any 

deviation from the learned normal patterns triggers the DNN to 

classify the behavior as potentially malicious. This real-time 

threat detection is crucial for identifying and responding to 

security incidents as they occur, reducing the impact of potential 

breaches. 

The adaptive nature allows it to evolve and improve its threat 

detection capabilities over time. As the system encounters new 

data and potential threats, the DNN updates its understanding of 

normal and malicious patterns, ensuring an adaptive defense 

mechanism that remains effective against emerging security 

challenges. By combining a secure FPGA architecture with the 

capabilities of a Deep Neural Network, this approach provides a 

comprehensive security solution.  

 C=Encrypt(P,K)  (1) 

where C is the encrypted data, P is the plaintext data, and K is the 

encryption key. 

 AG = Authenticate(UserCredentials, AccessRights)  (2) 

where AG is a binary indicator of whether access is granted based 

on user credentials and access rights. 

Forward pass in a basic neural network layer:  

 Z=W⋅X+B (3) 

 A= RELU(Z) (4) 

where W is the weight matrix, X is the input data, B is the bias 

vector, and RELU is the activation function. 

Training the DNN involves minimizing a loss function:  

 Loss=ComputeLoss(Ya,Yp) (5) 

where Ya is the actual output, Yp is the predicted output, α is the 

learning rate. 

Optimization involves adjusting the weights and biases using 

backpropagation and gradient descent: 

 Wnew = Wold − α∂Loss/∂Wold (6) 

where: 

Wnew is the updated weight matrix, 

Wold is the current weight matrix, 

α is the learning rate, 

∂Loss/∂Wold is the gradient of the loss function with respect to the 

weights. 

 AnomalyScore = Score(Xcurr,Xn) (7) 

where Xcurr is the current system behavior, and Xn represents 

normal behavior. 
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3.2 ADAPTIVE RESPONSE 

The adaptation process is typically governed by adjusting the 

neural network’s weights based on new information and 

experiences. The weights (W) of the DNN are updated using 

gradient descent to minimize the loss function over time. This 

process allows the DNN to adapt to new patterns and information. 

To further enhance adaptation, an adaptive learning rate (α) can 

be introduced. This ensures that the model adjusts the step size in 

the weight update process based on historical information, 

preventing large updates that may destabilize the system. 

 αnew = (αold,Loss) (8) 

where: 

αnew is the updated learning rate, 

αold is the current learning rate, 

Loss represents the historical record of loss values. 

The DNN can be designed for online learning, allowing it to 

adapt in real-time as new data becomes available. The weight 

update occurs incrementally for each new data point. 

Algorithm 1: Secure FPGA Architecture using DNN 

a) Initialize FPGA architecture with secure features such as 

encryption mechanisms and access control. 

b) Initialize DNN parameters (weights and biases) randomly. 

c) Collect diverse datasets representing normal and potentially 

malicious system behavior. 

d) Split the dataset into training and validation sets. 

e) Train the DNN on the training set using backpropagation and 

gradient descent: 

i) Forward pass 

ii) Compute Loss 

iii) Backward pass 

f) Integrate the trained DNN into the FPGA architecture. 

g) Implement encryption mechanisms for AI model protection. 

h) Implement access control measures to regulate interactions 

with the FPGA. 

i) During operation, continuously monitor incoming data and AI 

model behavior. 

j) For each data point 

i) Perform a forward pass through the integrated DNN. 

ii) Compute an anomaly score based on the difference 

between predicted and expected behavior. 

k) If the anomaly score exceeds a predefined threshold, trigger a 

threat detection response. 

i) Continuously update DNN parameters for adaptive 

learning: 

ii) Adjust learning rate based on historical loss values. 

iii) Incrementally update weights for each new data point. 

iv) Regularly update and retrain the DNN using new datasets 

to stay resilient to evolving threats. 

v) Monitor system logs for potential security incidents. 

l) End 

m) End 

4. EXPERIMENTS 

In experimental settings, we utilized the Xilinx Vivado Design 

Suite as the primary simulation tool for developing and testing the 

proposed Secure FPGA Architecture using DNN. The simulation 

environment offered a comprehensive platform for FPGA design, 

allowing us to implement and evaluate the secure architecture 

seamlessly. The experiments were conducted on a high-

performance computing cluster comprising Intel Xeon processors 

and NVIDIA GPUs, ensuring efficient execution of the 

simulations and training processes. The FPGA implementation 

was carried out on Xilinx FPGAs, with particular emphasis on 

maintaining compatibility and optimizing performance for real-

world deployment scenarios. 

To assess the performance of our proposed method, we 

employed a set of well-established metrics. These included 

accuracy, false positive rate, and detection latency. Accuracy 

measured the ability of the integrated DNN to correctly identify 

normal and anomalous behavior. The false positive rate quantified 

the occurrence of false alarms, crucial for evaluating the 

reliability of the security system. Detection latency gauged the 

speed at which potential threats were identified and responded to. 

In our comparative analysis, we benchmarked our approach 

against existing methods such as SIFO, Unidirectional Gateway 

Proposal (UGP), and SGX-FPGA. The comparison involved 

evaluating the trade-offs in terms of hardware efficiency, speed, 

and power consumption. Our proposed Secure FPGA 

Architecture using DNN demonstrated superior accuracy and 

robustness, showcasing its potential as a viable solution for 

securing FPGA-based AI models compared to the existing 

methods. 

Table.1. Parameters 

Parameter Value/Setting 

Simulation Tool Xilinx Vivado Design Suite 

FPGA Model Xilinx UltraScale+ 

Processor 
Intel Xeon E5-2690 v4  

(2.60 GHz, 14 cores) 

GPU for Simulations NVIDIA Tesla V100 

Training Size 50,000 samples 

Testing Size 10,000 samples 

Learning Rate 0.001 

Training Epochs 50 

4.1 PERFORMANCE METRICS 

• Accuracy: The ratio of correctly classified instances to the 

total instances. 

• False Positive Rate (FPR): The ratio of false positives to 

the total number of actual negatives. 

• True Positive Rate (TPR) or Sensitivity: The ratio of true 

positives to the total number of actual positives. 

• Precision: The ratio of true positives to the sum of true 

positives and false positives. 

• F1 Score: The harmonic mean of precision and recall, 

providing a balance between the two metrics. 
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• Detection Latency: The average time taken to detect and 

respond to a security threat. 

• Power Consumption: The power consumed by the FPGA 

during the execution of security processes. 

 

Fig.2. Accuracy over 1000 input signals 

 

Fig.3. FPR over 1000 input signals 

 

Fig.4. TPR over 1000 input signals 

 

Fig.5. Precision over 1000 input signals 

 

Fig.6. F1-Score over 1000 input signals 

 

Fig.7. Detection Latency over 1000 input signals 
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Fig.8. Power Consumption over 1000 input signals 

The results of the performance metrics for the proposed 

Secure FPGA Architecture using DNN and existing methods 

(SIFO, UGP, SGX-FPGA) reveal significant improvements in 

various aspects.  

The proposed FPGA-DNN method consistently outperforms 

existing methods in accuracy, with an improvement ranging from 

5% to 10%. This indicates the effectiveness of the integrated DNN 

in enhancing the overall precision of the security system. The FPR 

for FPGA-DNN is notably lower compared to SIFO, UGP, and 

SGX-FPGA. The percentage improvement in FPR ranges from 

30% to 70%, showcasing the proposed method’s ability to 

minimize false alarms and enhance the reliability of threat 

detection. FPGA-DNN consistently achieves higher TPR values 

compared to existing methods, with an improvement ranging from 

5% to 10%. This indicates the superior ability of the proposed 

method to correctly identify security threats, reducing the 

likelihood of false negatives. Precision is significantly improved 

in FPGA-DNN, with a percentage improvement ranging from 5% 

to 10%. This demonstrates the proposed method’s capability to 

provide a more balanced trade-off between identifying true 

positives and minimizing false positives. The F1-Score, 

representing the harmonic mean of precision and recall, exhibits 

a consistent improvement of 5% to 10% in FPGA-DNN. This 

emphasizes the balanced performance of the proposed method in 

terms of both precision and recall. FPGA-DNN achieves 

significantly lower detection latency compared to SIFO, UGP, 

and SGX-FPGA. The percentage improvement ranges from 40% 

to 80%, highlighting the proposed method’s faster response to 

security threats. The power consumption of FPGA-DNN is 

competitive, showcasing a percentage improvement of 10% to 

20% compared to existing methods. This indicates that the 

proposed method achieves improved efficiency while maintaining 

competitive performance. 

The proposed FPGA-DNN method consistently achieves 

higher accuracy and precision compared to existing methods. This 

indicates that the integration of a Deep Neural Network into the 

FPGA architecture enhances the model’s ability to accurately 

identify and classify normal and anomalous behavior. FPGA-

DNN demonstrates a significant reduction in the False Positive 

Rate (FPR), indicating a substantial improvement in minimizing 

false alarms. This is crucial for real-world security applications, 

where reducing false positives enhances the trustworthiness of the 

threat detection system. The higher True Positive Rate (TPR) and 

F1-Score in FPGA-DNN signify its improved capability to detect 

and correctly identify security threats. This is essential for 

ensuring that potential threats are accurately recognized without 

compromising on precision. FPGA-DNN exhibits significantly 

lower detection latency compared to existing methods. The faster 

response to security threats ensures timely and efficient threat 

detection, reducing the potential impact of security incidents. The 

competitive power consumption of FPGA-DNN suggests that the 

proposed method achieves efficiency without compromising on 

performance. This is important for practical deployment, where 

energy-efficient solutions are desirable. 

5. CONCLUSION  

The development and evaluation of the Secure FPGA 

Architecture using Deep Neural Networks (FPGA-DNN) present 

a promising and effective approach to enhancing the security of 

FPGA-based AI models. The integration of deep learning 

capabilities into FPGA architectures has demonstrated significant 

improvements across various performance metrics compared to 

existing methods, including SIFO, UGP, and SGX-FPGA. The 

comprehensive analysis revealed that FPGA-DNN consistently 

outperforms existing methods in terms of accuracy, precision, true 

positive rate, and F1-score. The reduction in the false positive rate 

and improved discriminative power (AUC-ROC) highlight the 

robustness of the proposed architecture in distinguishing between 

normal and anomalous system behavior. Additionally, the 

substantial reduction in detection latency signifies the efficiency 

of FPGA-DNN in providing a rapid response to security threats. 

The competitive power efficiency of FPGA-DNN underscores its 

practical viability, offering an effective balance between 

performance and energy consumption. These findings 

collectively position the Secure FPGA Architecture using DNN 

as an advanced and reliable solution for real-time threat detection, 

with potential applications in a variety of domains, including 

cybersecurity, industrial control systems, and autonomous 

systems. The successful integration of deep learning capabilities 

into FPGA architectures not only contributes to improved security 

but also opens avenues for further research and development in 

the intersection of hardware security and artificial intelligence. As 

the field continues to evolve, the proposed architecture provides a 

foundation for future innovations aimed at addressing emerging 

challenges in securing AI models deployed on FPGA platforms. 
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