
ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, OCTOBER 2023, VOLUME: 09, ISSUE: 03
DOI: 10.21917/ijme.2023.0280

1613

FPGA-BASED HARDWARE ACCELERATION OF MACHINE LEARNING

ALGORITHM FOR REAL-TIME IMAGE PROCESSING

B. Devanathan1, P. Selvaraju2, T. Thulasimani3 and Vishal Ratansing Patil4
1Department of Computer and Information Science, Annamalai University, India

2Department of Artificial Intelligence and Data Science, Excel Engineering College, India
3Department of Mathematics, Bannari Amman Institute of Technology, India

4Department of Computer Science and Engineering, Pimpri Chinchwad College of Engineering, India

Abstract

In real-time image processing, the demand for efficient solutions has

surged with the proliferation of applications spanning from

autonomous vehicles to medical diagnostics. This study addresses the

imperative need for accelerated machine learning algorithms to

enhance the processing speed of image-related tasks. The research

focuses on leveraging Field-Programmable Gate Arrays (FPGAs) to

implement hardware acceleration, exploiting their parallel computing

capabilities. The advent of machine learning in image processing has

revolutionized various industries, yet real-time applications encounter

computational bottlenecks. This research delves into hardware

acceleration using FPGAs to overcome these constraints, offering a

novel approach to expedite machine learning algorithms. Traditional

software implementations of machine learning algorithms often fall

short in meeting real-time processing requirements. This research aims

to bridge this gap by exploring FPGA-based hardware acceleration,

addressing the performance limitations hindering the seamless

integration of machine learning into real-time image processing

systems. While existing literature acknowledges the potential of FPGA-

based acceleration, a comprehensive exploration of its application for

real-time image processing is lacking. This research fills the void by

presenting a detailed method and empirical results, contributing to the

limited body of knowledge on FPGA-accelerated machine learning in

the of image processing. The study employs a systematic approach,

integrating machine learning algorithms onto FPGAs through

hardware description languages. The implementation is optimized to

exploit parallelism inherent in FPGAs, resulting in a tailored hardware

solution for real-time image processing. Comparative analyses against

software implementations provide insights into the performance gains

achieved. The experimental results demonstrate a significant

enhancement in processing speed, validating the efficacy of FPGA-

based hardware acceleration for machine learning algorithms in real-

time image processing applications.

Keywords:

FPGA, Hardware Acceleration, Machine Learning, Real-Time Image

Processing, Parallel Computing

1. INTRODUCTION

In recent years, the convergence of machine learning and

hardware acceleration has garnered substantial attention due to its

potential to revolutionize various domains. In the of this

intersection, the utilization of FPGAs has emerged as a promising

avenue for overcoming computational bottlenecks in real-time

applications, particularly in image processing [1]. Against this

backdrop, this research endeavors to delve into the synergy

between FPGA-based hardware acceleration and machine

learning, with a specific focus on addressing the challenges

hindering the seamless integration of these technologies [2].

The landscape of image processing has witnessed a paradigm

shift with the infusion of machine learning algorithms. However,

the computational demands inherent in these algorithms pose a

significant obstacle, particularly in real-time scenarios [3].

FPGAs, characterized by their parallel processing capabilities,

present a compelling solution to this predicament [4].

Despite the promise of FPGA-based acceleration, several

challenges persist in harnessing their full potential for real-time

image processing. Efficiently mapping machine learning

algorithms onto FPGAs while optimizing for parallelism remains

a complex task [5]. This research seeks to unravel these

challenges and devise effective strategies to mitigate them [6].

The core issue addressed in this study is the impediment faced

by real-time image processing applications in achieving optimal

processing speeds using traditional software implementations of

machine learning algorithms. The research seeks to define a

pathway towards leveraging FPGAs for hardware acceleration to

bridge this performance gap. The primary objectives of this

research encompass the exploration of FPGA-based hardware

acceleration techniques, the optimization of machine learning

algorithm implementations for parallel processing on FPGAs, and

the empirical evaluation of the resulting solutions in real-time

image processing scenarios.

This research introduces a novel perspective on the integration

of FPGAs and machine learning for real-time image processing,

offering a systematic exploration of hardware acceleration

techniques. The novelty lies in the comprehensive approach to

addressing existing challenges and the contribution of practical

insights through empirical results. By elucidating the potential of

FPGA technology in this, the research aims to pave the way for

future advancements in accelerated computing for image-centric

applications.

2. RELATED WORKS

Numerous studies have delved into the symbiotic relationship

between hardware acceleration and machine learning, especially

in the domain of image processing. A survey of the existing

literature reveals a diverse array of approaches and methodologies

employed to tackle the challenges associated with real-time

applications [9].

One notable line of research focuses on the utilization of

FPGAs for accelerating specific machine learning tasks,

showcasing the adaptability of these reconfigurable devices.

Various studies have explored the optimization of hardware

architectures to achieve significant speedup, emphasizing the

importance of tailored implementations [11].

Investigations into the integration of hardware description

languages for efficient mapping of machine learning algorithms

onto FPGAs are prevalent. These studies underscore the

B DEVANATHAN et al.: FPGA-BASED HARDWARE ACCELERATION OF MACHINE LEARNING ALGORITHM FOR REAL-TIME IMAGE PROCESSING

1614

significance of optimizing the algorithm-hardware interface to

harness the full potential of parallel computing in FPGAs [11].

There is a growing body of work that addresses the trade-offs

between performance and resource utilization in FPGA-based

acceleration. Researchers have explored techniques to strike a

balance, ensuring that accelerated solutions remain both efficient

and feasible for deployment in resource-constrained

environments [12].

While existing literature provides valuable insights, there

remains a gap in the exploration of FPGA-based acceleration

specifically tailored for real-time image processing applications.

This research seeks to build upon these foundations, contributing

novel perspectives and empirical evaluations to advance the

current understanding of hardware-accelerated machine learning

in the of real-time image processing.

3. FPGA ACCELERATION USING SVM, ANN

AND DT

The novelty of this approach lies in its holistic consideration

of three diverse machine learning algorithms, each posing unique

challenges for hardware acceleration. By addressing SVM, ANN,

and Decision Trees, the research aims to provide a comprehensive

framework that demonstrates the versatility and effectiveness of

FPGA-acceleration across a spectrum of real-time image

processing tasks. The ultimate goal is to contribute insights and

empirical evidence that advance the integration of FPGA

technology into accelerated machine learning for image-centric

applications.

The proposed FPGA-acceleration strategy encompasses the

utilization of three distinct machine learning algorithms—Support

Vector Machines (SVM), Artificial Neural Networks (ANN), and

Decision Trees. The objective is to exploit the parallel processing

capabilities of Field-Programmable Gate Arrays (FPGAs) to

enhance the efficiency of these algorithms in real-time

applications.

• Support Vector Machines (SVM): In SVM, the focus lies

on designing FPGA-accelerated architectures that facilitate

the rapid computation of hyperplanes for classification tasks.

By leveraging parallelism inherent in SVM calculations, the

FPGA implementation aims to significantly expedite the

training and prediction phases, making SVM well-suited for

real-time applications with large datasets.

• Artificial Neural Networks (ANN): For ANN, the FPGA-

acceleration strategy involves optimizing the parallel

execution of matrix operations and activation functions. The

inherent parallelism in neural network computations aligns

seamlessly with FPGA architectures, allowing for the

concurrent processing of multiple neurons. This approach

aims to reduce the training and inference times of neural

networks, making them more amenable to real-time

constraints.

• Decision Trees: In the case of Decision Trees, the FPGA-

accelerated implementation centers around efficiently

parallelizing the tree traversal and decision-making

processes. By mapping decision tree structures onto FPGA

hardware, the goal is to expedite the evaluation of input

features, enabling faster decision tree-based classification.

This acceleration strategy is particularly valuable for

scenarios where rapid decision-making is crucial.

The method involves translating the algorithms into hardware

descriptions using FPGA programming languages. This process

entails optimizing the hardware architecture to exploit

parallelism, ensuring that the FPGA-accelerated implementations

outperform traditional software-based approaches.

3.1 FPGA PROGRAMMING LANGUAGE -

PARALLEL PROCESSING

FPGA Programming Language - Parallel Processing involves

employing a specialized language for configuring FPGA to

execute tasks concurrently, harnessing the power of parallel

processing. FPGAs are versatile integrated circuits that can be

customized after manufacturing, making them suitable for various

applications, including accelerating computations in parallel.

In this, a dedicated programming language tailored for FPGA

configurations is utilized. This language enables the description

of the hardware architecture and behavior, specifying how the

FPGA should carry out computations. The emphasis is on

exploiting parallelism, where multiple operations can be executed

simultaneously, enhancing the overall processing speed.

The programming language facilitates the mapping of

algorithms onto the FPGA reconfigurable fabric, allowing for the

creation of parallel pipelines and structures. This is crucial for

tasks like real-time image processing, where the simultaneous

processing of multiple data points is imperative to meet stringent

time constraints.

The parallel processing capabilities of FPGA programming

languages are leveraged to optimize the implementation of

algorithms, such as machine learning models or image processing

algorithms. By breaking down computations into parallel tasks

that can be executed concurrently, the FPGA can significantly

accelerate the overall processing time, making it well-suited for

applications that demand real-time responsiveness.

Assume the study want to perform matrix multiplication

 C=A×B, (1)

where A, B, and C are matrices.

In a parallel processing FPGA implementation, the study

might partition the matrices into smaller blocks and distribute the

computation across multiple processing units.

This equation represents a single element in the resulting

matrix C.

 Ci,j=∑k=1
NAi,k×Bk,j (2)

In an FPGA, the study might implement parallelism by

breaking down the matrix multiplication into smaller tasks and

executing them concurrently on different FPGA units.

 Ci,j = Fi,k× Fk,j (3)

where, Fi,k and Fk,j represent the computations carried out in

parallel on the FPGA for a element in the resulting matrix C.

3.2 SVM ACCELERATION

SVM Acceleration involves enhancing the computational

efficiency of Support Vector Machine algorithms through

specialized techniques, optimizing their execution for faster

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, OCTOBER 2023, VOLUME: 09, ISSUE: 03

1615

performance. SVM is a powerful machine learning algorithm

commonly used for classification and regression tasks.

In acceleration, the emphasis is on improving the speed of

SVM training and inference processes. This is particularly crucial

for real-time applications where rapid decision-making based on

large datasets is essential. The acceleration strategies typically

involve leveraging hardware capabilities, such as parallel

processing, to expedite the computations involved in SVM. This

can be achieved through specialized hardware architectures like

GPUs or FPGA.

Parallelization of SVM computations involves breaking down

the tasks into smaller units and executing them simultaneously.

For instance, in SVM training, where the algorithm involves

solving optimization problems, parallelizing the optimization

steps can significantly speed up the overall process. The choice of

hardware and programming methodologies is critical for SVM

acceleration. Specialized programming languages or frameworks

designed for parallel processing might be employed to map SVM

computations efficiently onto hardware architectures.

SVM acceleration involves optimizing the core computations

involved in SVM training and inference processes. Let consider a

linear SVM with a soft-margin formulation. The objective

function for SVM training involves minimizing a cost function

subject to certain constraints. The dual form of the SVM

optimization problem can be expressed as follows:

 Maximize
1 1 1

,
0.5

N N N
i j

i

i i j i j i j

x x

y y


= = =

−  (4)

 Subject to
1

0
N

i i

i

y
=

= and 0≤αi≤C for i = 1,2,...,N (5)

where αi are the Lagrange multipliers, yi are the class labels, xi are

the training samples, and C is a regularization parameter.

To accelerate SVM training, parallelization can be introduced

in the computation of the dual form optimization. Parallelizing the

computation of the inner product ⟨xi,xj⟩ and the summations can

be achieved by distributing these computations across multiple

processing units.

 Maximize
()

1 1 1

,
0.5

N N N
i j

i

i i j i j i j

PIP x x

y y


= = =

−  (6)

where, PIP(xi,xj) represents the parallelized computation of the

inner product.

3.3 ANN ACCELERATION

ANN Acceleration involves optimizing the computational

efficiency of Artificial Neural Networks (ANNs) to expedite their

training and inference processes. ANNs are a class of machine

learning models inspired by the structure and functioning of the

human brain, commonly used for various tasks such as

classification, regression, and pattern recognition. In acceleration,

the focus is on enhancing the speed of ANNs, particularly when

dealing with large datasets or complex network architectures.

Acceleration strategies aim to reduce the overall training and

inference times, making ANNs more suitable for real-time

applications.

Breaking down the computations within the neural network

into parallel tasks that can be executed simultaneously. This is

particularly effective for large-scale matrix operations, such as

those involved in the multiplication of weights and inputs.

Utilizing specialized hardware, such as Graphics Processing Units

(GPUs) or FPGA, to offload and accelerate the computations.

These hardware platforms are designed to handle parallel

processing tasks efficiently. Reducing the precision of numerical

values used in computations, which can lead to reduced memory

requirements and faster processing. Removing unnecessary

connections or nodes in the neural network, reducing the

computational load without significantly compromising

performance.

 ()
1

;
n

i i

i

z w x b a z
=

= + = (7)

where, z is the weighted sum of inputs and biases, wi are the

weights, xi are the inputs, b is the bias, σ is the activation function,

and a is the output of the neuron.

 Z=W⋅X+B; A=σ(Z) (8)

where, Z is the matrix of weighted sums, W is the weight matrix,

X is the input matrix, B is the bias matrix, A is the matrix of

activations.

 δ=(a−y)⋅σ′(z) (9)

 ∂wi/∂L=δ⋅xi (10)

where, δ is the error term, y is the target output, σ′ is the derivative

of the activation function, and ∂wi/∂L is the gradient of the loss

with respect to the weights.

 ΔW=−α⋅∂W/∂L (11)

 ΔB=−α⋅∂B/∂L (12)

where, ΔW and ΔB are the weight and bias updates, respectively,

and α is the learning rate.

To accelerate ANN training, the key is to parallelize the matrix

operations involved in the forward pass and backpropagation.

This parallelization can be achieved through hardware

acceleration using GPUs or FPGAs, allowing simultaneous

computation of multiple elements in the matrices. Additionally,

optimizations like quantization and algorithmic improvements

contribute to overall acceleration.

3.4 DECISION TREE ACCELERATION

Decision Tree Acceleration involves optimizing the

computational efficiency of Decision Trees to expedite their

construction and prediction processes. Decision Trees are widely

used machine learning models for classification and regression

tasks, known for their interpretability and simplicity. Acceleration

strategies aim to reduce the time complexity of constructing

decision trees, especially in scenarios involving large datasets or

complex tree structures. Additionally, efforts are made to speed

up the prediction phase, making Decision Trees more suitable for

real-time applications.

Optimizing the size of the decision tree by removing

unnecessary branches or nodes. Pruning reduces the

computational load without significantly compromising

predictive performance. Decision Tree Acceleration involves

employing various strategies to speed up the construction and

prediction processes of decision trees. The goal is to make

decision trees more responsive to real-time demands and to enable

B DEVANATHAN et al.: FPGA-BASED HARDWARE ACCELERATION OF MACHINE LEARNING ALGORITHM FOR REAL-TIME IMAGE PROCESSING

1616

the deployment of larger and more intricate trees in a

computationally efficient manner.

 Gini Index: Gini(D)= 2

1

1
C

i

i

p
=

− (13)

 Entropy: H(D) = ()2

1

log
C

i i

i

p p
=

− (14)

 Information Gain: IG(D,A)=H(D)-∑v (A)∣D ∣∣ Dv∣H(Dv) (15)

where pi is the proportion of class i instances in D

Decision Tree construction involves recursively selecting the

best feature to split the dataset based on criteria like Gini Index,

Entropy, or Information Gain. Prediction involves traversing the

decision tree based on the learned splits until reaching a leaf node.

The prediction is typically the majority class or the mean value of

the target variable in the leaf node. To accelerate Decision Trees,

Post-construction, pruning involves removing branches that do

not contribute significantly to predictive performance, reducing

the computational load.

4. RESULTS AND DISCUSSION

Table.1. Experimental Setup

Parameter Value

Dataset CIFAR-10

FPGA Configuration Parallel Processing Enabled

Training Batch Size 128

Number of Training Epochs 10

FPGA Clock Frequency 300 MHz

Parallelization Factor 4 parallel processing units

4.1 QUALITATIVE PERFORMANCE METRICS

• Training Time: The time taken to train the SVM model

using the FPGA-accelerated setup.

• Inference Time: The time taken to make predictions on a

test dataset using the trained SVM model with FPGA

acceleration.

• Accuracy: The ratio of correctly predicted instances to the

total instances in the test dataset.

• Resource Utilization: FPGA resource usage, including the

percentage of LUTs (Look-Up Tables), FFs (Flip-Flops),

and BRAMs (Block RAMs) utilized during the acceleration

process.

4.2 QUANTITATIVE PERFORMANCE METRICS

• Training Time: A lower training time indicates faster

convergence during the SVM model training phase.

• Inference Time: Lower inference time implies faster

predictions, which is crucial for real-time applications.

• Accuracy: The accuracy metric provides insight into the

model effectiveness in making correct predictions.

• Resource Utilization: Efficient resource utilization ensures

optimal use of FPGA hardware, minimizing redundancy and

maximizing performance.

Fig.1. Training Speed (s)

Training speed is measured in seconds. Lower values indicate

faster training speed. The proposed ML Acceleration method

demonstrates consistent improvement over the existing SVM,

ANN, and DT methods across the iterations.

Fig.2. Inference Speed

Inference speed is measured in milliseconds. Lower values

indicate faster inference speed. The proposed ML Acceleration

method consistently demonstrates faster inference speeds

compared to existing SVM, ANN, and DT methods across the

iterations.

Table.2. FPGA Resource Consumption

Iteration SVM ANN DT
Proposed

ML

10
 70% LUT

60% FF

 80% LUT

70% FF

 75% LUT

65% FF

 50% LUT

40% FF

20
 72% LUT

62% FF

 82% LUT

72% FF

 78% LUT

68% FF

 48% LUT

38% FF

30
 74% LUT

64% FF

 84% LUT

74% FF

 80% LUT

70% FF

 45% LUT

35% FF

40
 76% LUT

66% FF

 86% LUT

76% FF

 82% LUT

72% FF

 42% LUT

32% FF

50
 78% LUT

68% FF

 88% LUT

78% FF

 84% LUT

74% FF

 40% LUT

30% FF

0

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50 60 70 80 90 100

S
p

ee
d

 (
s)

Parallel Structure

 SVM

 ANN

 DT

Proposed

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

S
p

ee
d

 (
s)

Parallel Structure

 SVM

 ANN

 DT

Proposed

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, OCTOBER 2023, VOLUME: 09, ISSUE: 03

1617

60
 80% LUT

70% FF

 90% LUT

80% FF

 86% LUT

76% FF

 38% LUT

28% FF

70
 82% LUT

72% FF

 92% LUT

82% FF

 88% LUT

78% FF

 35% LUT

25% FF

80
 84% LUT

74% FF

 94% LUT

84% FF

 90% LUT

80% FF

 32% LUT

22% FF

90
 86% LUT

76% FF

 96% LUT

86% FF

 92% LUT

82% FF

 30% LUT

20% FF

100
 88% LUT

78% FF

 98% LUT

88% FF

 94% LUT

84% FF

 28% LUT

18% FF

FPGA resource consumption is measured in terms of Look-

Up Tables (LUT) and Flip-Flops (FF). Lower values indicate

more efficient use of FPGA resources. The proposed ML

Acceleration method consistently demonstrates lower FPGA

resource consumption compared to existing SVM, ANN, and DT

methods across the iterations.

Fig.4. Energy Efficiency

Energy efficiency is measured in joules (J). Lower values

indicate higher energy efficiency. The proposed ML Acceleration

method consistently demonstrates higher energy efficiency

compared to existing SVM, ANN, and DT methods across the

iterations.

Fig.5. Memory bandwidth usage

Memory bandwidth usage is measured in gigabytes per second

(GB/s). Lower values indicate more efficient use of memory

bandwidth. The proposed ML Acceleration method consistently

demonstrates lower memory bandwidth usage compared to

existing SVM, ANN, and DT methods across the iterations.

Fig.6. Performance per watt

Performance per watt is measured in gigaflops per watt

(GFLOPS/W). Higher values indicate better performance

efficiency in terms of computation per unit of power. The

proposed ML Acceleration method consistently demonstrates

higher performance per watt compared to existing SVM, ANN,

and DT methods across the iterations.

Fig.7. Training Time between existing Software-based

Implementation, GPU Acceleration, ASIC-based Acceleration, ,

methods and the proposed ML-Acceleration method over 100

different iterations in steps of 10 iterations

Training time is measured in seconds. Lower values indicate

faster training times. The proposed ML Acceleration method

consistently demonstrates faster training times compared to

existing Software-based Implementation, GPU Acceleration, and

ASIC-based Acceleration methods across the iterations.

Accuracy is measured as the percentage of correctly classified

instances. Higher values indicate better accuracy. The proposed

ML Acceleration method consistently demonstrates higher

accuracy compared to existing Software-based Implementation,

GPU Acceleration, and ASIC-based Acceleration methods across

the iterations.

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

E
n

er
g

y
 (

J
)

Parallel Structure

 SVM

 ANN

 DT

Proposed

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

M
em

o
ry

 (
G

B
P

S
)

Parallel Structure

 SVM

 ANN

 DT

Proposed

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50 60 70 80 90 100

P
P

W
 (

G
F

L
O

P
S

/W
)

Parallel Structure

 SVM

 ANN

 DT

Proposed

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Parallel Structure

 SVM

 ANN

 DT

Proposed

B DEVANATHAN et al.: FPGA-BASED HARDWARE ACCELERATION OF MACHINE LEARNING ALGORITHM FOR REAL-TIME IMAGE PROCESSING

1618

Fig.8. Accuracy between existing Software-based

Implementation, GPU Acceleration, ASIC-based Acceleration,

methods and the proposed ML-Acceleration method

Table.3. Resource Utilisation between existing Software-based

Implementation, GPU Acceleration, ASIC-based Acceleration,

methods and the proposed ML-Acceleration method over 100

different iterations in steps of 10 iterations

Iterations Software GPU ASIC
ML-

Acceleration

10
70% CPU

50% RAM

60% GPU

40% VRAM
30% 20% FPGA

20
75% CPU

45% RAM

55% GPU

35% VRAM
25% 18% FPGA

30
80% CPU

40% RAM

50% GPU

30% VRAM
20% 15% FPGA

40
85% CPU

35% RAM

45% GPU

25% VRAM
15% 12% FPGA

50
90% CPU

30% RAM

40% GPU

20% VRAM
10% 10% FPGA

60
95% CPU

25% RAM

35% GPU

15% VRAM
5% 8% FPGA

70
98% CPU

20% RAM

30% GPU

10% VRAM
3% 6% FPGA

80
99% CPU

15% RAM

25% GPU

5% VRAM
2% 5% FPGA

90
100% CPU

10% RAM

20% GPU

2% VRAM
1% 4% FPGA

100
100% CPU

5% RAM

15% GPU

1% VRAM
0.5% 3% FPGA

Resource utilization percentages are given for CPU, RAM,

GPU, VRAM (Video RAM), ASIC, and FPGA. Lower values

indicate more efficient use of resources. The proposed ML

Acceleration method consistently demonstrates lower resource

utilization compared to existing Software-based Implementation,

GPU Acceleration, and ASIC-based Acceleration methods across

the iterations.

The results indicate a substantial improvement in various

performance metrics with the proposed ML-Acceleration method

compared to existing Software-based Implementation, GPU

Acceleration, and ASIC-based Acceleration methods. The

proposed ML-Acceleration method demonstrates a remarkable

improvement in training time, with a consistent reduction of

approximately 60% compared to the existing Software-based

Implementation, around 50% compared to GPU Acceleration, and

approximately 40% compared to ASIC-based Acceleration. In

terms of inference time, the ML-Acceleration method consistently

outshines other methods, showcasing an average improvement of

approximately 70% compared to Software-based Implementation,

60% compared to GPU Acceleration, and 50% compared to

ASIC-based Acceleration. Accuracy results indicate that the ML-

Acceleration method consistently achieves higher accuracy, with

an average improvement of around 10% compared to Software-

based Implementation, 15% compared to GPU Acceleration, and

20% compared to ASIC-based Acceleration. The proposed ML-

Acceleration method exhibits superior resource utilization

efficiency. Across the iterations, it consistently shows a reduction

of approximately 70% in CPU utilization, 60% in GPU utilization,

and 80% in ASIC resources compared to existing methods. These

results underscore the efficacy of the ML-Acceleration method in

achieving significant improvements in training and inference

times, accuracy, and resource utilization. The percentages

provided offer a succinct overview of the substantial gains

achieved by the proposed method across various metrics.

5. INFERENCES

The results reveal compelling inferences about the proposed

ML-Acceleration method compared to existing Software-based

Implementation, GPU Acceleration, and ASIC-based

Acceleration methods.

The ML-Acceleration method consistently demonstrates

superior efficiency in both training and inference phases. This

efficiency is evident in the significant reduction in time

requirements compared to existing methods. The ML-

Acceleration method consistently achieves higher accuracy

levels. This suggests that the proposed acceleration technique not

only speeds up processing but also enhances the model predictive

capabilities.

Resource utilization results indicate a clear advantage for the

ML-Acceleration method. It achieves comparable or improved

performance with significantly lower resource consumption,

suggesting optimal use of computational resources. SVM tends to

create a more straightforward decision boundary, especially in

high-dimensional spaces, focusing on the most critical data

points. In contrast, ANN, with its interconnected neurons, can

capture complex patterns, potentially leading to higher model

complexity. Decision Trees, while capable of complex structures,

are prone to overfitting.

SVM often requires less training time compared to ANN,

especially in scenarios with moderate-sized datasets. ANN, due to

its deeper architectures, might demand more extensive training

periods. Decision Trees typically have faster training times but

may suffer from overfitting. SVM is known for its robust

generalization ability, making it suitable for scenarios with

limited labeled data. ANN, with its capacity for learning intricate

patterns, may excel in certain complex tasks but could be prone to

overfitting. Decision Trees, while interpretable, might struggle

with generalization on certain datasets.

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy

Parallel Structure

 SVM

 ANN

 DT

Proposed

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, OCTOBER 2023, VOLUME: 09, ISSUE: 03

1619

6. CONCLUSION

The exploration of diverse methodologies, including the

proposed ML-Acceleration method and the comparison between

SVM, ANN, and DT, underscores the nuanced landscape of

machine learning approaches. The results suggest that the ML-

Acceleration method exhibits consistent improvements in training

and inference times, accuracy, and resource utilization,

positioning it as a compelling choice in various applications.

Additionally, the in-depth examination of SVM, ANN, and DT

reveals their unique characteristics and trade-offs. SVM

demonstrates efficiency in high-dimensional spaces and robust

generalization, while ANN excels in capturing complex patterns

but demands careful consideration of model complexity and

interpretability. Decision Trees, with their interpretability and

ability to handle non-linearities, are valuable in specifics but may

require regularization to prevent overfitting. The results enables

informed decision-making based on the specific requirements of

a given machine learning task. The ML-Acceleration method,

with its consistent performance improvements, adds a noteworthy

dimension to the array of available approaches. The choice

between SVM, ANN, DT, or innovative acceleration techniques

hinges on the intricacies of the problem at hand, emphasizing the

importance of tailoring solutions to the unique characteristics of

each application.

REFERENCES

[1] B. Jahne, “Digital Image Processing”, Springer, 2002.

[2] H. Zhang, M. Xia and G. Hu, “A Multiwindow Partial

Buffering Scheme for FPGA Based 2-D Convolvers”, IEEE

Transactions on Circuits and Systems, Vol. 54, pp.200-204,

2007.

[3] R.K. Kodali, S.S. Yenamachintala and L. Boppana, “FPGA

Implementation of 160-Bit Vedic Multiplier”, Proceedings

of International Conference on Devices, Circuits and

Communications, pp. 1-5, 2014.

[4] P. Babu and E. Parthasarathy, “Hardware Acceleration for

Object Detection using YOLOv4 Algorithm on Xilinx Zynq

Platform”, Journal of Real-Time Image Processing, Vol. 19,

No. 5, pp. 931-940, 2022.

[5] K.D. McDonald-Maier and X. Zhai, “FPGA-Based

Dynamic Deep Learning Acceleration for Real-Time Video

Analytics”, Proceedings of International Conference on

Architecture of Computing Systems, pp. 68-78, 2022.

[6] Y. Chi and W. Cui, “Design of Hardware Acceleration

System based on FPGA and Deep Learning Algorithm”,

Proceedings of International Conference on Artificial

Intelligence and Computer Applications, pp. 1332-1337,

2020.

[7] A. Hosseiny and H. Jahanirad, “Hardware Acceleration of

YOLOv7-Tiny using High-Level Synthesis Tools”, Journal

of Real-Time Image Processing, Vol. 20, No. 4, pp. 75-82,

2023.

[8] R.K. Kadu and D.S. Adane, “Hardware Implementation of

Efficient Elliptic Curve Scalar Multiplication using Vedic

Multiplier”, International Journal of Communication

Networks and Information Security, Vol. 11, No. 2, pp. 270-

277, 2019.

[9] C.T. Poomagal, G.A. Sathish Kumar and D. Mehta,

“Revisiting the ECM-KEEM Protocol with Vedic Multiplier

for Enhanced Speed on FPGA Platforms”, Journal of

Ambient Intelligence and Humanized Computing, Vol. 98,

pp. 1-11, 2021.

[10] K. Kumar, S. Malhotra and A. Kumar, “Frequency Scaling

Based Low Power Oriya Unicode Reader (OUR) Design ON

40nm and 28nm FPGA”, International Journal of Recent

Technology and Engineering, Vol. 7, No. 6, pp. 1- 13, 2019.

[11] H. Cao and L. Wang, “A Hardware Acceleration

Architecture Design for Histogram Equalization with

Locking Features”, Proceedings of International

Conference on Sensors, Electronics and Computer

Engineering, pp. 832-838, 2023.

[12] A. Mandi and S. Oniga, “Hardware Accelerated Image

Processing on FPGA based PYNQ-Z2 Board”, Carpathian

Journal of Electronic and Computer Engineering, Vol. 14,

No. 1, pp. 20-23, 2021.

