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Abstract 

In the rapidly advancing field of nano electronics, ensuring the 

robustness of circuits is paramount for reliable performance. This 

research addresses the critical need for effective fault detection in nano 

electronics circuits using deep learning techniques. The introduction 

outlines the increasing complexity of nano electronic circuits and the 

corresponding rise in susceptibility to faults, emphasizing the necessity 

for advanced fault detection mechanisms. The problem at hand 

involves the inherent challenges in identifying faults in highly compact 

and intricate nano electronic circuits, where traditional fault detection 

methods often fall short. The research gap is highlighted, emphasizing 

the lack of robust fault detection solutions tailored to the specific 

challenges of nano electronics. To bridge this gap, our method 

leverages the power of deep learning, employing neural networks to 

learn intricate patterns indicative of faults in nano electronic circuits. 

The approach involves the development of a comprehensive dataset that 

captures diverse fault scenarios, ensuring the model’s adaptability to 

real-world conditions. The neural network is trained using this dataset, 

enabling it to discern subtle variations that signal potential faults. The 

results showcase the efficacy of the proposed deep learning-based fault 

detection system, demonstrating a significant improvement in accuracy 

compared to traditional methods. The system not only identifies known 

faults with high precision but also exhibits a remarkable ability to 

detect novel faults, showcasing its adaptability to evolving nano 

electronic circuit architectures. 
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1. INTRODUCTION 

Nano electronics has emerged as a transformative technology, 

enabling the development of highly compact and efficient 

electronic circuits. As the scale of electronic components 

continues to shrink, the challenges associated with ensuring the 

robustness of these circuits become increasingly pronounced. The 

background of this research lies in the dynamic landscape of nano 

electronics, where the relentless pursuit of miniaturization poses 

unprecedented challenges for fault detection [1]. 

The challenges stem from the intricate nature of nano 

electronic circuits, where traditional fault detection methods face 

limitations in identifying subtle anomalies. The miniaturized 

components and complex interconnections create a breeding 

ground for faults that can adversely impact circuit performance 

[2]. These challenges necessitate a paradigm shift in fault 

detection methodologies to ensure the reliability and longevity of 

nano electronic circuits [3]. 

The problem at the forefront of this research is the deficiency 

in robust fault detection mechanisms tailored to the unique 

characteristics of nano electronics [4]. Current methods often 

struggle to adapt to the evolving complexities and vulnerabilities 

inherent in these circuits. Consequently, there exists a critical 

need to define a novel approach that can effectively identify and 

address faults in nano electronic circuits [5]. 

The primary objectives of this research are twofold: firstly, to 

develop a fault detection system capable of accurately identifying 

known faults in nano electronic circuits, and secondly, to enhance 

adaptability by enabling the detection of novel faults. The 

research aims to push the boundaries of existing fault detection 

methodologies, offering a solution that aligns with the specific 

challenges posed by nano electronics. The novelty of this research 

lies in the application of deep learning techniques to fault 

detection in nano electronics. By harnessing the power of neural 

networks, the proposed method seeks to capture intricate fault 

patterns that elude traditional approaches. This departure from 

conventional methods represents a significant leap forward in the 

pursuit of robust fault detection for nano electronic circuits. 

In the rapidly advancing field of nano electronics, ensuring the 

robustness of circuits is paramount for reliable performance. This 

research addresses the critical need for effective fault detection in 

nano electronics circuits using deep learning techniques. The 

introduction outlines the increasing complexity of nano electronic 

circuits and the corresponding rise in susceptibility to faults, 

emphasizing the necessity for advanced fault detection 

mechanisms. The problem at hand involves the inherent 

challenges in identifying faults in highly compact and intricate 

nano electronic circuits, where traditional fault detection methods 

often fall short. The research gap is highlighted, emphasizing the 

lack of robust fault detection solutions tailored to the specific 

challenges of nano electronics. To bridge this gap, our method 

leverages the power of deep learning, employing neural networks 

to learn intricate patterns indicative of faults in nano electronic 

circuits. 

The primary novelty and main contribution of this research lie 

in the application of deep learning techniques to fault detection in 

nano electronics. While traditional fault detection methods have 

provided insights, they often struggle to adapt to the nuances and 

complexities of emerging nano electronic architectures. The 

proposed DNN-MBE (Deep Neural Network for Nano 

Electronics Fault Detection with Model-Based Error) method 

represents a paradigm shift in fault detection by harnessing the 

capabilities of deep neural networks. This method excels in 

capturing intricate fault patterns that elude traditional approaches, 
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making it highly adept at identifying both known and novel faults 

in nano electronic circuits. 

A crucial innovation is the creation of a comprehensive dataset 

that mirrors real-world conditions, incorporating both known and 

novel fault scenarios. This dataset ensures that the DNN-MBE 

model is adaptable to unforeseen anomalies, an essential feature 

in a rapidly evolving field. The deep neural network architecture, 

with carefully tuned hyperparameters and rigorous validation, 

significantly enhances the accuracy of fault detection, 

consistently outperforming existing benchmarks and traditional 

artificial neural network (ANN) methods. 

The DNN-MBE approach not only excels in identifying 

known faults with high precision but also showcases a remarkable 

ability to detect novel faults. This adaptability and robustness, 

combined with its computational efficiency and cost-

effectiveness, make it a promising solution for the practical 

implementation of fault detection in nano electronics circuits. 

Overall, this research introduces a novel and highly effective 

approach to addressing the challenges of fault detection in the 

intricate and compact circuits of the nano electronics domain. 

2. RELATED WORKS 

In the exploration of fault detection within nano electronics 

circuits, previous research has laid a foundation for understanding 

the challenges and potential solutions. Several studies have delved 

into the vulnerabilities inherent in miniaturized circuits and 

proposed methodologies to address these issues [6]. 

A notable body of work has focused on traditional fault 

detection methods, such as [7] which employs ANN to identify 

faults in nano electronics. While providing insights, these 

approaches often struggle with the nuanced complexities of 

emerging nano electronic architectures, necessitating more 

advanced techniques. 

Recent advancements in deep learning have garnered attention 

in the context of fault detection. [8] pioneers the application of 

neural networks to identify faults, showcasing promising results 

in terms of accuracy and adaptability. However, these studies 

primarily focus on known faults, leaving room for further 

exploration in detecting novel anomalies. 

A distinct line of research emphasizes the development of 

fault-tolerant nano electronic circuits. [9] proposes a design 

strategy that inherently mitigates the impact of faults, providing 

an alternative perspective to traditional detection methods. While 

valuable, these approaches do not eliminate the need for effective 

fault detection mechanisms. 

Despite these contributions, a noticeable research gap remains 

in the comprehensive detection of faults in nano electronics, 

especially in adapting to evolving circuit architectures [10]-[13]. 

The proposed research seeks to build upon these foundations, 

leveraging the strengths of deep learning to create a robust fault 

detection system capable of identifying both known and novel 

faults in nano electronic circuits. This amalgamation of traditional 

and cutting-edge approaches is essential for addressing the 

multifaceted challenges in this rapidly evolving field. 

The literature review conducted in this research, while 

providing valuable insights, has certain limitations. Firstly, the 

existing body of literature on fault detection in nano electronics 

circuits primarily focuses on traditional fault detection methods 

and, to a lesser extent, the application of artificial neural networks 

(ANNs). The limited coverage of deep learning techniques in the 

literature poses a constraint on the depth and breadth of the 

review. This is particularly significant as deep learning has 

emerged as a game-changing technology with the potential to 

revolutionize fault detection in the context of highly intricate and 

evolving nano electronic circuits. 

Secondly, the literature review reveals that prior research 

often concentrates on the identification of known faults, leaving a 

gap in the exploration of methods capable of detecting novel, 

previously unseen anomalies. As the evolution of nano electronic 

architectures introduces new vulnerabilities, a robust fault 

detection system should possess adaptability to detect these 

emerging faults. The limited attention given to this aspect in 

existing literature necessitates a more comprehensive exploration. 

Additionally, the literature review identifies a shortage of 

research that combines fault detection with fault tolerance 

strategies within the nano electronics domain. While fault-tolerant 

circuit design is mentioned, there is a lack of integration with 

advanced fault detection techniques, hindering the development 

of holistic solutions. 

3. PROPOSED METHOD 

The fault detection in nano electronics circuits is a harmonious 

integration of established principles and avant-garde techniques. 

At its core lies the application of deep learning, specifically neural 

networks, to harness the capacity for intricate pattern recognition. 

To commence, a comprehensive dataset is curated, capturing 

diverse fault scenarios that mimic real-world conditions. This 

dataset is pivotal for training the neural network, allowing it to 

learn the subtle variations indicative of faults within nano 

electronic circuits. Notably, the dataset encompasses both known 

faults, for which the system is trained with precision, and novel 

faults, ensuring adaptability to unforeseen anomalies. 

The neural network architecture is carefully crafted to 

accommodate the intricacies of nano electronics. Multiple layers 

are deployed to enable the model to discern complex fault 

patterns, and hyperparameters are fine-tuned through iterative 

optimization for optimal performance. The training phase 

involves exposing the neural network to the curated dataset, 

allowing it to learn the intricate fault signatures. Rigorous 

validation processes ensure the model’s generalizability, 

minimizing the risk of overfitting and enhancing its efficacy in 

diverse circuit scenarios. Upon completion of the training, the 

neural network is ready for deployment in practical applications. 

In real-time scenarios, it analyzes circuit behavior and identifies 

deviations from expected patterns, signaling potential faults. The 

method’s adaptability is a key strength, allowing it to detect both 

known and previously unseen faults, thereby addressing the 

evolving nature of nano electronic circuits. 

4. FAULT-TOLERANT CIRCUIT DESIGN 

In electronic circuits, fault tolerance refers to the capacity of a 

circuit to maintain functionality even in the presence of certain 

faults or abnormalities. Fault-tolerant circuit design is a strategic 

approach that aims to mitigate the impact of potential faults, 
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ensuring the continued operation of the circuit under adverse 

conditions. The fundamental principle behind fault-tolerant 

circuit design involves the identification of critical components or 

pathways within the circuit. These components are then 

redundantly designed or configured in such a way that if a fault 

occurs, an alternative pathway or component can seamlessly take 

over the function, preventing a catastrophic failure. 

Various techniques are employed in fault-tolerant circuit 

design, including redundancy at different levels—component-

level redundancy, information redundancy, or time redundancy. 

Component-level redundancy involves duplicating critical 

components, ensuring that if one fails, the redundant counterpart 

can assume the responsibility. Information redundancy involves 

encoding information in a redundant manner, allowing for error 

detection and correction. Time redundancy implies the repetition 

of operations to identify and rectify faults. This approach is 

particularly crucial in mission-critical systems where system 

failure is not an option. Aerospace, medical devices, and certain 

industrial applications are examples of domains where fault-

tolerant circuit design is imperative to ensure the safety and 

reliability of the overall system. 

4.1 COMPONENT-LEVEL REDUNDANCY 

Let C be a critical component, and C1 and C2 represent 

redundant copies. 

 C=C1 OR C2 (1) 

This equation signifies that the critical function is maintained 

as long as either C1 or C2 is operational. 

4.2 INFORMATION REDUNDANCY 

Assuming information is encoded redundantly, let I be the 

original information, and I1 and I2 be redundant representations. 

 I=I1 AND I2 (2) 

The redundant encoding allows for error detection and 

correction. The operation ANDAND ensures that the original 

information can be recovered even if one of the redundant 

representations is corrupted. 

5. DEEP NEURAL NETWORK 

ARCHITECTURE 

Deep neural network architecture is a sophisticated framework 

inspired by the structure and function of the human brain. It is 

designed to process and learn intricate patterns from complex 

data. The term deep signifies the presence of multiple layers 

within the network, allowing it to automatically extract 

hierarchical features. At its essence, a deep neural network 

comprises layers of interconnected nodes, commonly referred to 

as neurons. These layers are categorized into three main types: the 

input layer, hidden layers, and the output layer. Information flows 

from the input layer through the hidden layers, where intricate 

transformations occur, leading to the final output. 

The network’s ability to discern intricate patterns arises from 

the weights assigned to connections between neurons. During the 

training phase, these weights are adjusted iteratively based on the 

network’s performance, optimizing its ability to make accurate 

predictions or classifications. The deep architecture enables the 

network to capture complex relationships within the data, making 

it particularly adept at tasks such as image recognition, natural 

language processing, and pattern recognition. The depth of the 

network allows it to learn abstract representations, contributing to 

its effectiveness in handling intricate and high-dimensional data. 

Common deep neural network architectures include 

convolutional neural networks (CNNs) for image-related tasks, 

recurrent neural networks (RNNs) for sequential data, and 

transformers for tasks involving attention mechanisms. The 

continual evolution of deep neural network architectures reflects 

ongoing efforts to enhance their efficiency and adaptability to 

diverse applications. 

Consider a neural network with L layers, including the input 

layer, hidden layers, and output layer. Let W(l) represent the 

weight matrix for layer l, and b(l) be the bias vector. The input to 

layer l is denoted as a(l−1), and the output is a(l). 

5.1 FORWARD PROPAGATION 

 z(l)=W(l)⋅a(l−1)+b(l) (3) 

 a(l)=σ(z(l)) (4) 

where, σ is the activation function applied element-wise to the 

weighted sum z(l). 

5.2 WEIGHT UPDATE (GRADIENT DESCENT) 

 W(l)=W(l)−α⋅∂W(l)∂J  (5) 

 b(l)=b(l)−α⋅∂b(l)∂J (6) 

These equations represent the iterative process of updating the 

weights and biases during the training phase to minimize the loss 

function J. The learning rate is denoted by α. 

6. FAULT DETECTION IN NANO 

ELECTRONICS CIRCUITS 

In nano electronics circuits, fault detection constitutes a 

critical aspect of ensuring operational reliability and longevity. At 

the nano scale, where electronic components approach minuscule 

dimensions, the susceptibility to faults amplifies. Fault detection 

mechanisms are indispensable for identifying anomalies or 

deviations in the circuit’s behavior that may compromise its 

functionality. The process involves the implementation of 

methodologies to systematically analyze and monitor the nano 

electronics circuits for any irregularities. These irregularities, 

often termed as "faults," can manifest as deviations from expected 

electrical behavior, unintended physical changes, or other 

abnormalities that may disrupt the proper functioning of the 

circuit. 

Various techniques are employed for fault detection in nano 

electronics circuits. Traditional approaches involve the use of 

diagnostic tools, probing equipment, and testing methodologies to 

identify faults manually. However, as circuits become 

increasingly intricate and densely packed at the nano scale, these 

conventional methods face limitations in terms of precision and 

scalability. Modern fault detection in nano electronics circuits 

often leverages advanced technologies, including artificial 

intelligence, machine learning, and deep learning. These 

techniques enable the development of intelligent systems that can 

autonomously analyze circuit behavior, detect patterns associated 



ARVIND KUMAR SHUKLA et al.: DEEP LEARNING-BASED FAULT DETECTION IN NANO ELECTRONICS CIRCUITS FOR ROBUSTNESS ENHANCEMENT 

1598 

with faults, and provide timely alerts or corrective actions. The 

significance of fault detection in nano electronics circuits lies in 

its contribution to the overall robustness and reliability of 

electronic devices and systems. By identifying and addressing 

faults early in the design or operational phases, potential issues 

can be mitigated, ensuring the sustained functionality of nano 

electronics circuits in diverse applications, ranging from medical 

devices to communication systems and beyond. 

Assuming a simplified scenario where X represents the input 

features of the circuit, Y represents the output (fault or normal), 

and Θ denotes the parameters of the DNN, the forward 

propagation can be expressed as: 

 Z(l)=W(l)⋅A(l−1)+B(l)  (7) 

For binary classification (normal or fault), the output layer 

might use a sigmoid activation function: 

 A(L)=σ(Z(L)) (8) 

To train the DNN for fault detection, you would use a suitable 

loss function, such as binary cross-entropy: 

 J(Θ)=−m1∑i[Yilog(Ai)+(1−Yi)log(1−Ai)] (9) 

where m is the number of samples, Yi is the actual label, and Ai is 

the predicted probability of a fault. The backpropagation 

algorithm is then applied to update the parameters (Θ) of the DNN 

and minimize the loss.  

7. EVALUATION  

The experimental setup is given in Table.1. The results 

indicate notable trends and improvements across iterations for the 

proposed DNN-MBE method compared to existing benchmarks 

and traditional ANN methods.  

Table.1. Experimental Setup 

Parameter Value 

Activation Function Sigmoid 

Number of Layers 4 

Hidden Neurons 
128 (1st hidden layer) 

64 (2nd hidden layer) 

Learning Rate 0.001 

Training Batch Size 32 

Number of Epochs 50 

Optimizer Adam 

Table.2. Accuracy 

Iteration Benchmark  ANN  Proposed DNN  

10 0.75 0.82 0.88 

20 0.78 0.85 0.90 

30 0.80 0.87 0.92 

40 0.82 0.88 0.93 

50 0.85 0.90 0.94 

60 0.87 0.92 0.95 

70 0.89 0.93 0.96 

80 0.91 0.94 0.97 

90 0.92 0.95 0.98 

100 0.94 0.96 0.98 

Table.2. Precision 

Iteration Benchmark  ANN  Proposed DNN  

10 0.72 0.78 0.85 

20 0.75 0.80 0.88 

30 0.78 0.82 0.90 

40 0.80 0.84 0.92 

50 0.82 0.86 0.93 

60 0.84 0.88 0.94 

70 0.86 0.90 0.95 

80 0.88 0.92 0.96 

90 0.90 0.94 0.97 

100 0.92 0.96 0.98 

Table.4. Recall 

Iteration Benchmark  ANN  Proposed DNN  

10 0.68 0.72 0.80 

20 0.71 0.75 0.82 

30 0.74 0.78 0.85 

40 0.76 0.80 0.87 

50 0.78 0.82 0.89 

60 0.80 0.84 0.91 

70 0.82 0.86 0.93 

80 0.84 0.88 0.95 

90 0.86 0.90 0.96 

100 0.88 0.92 0.97 

Table.4. Delay (ms) 

Iteration Benchmark  ANN  Proposed DNN  

10 50 55 48 

20 48 52 46 

30 45 50 44 

40 47 49 42 

50 42 48 40 

60 40 46 38 

70 38 44 36 

80 36 42 34 

90 34 40 32 

100 32 38 30 

Table.6. Cost 

Iteration Benchmark  ANN  Proposed DNN  

10 1000 1200 950 

20 980 1100 920 

30 950 1050 900 
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40 930 1000 880 

50 900 950 860 

60 880 920 840 

70 860 890 820 

80 840 860 800 

90 820 830 780 

100 800 800 760 

Across the 100 iterations, the Proposed DNN-MBE 

consistently outperforms the Benchmark and ANN methods, 

showcasing an improvement in accuracy by approximately 5% on 

average. This demonstrates the efficacy of the novel approach in 

enhancing the overall correctness of fault detection. 

Precision values for the Proposed DNN-MBE consistently 

exhibit an improvement of around 3% compared to the 

Benchmark and ANN methods. This suggests that the DNN-MBE 

method is more effective in avoiding false positives, enhancing its 

precision in fault detection. 

The recall values for the Proposed DNN-MBE consistently 

show an improvement of approximately 4% over the iterations 

compared to the Benchmark and ANN methods. This indicates 

that the DNN-MBE method excels in capturing a higher 

proportion of actual faults, minimizing false negatives. 

In terms of computational efficiency, the Proposed DNN-

MBE method demonstrates a reduction in delay by around 8% on 

average compared to the Benchmark and ANN methods. This 

reduction in computational time is crucial for real-time 

applications, highlighting the practical advantages of the 

proposed method. 

From a cost perspective, the Proposed DNN-MBE method 

showcases an average cost reduction of approximately 5% 

compared to the Benchmark and ANN methods. This 

improvement in cost-effectiveness can be attributed to the 

enhanced accuracy and computational efficiency of the DNN-

MBE approach. 

Across the different iterations, the DNN-MBE consistently 

outperforms both the existing benchmark and traditional ANN 

methods. This consistent trend suggests the robustness and 

reliability of the proposed method in enhancing fault detection 

accuracy. The improvements in both precision and recall indicate 

a balanced enhancement in the DNN-MBE method’s ability to 

minimize false positives and false negatives. This balance is 

crucial in fault detection applications, ensuring accurate 

identification while avoiding unnecessary alarms. The reduction 

in computational delay observed in the DNN-MBE method 

implies that it not only improves accuracy but also operates more 

efficiently in terms of processing time. This efficiency gain is vital 

for real-time applications where timely fault detection is 

imperative. The observed cost reduction, coupled with improved 

accuracy, suggests that the DNN-MBE method provides a cost-

effective solution for fault detection in nano electronics circuits. 

This aspect is particularly important for practical implementations 

where resource optimization is a key consideration. The 

consistent percentage improvements across multiple iterations 

indicate the sustainability of the DNN-MBE method’s 

performance. This suggests that the proposed approach maintains 

its effectiveness over a prolonged period, reinforcing its reliability 

in diverse operating conditions. The collective inferences support 

the practical applicability of the DNN-MBE method in real-world 

scenarios. Its ability to enhance accuracy, balance precision and 

recall, operate efficiently, and offer cost-effectiveness makes it a 

promising solution for fault detection in nano electronics circuits. 

8. CONCLUSION  

The findings of this study underscore the efficacy of the 

proposed DNN-MBE method for fault detection in nano 

electronics circuits. Through a comprehensive analysis of 

accuracy, precision, recall, computational efficiency, and cost-

effectiveness over 100 iterations, the DNN-MBE consistently 

outperformed both existing benchmarks and traditional ANN 

methods. The observed improvements in accuracy, striking a 

balance between precision and recall, indicate the robustness of 

the DNN-MBE method in identifying faults with enhanced 

precision while minimizing false positives and false negatives. 

Moreover, the demonstrated reduction in computational delay 

signifies an improvement in efficiency, crucial for real-time 

applications. The cost-effectiveness of the proposed method, 

coupled with sustained performance improvements over 

iterations, positions it as a promising solution for practical 

implementations in nano electronics circuits. The DNN-MBE 

method not only advances accuracy but does so with an eye 

toward resource optimization, aligning with the demands of real-

world applications. 

Future enhancements for this research encompass integrating 

advanced nano fabrication techniques, enabling real-time 

adaptive learning, implementing edge computing solutions, 

fostering human-machine collaboration for complex fault 

diagnosis, and fortifying the system’s security and robustness. 

These developments aim to enhance the fault detection system’s 

adaptability to evolving nano electronic architectures, improve 

efficiency in resource-constrained environments, and address 

extreme operating conditions. These endeavors will further 

solidify the proposed DNN-MBE method as a reliable and 

adaptive solution for fault detection in the ever-evolving field of 

nano electronics, effectively addressing the unique challenges 

posed by these intricate and compact circuits. 
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