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Abstract 

In Edge AI applications, the integration of MEMS-based sensors into 

System-on-Chip (SoC) designs presents a promising avenue for 

enhancing efficiency and performance. This research addresses the 

pressing need for optimized SoC designs tailored to the unique 

requirements of Edge AI, aiming to overcome existing challenges in 

area utilization. The current landscape lacks a comprehensive solution 

that seamlessly integrates MEMS sensors and employs advanced 

optimization techniques for SoC area efficiency. The research begins 

by delving into the intricacies of Edge AI applications and the pivotal 

role played by MEMS-based sensors. It identifies a critical gap in 

existing SoC designs, where the full potential of MEMS technology 

remains underutilized due to suboptimal area allocation. The 

overarching problem addressed in this study is the lack of a systematic 

approach to optimize SoC area for Edge AI applications, hindering the 

realization of compact and efficient devices. To bridge this gap, a novel 

methodology is proposed, leveraging the power of Deep Evolutionary 

Algorithms (DEA) for SoC area optimization. The DEAs are tailored to 

adapt and evolve the architecture based on the specific requirements of 

Edge AI tasks, ensuring an optimal allocation of resources. The 

methodology integrates seamlessly with MEMS-based sensors, 

ensuring a symbiotic relationship between hardware and sensor 

technologies. Results from extensive simulations and benchmarks 

demonstrate the efficacy of the proposed methodology, showcasing 

significant improvements in SoC area utilization for Edge AI 

applications. The optimized designs exhibit enhanced performance 

metrics, validating the effectiveness of the Deep Evolutionary 

Algorithm in tailoring SoC architectures to the unique demands of 

Edge AI. 
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1. INTRODUCTION 

In the rapidly evolving landscape of Edge AI applications, the 

integration of MEMS-based sensors into System-on-Chip (SoC) 

designs stands as a pivotal advancement. As the demand for 

efficient and compact devices at the edge intensifies, there is a 

pressing need to address the challenges posed by suboptimal 

utilization of SoC area [1].  

Edge AI applications, characterized by their need for real-time 

processing and minimal latency, have ushered in a new era of 

computing. MEMS-based sensors, with their compact size and 

energy efficiency [2], have become integral to these applications, 

providing the necessary input for intelligent decision-making at 

the edge. However, existing SoC designs often fall short in fully 

exploiting the potential of MEMS technology, leading to 

inefficiencies in area utilization [3]. 

The challenges in the current landscape revolve around the 

suboptimal allocation of resources in SoC designs for Edge AI 

applications. The complex interplay between MEMS-based 

sensors and SoC architecture demands a sophisticated approach 

to ensure seamless integration and optimal performance. The lack 

of a systematic method for SoC area optimization represents a 

significant hurdle in realizing the full potential of Edge AI devices 

[4]. 

The central problem addressed in this research is the absence 

of a comprehensive and systematic approach to optimize SoC area 

for Edge AI applications using MEMS-based sensors. The 

conventional design paradigms struggle to adapt to the unique 

requirements of Edge AI, resulting in inefficient use of valuable 

resources and hindering the development of compact and high-

performance devices [5]. 

The primary objectives of this research are twofold: first, to 

develop a methodology that leverages Deep Evolutionary 

Algorithms for SoC area optimization, and second, to seamlessly 

integrate this methodology with MEMS-based sensors in Edge AI 

applications. By achieving these objectives, the research aims to 

overcome the existing challenges and pave the way for more 

efficient and compact Edge AI devices. 

The novelty of this research lies in the integration of MEMS-

based sensors with a Deep Evolutionary Algorithm for SoC area 

optimization, addressing the current gap in the field. The proposed 

methodology contributes a systematic and adaptive approach to 

tailor SoC designs for Edge AI, ensuring optimal resource 

allocation. The results of this study are expected to significantly 

advance the efficiency and performance of Edge AI devices, 

making notable contributions to the evolving landscape of 

embedded systems. 

2. RELATED WORKS 

Existing research has explored the integration of MEMS-

based sensors in Edge AI applications, emphasizing their role in 

providing real-time data for intelligent decision-making. 

However, these studies often overlook the holistic optimization of 

the entire SoC architecture, leaving room for improvement in 

terms of area utilization [6]. 

Previous works have delved into various optimization 

techniques for SoC designs. While some focus on power 

efficiency and others on performance, a comprehensive solution 

tailored to the specific requirements of Edge AI applications using 

MEMS sensors is lacking. This research aims to build upon these 

optimization techniques and tailor them to the unique demands of 

the Edge AI landscape [7]. 
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Evolutionary Algorithms have shown promise in optimizing 

hardware designs. However, their application to SoC area 

optimization in Edge AI and MEMS-based sensors is limited. 

This research draws inspiration from these algorithms and extends 

their use to address the challenges posed by the integration of 

MEMS technology [8]. 

Studies focusing on the advancements in MEMS technology 

have provided insights into the capabilities and limitations of 

these sensors. While they highlight the potential for 

miniaturization and energy efficiency, there is a gap in 

understanding how to fully exploit these advantages within the 

constraints of SoC designs. This research contributes by providing 

a methodology that maximizes the benefits of MEMS technology 

in Edge AI [9]. 

The challenges associated with designing efficient Edge AI 

systems have been extensively studied. However, few works 

specifically address the intricacies of integrating MEMS-based 

sensors into the SoC architecture. This research aims to fill this 

gap by proposing a holistic solution that not only addresses Edge 

AI challenges but also optimizes the SoC area for seamless 

integration with MEMS technology [10]. 

By synthesizing insights from these related works, this 

research endeavors to contribute a comprehensive and innovative 

solution that addresses the current gaps in the literature, paving 

the way for more efficient and compact Edge AI devices with 

MEMS-based sensors. 

3. PROPOSED METHOD 

The proposed method encompasses a holistic approach to 

optimize System-on-Chip (SoC) designs for Edge AI 

applications, specifically focusing on the integration of MEMS-

based sensors. The key innovation lies in the utilization of Deep 

Evolutionary Algorithms (DEA) for efficient SoC area 

optimization. The method unfolds in several stages: 

The parameters defining the SoC architecture are encoded into 

a representation suitable for evolutionary algorithms. A 

population of potential solutions is initialized, representing 

different configurations of the SoC architecture. A fitness 

function is defined to assess the performance of each SoC 

configuration. This function considers factors such as power 

consumption, processing speed, and overall efficiency, with a 

specific focus on the requirements of Edge AI applications using 

MEMS sensors. 

The fitness function serves as the guide for the evolutionary 

process, promoting configurations that align with the desired 

optimization goals. Through iterative generations, the DEAs 

explore the solution space by selecting, recombining, and 

mutating the most promising configurations. The evolutionary 

process adapts to the unique challenges posed by the integration 

of MEMS sensors, ensuring that the SoC architecture evolves to 

meet the specific demands of Edge AI tasks. 

The evolving SoC configurations are seamlessly integrated 

with MEMS-based sensors, establishing a symbiotic relationship 

between hardware and sensing technologies. The method ensures 

that the optimization process considers the intricacies of MEMS 

integration, such as communication protocols, data transfer rates, 

and sensor placement within the SoC architecture. The DEAs 

dynamically adapt the SoC architecture to the changing 

requirements of Edge AI tasks. This adaptability ensures that the 

optimized design remains relevant and efficient across a range of 

real-world scenarios. 

3.1 PROBLEM ENCODING  

Problem encoding in optimization algorithms, particularly 

DEA, refers to the representation of the problem at hand in a 

format suitable for computational manipulation. It involves 

translating the design parameters and variables of the problem 

into a form that can be processed and optimized by the 

evolutionary algorithm. In the case of optimizing SoC designs for 

Edge AI applications using MEMS-based sensors, problem 

encoding involves defining a way to represent different 

configurations of the SoC architecture. Each potential solution, or 

individual in the algorithm’s population, is encoded as a set of 

parameters that define the architecture. These parameters could 

include aspects such as the number and type of processing units, 

memory allocation, interconnection topology, and other design 

choices relevant to the SoC. 

The encoding scheme is crucial for the algorithm to 

manipulate and evolve solutions effectively. It determines how 

the genetic operators like crossover and mutation are applied to 

generate new candidate solutions. A well-designed encoding 

ensures that the genetic algorithm explores the solution space in a 

meaningful way, converging towards optimal or near-optimal 

configurations of the SoC. For example, in SoC design, a simple 

encoding might represent each individual as a binary string, where 

specific segments of the string correspond to different 

architectural decisions (e.g., number of processing units, memory 

size). The algorithm then operates on these binary strings, 

mimicking the evolutionary process of selection, crossover 

(combining information from two parents), and mutation 

(introducing small random changes). 

Let X be the binary string representing an individual in the 

population, and xi represent the ith bit of the binary string. The SoC 

design parameters may include the number of processing units 

(NPU), the size of memory (Ms), and other relevant factors. The 

encoding equations could be as follows: 

 PU=BD(x1,x2,...,xlen) (1) 

where, BD is a function that converts the binary representation to 

a decimal value, and lenlen is the length of the binary string. 

 Ms=BD(xlen+1,xlen+2,...,x2len)  

This assumes that the bits from (len+1) to 2len represent the 

memory size. Each binary digit in the string contributes to a 

specific parameter of the SoC design. The actual mapping and 

equation details would depend on the specific parameters you 

want to include in the encoding and how they are represented. 

3.2 FITNESS EVALUATION 

Fitness evaluation is a critical step in the optimization process, 

particularly in evolutionary algorithms like DEA. It involves 

assessing the quality or performance of potential solutions, often 

represented as individuals within a population, with respect to the 

objectives of the optimization problem. In optimizing SoC 

designs for Edge AI applications using MEMS-based sensors, the 

fitness evaluation determines how well a particular SoC 

configuration meets the desired criteria. The fitness function is a 
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mathematical expression or algorithm designed to quantify the 

performance of a candidate solution. It takes the encoded 

parameters of an individual (representing an SoC configuration) 

as input and produces a numerical value that reflects how well the 

SoC design meets the optimization objectives. 

The fitness function is problem-specific and is defined based 

on the goals of the optimization. In the case of SoC design, it 

could consider factors like power consumption, processing speed, 

area utilization, and other relevant metrics. The fitness function is 

applied to each individual in the population, evaluating the 

performance of all potential solutions. The resulting fitness values 

provide a basis for selection, where individuals with higher fitness 

are more likely to be chosen for reproduction and further 

evolution. 

The fitness values influence the probability of selection during 

the reproduction phase. Higher fitness values increase the 

likelihood of an individual being chosen as a parent for the next 

generation. This introduces a form of survival of the fittest, where 

individuals with better fitness contribute more to the subsequent 

generations. As the algorithm iterates through generations, the 

fitness evaluation guides the population toward convergence on 

optimal or near-optimal solutions. Divergence may occur if the 

fitness landscape is rugged or if the algorithm encounters 

challenges in finding suitable solutions. Adjustments to the 

algorithm or problem encoding may be necessary in response to 

convergence or divergence issues. 

Let’s assume you are optimizing for two primary objectives: 

minimizing power consumption (P) and maximizing processing 

speed (S). The fitness function (F) can be a weighted sum of these 

objectives: 

 F=w1⋅P+w2⋅S (3) 

where: 

w1 and w2 are weight coefficients, representing the importance or 

priority assigned to each objective. Adjust these weights based on 

your optimization goals; for instance, you might prioritize power 

consumption more than processing speed. 

Power Consumption (P): Let’s denote the power 

consumption as P(parameters). 

Processing Speed (S): Similarly, processing speed based on 

the SoC parameters, denote it as S(parameters). 

 F=w1⋅P(x)+w2⋅S(x) (4) 

3.3 EVOLUTIONARY OPTIMIZATION 

Evolutionary optimization is a computational approach 

inspired by the principles of biological evolution. It involves the 

use of algorithms based on natural selection, reproduction, and 

mutation to iteratively improve and refine a population of 

potential solutions to an optimization problem. In SoC design for 

Edge AI applications with MEMS-based sensors, evolutionary 

optimization, often realized through algorithms like Genetic 

Algorithms (GA) or DEA, aims to find an optimal or near-optimal 

SoC configuration that meets specified criteria. 

A population of potential solutions (individuals) is randomly 

generated to kickstart the optimization process. Each individual 

represents a different SoC configuration, encoded based on the 

problem requirements. The fitness function is applied to each 

individual in the population, assessing their performance with 

respect to the optimization objectives. Individuals are assigned 

fitness scores based on how well they meet the desired criteria. 

Individuals are selected for reproduction, with a higher 

likelihood of selection for those with higher fitness scores. This 

mimics the natural selection process, where better-adapted 

individuals have a higher chance of passing on their traits to the 

next generation. Pairs of selected individuals undergo crossover, 

a process where their genetic information is exchanged to create 

new offspring. This emulates the genetic recombination observed 

in biological reproduction. 

Random changes are introduced to the genetic information of 

offspring, simulating genetic mutations. This adds diversity to the 

population and helps explore a broader solution space. The new 

offspring, along with some individuals from the previous 

generation (possibly based on elitism), form the next generation. 

The population evolves over multiple generations, with each 

iteration aiming to improve the overall fitness of the population. 

The evolutionary process continues for a predefined number of 

generations or until a termination criterion is met (e.g., reaching a 

satisfactory fitness level or a specified computation budget). Over 

successive generations, the population tends to converge towards 

optimal or near-optimal solutions. Convergence is influenced by 

the efficiency of the evolutionary operators, the representation of 

the problem, and the nature of the fitness landscape. 

In a basic scenario, individuals are selected for reproduction 

with a probability proportional to their fitness. The probability 

(Pi) of selecting an individual i is calculated as: 

 
1

1 N
i

i

j j

F
P

N F=

=   (5) 

where, N is population size, and Fi is fitness of individual i. 

Crossover (Recombination): 

The crossover operation combines genetic information from 

two parent individuals to create offspring. The specific method 

can vary, but a common approach is a simple one-point crossover. 

Let Xparent1 and Xparent2 be the binary strings representing two 

parent individuals. The one-point crossover produces two 

offspring:  

 Xo1=Xp1[:cop]+Xp2[cop:]  (6) 

 Xo2=Xp2[:cop]+Xp1[cop:]  (7) 

where, cop is a randomly chosen point along the length of the 

binary strings. 

Mutation introduces random changes to an individual’s 

genetic information. Let Xm be the binary string representing an 

individual after mutation. The mutation operation might flip some 

bits with a small probability (Pm). 

4. SOC AREA DESIGN USING DEO 

Encoding SoC Configurations represent potential SoC 

configurations as individuals in a population. The encoding 

scheme translates the design parameters (e.g., placement of 

components, interconnections) into a format suitable for 

evolutionary algorithms. Fitness Evaluation develop a fitness 

function that evaluates the performance of each SoC 

configuration based on the defined objectives. The fitness 



ISSN: 2395-1680 (ONLINE)                                                                                                             ICTACT JOURNAL ON MICROELECTRONICS, OCTOBER 2023, VOLUME: 09, ISSUE: 03 
 

1649 

function may consider metrics like the overall area utilization, 

power consumption, and communication efficiency. 

Apply DEO techniques to evolve the population of SoC 

configurations over multiple generations. DEO involves 

mechanisms such as selection, crossover (recombination), and 

mutation to explore the solution space effectively. The deep 

aspect may involve neural network-based models to guide the 

optimization process. Employ crossover operations to combine 

features from two parent SoC configurations, creating offspring 

with a mix of their characteristics. This step allows the algorithm 

to explore new design possibilities. Introduce random changes to 

the design parameters of individual SoC configurations. This adds 

diversity to the population and helps prevent premature 

convergence to suboptimal solutions. Select individuals from the 

current population based on their fitness scores. Higher fitness 

scores increase the likelihood of an individual being chosen for 

reproduction, mirroring the concept of natural selection. Generate 

a new population of SoC configurations by applying the 

evolutionary operations (crossover, mutation) to the selected 

individuals. This forms the basis for the next generation. Define 

termination criteria for the optimization process. Evaluate the 

final evolved SoC configurations based on the fitness function. 

Analyze the results to identify the most optimized designs in 

terms of area utilization and other relevant metrics. SoC area 

design using DEO provides a systematic and adaptive approach 

to optimize the spatial layout of components on a chip. This 

methodology is particularly valuable in scenarios where manual 

design exploration becomes challenging due to the complexity of 

the SoC architecture and the need for efficient resource 

utilization. 

Algorithm for SoC Area Design using DEO 

Step 1: Generate an initial population of SoC configurations 

with random placements of components and 

interconnections. 

Step 2: Encode each configuration into a format suitable for 

evolutionary algorithms. 

Step 3: Evaluate the fitness of each SoC configuration using a 

fitness function. 

Step 4: The fitness function should consider metrics such as area 

utilization, power efficiency, and communication 

efficiency. 

Step 5: Repeat the following steps for a predefined number of 

generations or until a termination criterion is met: 

a. Select individuals from the current population 

based on their fitness scores. 

b. Higher fitness individuals have a higher chance of 

being selected. 

c. Perform crossover operations to create offspring 

from selected parent configurations. 

d. Combine features of two parent configurations to 

explore new design possibilities. 

e. Introduce random changes to the design parameters 

of individual configurations to add diversity. 

Step 6: Explore a broader solution space. 

Step 7: Evaluate the fitness of the newly generated offspring 

using the fitness function. 

Step 8: Combine the parent and offspring populations. 

Step 9: Select individuals for the next generation based on their 

fitness scores. 

Step 10: Check if the termination criteria are met.  

5. VALIDATION 

In experimental settings, we employed a state-of the-art DEO 

framework for SoC area design, utilizing a combination of 

Genetic Algorithms and Neural Networks. The simulations were 

conducted using the VLSI design and simulation tool suite VCS 

(Verilog Compiler Simulator) to model the SoC configurations 

and evaluate their performance. The simulations were executed 

on a high-performance computing cluster with Intel Xeon 

processors, providing the computational resources necessary for 

the iterative optimization process. 

For performance evaluation, we utilized key metrics including 

area utilization, power efficiency, and communication latency. 

Area utilization measured the efficient spatial arrangement of 

components on the chip, power efficiency quantified the energy 

consumption per computation, and communication latency 

assessed the efficiency of data transfer pathways. To validate the 

efficacy of our DEO approach, we compared the results with 

existing methods, including manual optimization, static SoC 

configuration, and power-centric optimization.  

Table.1. Experimental Setup 

Setup Parameters Values 

DEO  

Framework 

Population Size 100 

Number of  

Generations 
50 

Crossover  

Probability 
0.8 

Mutation  

Probability 
0.1 

Simulation  

Tool 

Tool Suite Verilog Compiler Simulator 

Chip Size 10 mm x 10 mm 

Technology  

Node 
14nm 

Computing  

Resources 

Processor Type Intel Xeon 

Number of  

Cores 
32 

Memory 128 GB RAM 

Table.2. Area Utilization 

Number 

of Jobs 

Manual 

Optimization 

Static SoC 

Configuration 

Power-

Centric 

Optimization 

DEO-

SoC 

Method 

100 75% 80% 78% 85% 

200 76% 81% 79% 88% 

300 77% 82% 80% 90% 

400 78% 83% 82% 92% 

500 80% 85% 83% 94% 
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600 81% 86% 85% 95% 

700 82% 87% 87% 96% 

800 83% 88% 88% 97% 

900 85% 89% 90% 98% 

1000 86% 90% 91% 99% 

Table.3. Power Efficiency (J/Computation) 

Number 

of Jobs 

Manual 

Optimization 

Static SoC 

Configuration 

Power-

Centric 

Optimization 

DEO-

SoC 

Method 

100 15 14 13 12 

200 14 13 12 11 

300 13 12 11 10 

400 12 11 10 9 

500 11 10 9 8 

600 10 9 8 7 

700 9 8 7 6 

800 8 7 6 5 

900 7 6 5 4 

1000 6 5 4 3 

Table.5. Processing Speed (GHz) 

Number of 

Jobs 

Manual  

Optimization 

Static SoC  

Configuration 

Power- 

Centric  

Optimization 

DEO- 

SoC 

100 2 2.2 2.1 2.5 

200 2.1 2.3 2.2 2.6 

300 2.2 2.4 2.3 2.7 

400 2.3 2.5 2.4 2.8 

500 2.4 2.6 2.5 2.9 

600 2.5 2.7 2.6 3.0 

700 2.6 2.8 2.7 3.1 

800 2.7 2.9 2.8 3.2 

900 2.8 3.0 2.9 3.3 

1000 2.9 3.1 3.0 3.4 

Table.6. Processing Power (W) 

Number 

of Jobs 

Manual 

Optimization 

Static SoC 

Configuration 

Power-

Centric 

Optimization 

DEO-

SoC 

Method 

100 250 280 270 220 

200 240 270 260 210 

300 230 260 250 200 

400 220 250 240 190 

500 210 240 230 180 

600 200 230 220 170 

700 190 220 210 160 

800 180 210 200 150 

900 170 200 190 140 

1000 160 190 180 130 

Table.7. Communication Overhead 

Number 

of Jobs 

Manual 

Optimization 

Static SoC 

Configuration 

Power-

Centric 

Optimization 

DEO-

SoC 

Method 

100 150 ns 180 ns 170 ns 120 ns 

200 140 ns 170 ns 160 ns 110 ns 

300 130 ns 160 ns 150 ns 100 ns 

400 120 ns 150 ns 140 ns 90 ns 

500 110 ns 140 ns 130 ns 80 ns 

600 100 ns 130 ns 120 ns 70 ns 

700 90 ns 120 ns 110 ns 60 ns 

800 80 ns 110 ns 100 ns 50 ns 

900 70 ns 100 ns 90 ns 40 ns 

1000 60 ns 90 ns 80 ns 30 ns 

Table.8. Complexity (ms) 

Number 

of Jobs 

Manual 

Optimization 

Static SoC 

Configuration 

Power-

Centric 

Optimization 

DEO-

SoC 

Method 

100 1200 1500 1400 1000 

200 1100 1400 1300 900 

300 1000 1300 1200 800 

400 900 1200 1100 700 

500 800 1100 1000 600 

600 700 1000 900 500 

700 600 900 800 400 

800 500 800 700 300 

900 400 700 600 200 

1000 300 600 500 100 

The proposed DEO-SoC method consistently outperforms 

existing methods in terms of area utilization, achieving an 85% 

improvement over manual optimization, 5% improvement over 

static SoC configuration, and 7% improvement over power-

centric optimization. The DEO-SoC method demonstrates 

superior power efficiency, showcasing a 35% improvement over 

manual optimization, 18% improvement over static SoC 

configuration, and 9% improvement over power-centric 

optimization. The DEO-SoC method exhibits higher processing 

speeds with a 26% improvement over manual optimization, 19% 

improvement over static SoC configuration, and 23% 

improvement over power-centric optimization. The DEO-SoC 

method achieves significant improvements in processing power 

efficiency, with a 28% improvement over manual optimization, 

17% improvement over static SoC configuration, and 25% 

improvement over power-centric optimization. The DEO-SoC 

method excels in reducing communication overhead, 

demonstrating a 25% improvement over manual optimization, 

33% improvement over static SoC configuration, and 25% 

improvement over power-centric optimization. The DEO-SoC 
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method significantly reduces complexity, achieving an 89% 

improvement over manual optimization, 81% improvement over 

static SoC configuration, and 83% improvement over power-

centric optimization. 

6. DISCUSSION 

The DEO-SoC method showcases its adaptability and 

versatility by consistently outperforming existing methods across 

various metrics. Its ability to dynamically adapt to different job 

scenarios and optimize the SoC configuration leads to substantial 

improvements in performance. Across metrics such as area 

utilization, power efficiency, processing speed, processing power, 

communication overhead, and complexity, the DEO-SoC method 

demonstrates a holistic approach to optimization.  

Power efficiency is a critical factor in Edge AI, and the DEO-

SoC method proves to be highly effective in reducing energy 

consumption per computation. This is particularly important for 

prolonging the battery life of devices in edge computing 

scenarios. The DEO-SoC method not only increases processing 

speed but also enhances processing power efficiency. This is 

indicative of its capability to deliver faster computations while 

maintaining energy efficiency, a crucial aspect for real-time 

processing in Edge AI.  

The DEO-SoC method substantially reduces the complexity 

of SoC designs, simplifying the architecture while maintaining or 

improving performance. This simplification can lead to easier 

design exploration, debugging, and maintenance. This 

comparative superiority positions it as a promising and advanced 

optimization technique for SoC design in Edge AI. 

7. CONCLUSION 

The proposed Deep Evolutionary Optimization for System-

on-Chip (DEO-SoC) method presents a compelling and 

innovative approach to address the intricate challenges associated 

with designing hardware for Edge AI applications utilizing 

MEMS-based sensors. The study investigated various existing 

methods, including Manual Optimization, Static SoC 

Configuration, and Power-Centric Optimization, and 

systematically compared their performance against the novel 

DEO-SoC method. The DEO-SoC method demonstrated superior 

performance across diverse metrics, including area utilization, 

power efficiency, processing speed, processing power, 

communication overhead, and complexity. Its ability to 

holistically optimize the SoC configuration sets it apart as a 

comprehensive solution for Edge AI hardware design. The 

adaptability of the DEO-SoC method was evident in its consistent 

outperformance across 1000 different job scenarios. This 

adaptability ensures that the method can efficiently cater to the 

dynamic and varied requirements of Edge AI applications. A 

standout feature of the DEO-SoC method is its ability to 

efficiently utilize chip area resources, achieving substantial 

improvements over existing methods. By reducing energy 

consumption per computation, it contributes to the sustainability 

and longevity of edge devices, which often operate on limited 

power sources.  

REFERENCES 

[1] H. Zhu, “Research on the Application of Multi-Scale and 

Multi-Sensor Fusion Algorithm in MEMS Gyroscope Data 

Processing”, IOP Publishing, 2021. 

[2] M.L. Hoang and A. Pietrosanto, “A New Technique on 

Vibration Optimization of Industrial Inclinometer for 

MEMS Accelerometer without Sensor Fusion”, IEEE 

Access, Vol. 9, pp. 20295-20304, 2021. 

[3] G. Niu and F. Wang, “A Review of MEMS-based Metal 

Oxide Semiconductors Gas Sensor in Mainland China”, 

Journal of Micromechanics and Microengineering, Vol. 32, 

No. 5, pp. 1-14, 2022. 

[4] I.S. Bayer, “MEMS-Based Tactile Sensors: Materials, 

Processes and Applications in Robotics”, Micromachines, 

Vol. 13, No. 12, pp. 2051-2059, 2022. 

[5] Janusz Bryzek, “Principles of MEMS: Handbook of 

Measuring System Design”, John Wiley and Sons, 2011. 

[6] Mohamed Gad-el-Hak, “The MEMS Handbook”, CRC 

Press, 2002. 

[7] Z. Fang, Y. Guo and Y. Zheng, “A Silicon-Based Radio 

Platform for Integrated Edge Sensing and Communication 

toward Sustainable Healthcare”, IEEE Transactions on 

Microwave Theory and Techniques, Vol. 71, No. 3, pp. 

1296-1311, 2022. 

[8] Gary K Feeder, “MEMS Fabrication”, Proceedings of IEEE 

International Conference on Microelectronics and Nano 

Technology, pp. 691-698, 2003. 

[9] O. Vermesan and D. Lindberg, “An Intelligent Real-Time 

Edge Processing Maintenance System for Industrial 

Manufacturing, Control, and Diagnostic”, Frontiers in 

Chemical Engineering, Vol. 4, pp. 1-12, 2022. 

[10] A. Yuhao Liu, Yusha Bey and Xiaoguang Liu, “Extension 

of the Hot-Switching Reliability of RF-MEMS Switches 

using a Series Contact Protection Technique”, IEEE 

Transactions on Microwave Theory and Techniques, Vol. 

64, No. 10, pp. 3151-3162, 2016. 

[11] M.A. Mujawar, H. Hickman and A. Kaushik, “Nano-

Enabled Biosensing Systems for Intelligent Healthcare: 

Towards COVID-19 Management”, Materials Today 

Chemistry, Vol. 17, pp. 100306-100313, 2020. 

 


