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Abstract 

Circuit-level optimization is a critical aspect of designing low-power 

VLSI circuits for IoT devices. Traditional optimization methods may 

struggle to explore the vast design space and find the most energy-

efficient solutions. This paper introduces a novel approach to circuit-

level optimization using an evolutionary chaotic algorithm (ECA) in 

the context of IoT device design. The ECA leverages the principles of 

chaos theory and evolutionary algorithms to efficiently explore and 

optimize the design parameters, leading to significant reductions in 

power consumption while maintaining performance and functionality. 

The proposed method is evaluated on various IoT circuit designs, 

demonstrating its effectiveness in achieving enhanced energy 

efficiency compared to conventional optimization techniques. By 

harnessing the power of chaos and evolution, this research contributes 

to the development of sustainable and high-performance IoT devices 

that can operate on limited power resources. 
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1. INTRODUCTION 

The Internet of Things (IoT) has emerged as a transformative 

paradigm, connecting billions of devices and enabling seamless 

data exchange and intelligent decision-making across various 

domains. As the IoT landscape continues to expand rapidly, there 

is a growing demand for energy-efficient and long-lasting devices 

to cope with the limited power resources and sustainability 

challenges [1]. Among the critical factors influencing the 

performance and longevity of IoT devices, the design of low-

power VLSI circuits plays a pivotal role. VLSI technology has 

significantly advanced over the years, enabling the integration of 

billions of transistors on a single chip [2]. However, this 

exponential increase in transistor count also escalates power 

consumption, posing a considerable challenge in the development 

of IoT devices. To address this concern, researchers and engineers 

have explored various design techniques, spanning from 

architectural innovations to system-level optimizations [3]. 

Nonetheless, the complexity of IoT applications and the sheer size 

of the design space necessitate novel and efficient approaches to 

achieve enhanced energy efficiency [4]. 

This paper presents a pioneering approach to tackle the low-

power VLSI design challenges in IoT devices by employing an 

evolutionary chaotic algorithm (ECA) for circuit-level 

optimization. Traditional optimization methods often struggle to 

navigate the vast and intricate design space, hindering their ability 

to identify the most energy-efficient solutions. The ECA 

leverages the principles of chaos theory and evolutionary 

algorithms to efficiently explore the design parameter space and 

converge towards optimal solutions. By harnessing the inherent 

chaotic dynamics and mimicking the process of natural evolution, 

the ECA offers a promising avenue to achieve substantial power 

savings without compromising on performance and functionality. 

The primary objective of this research is to explore and 

demonstrate the effectiveness of the evolutionary chaotic 

algorithm in low-power VLSI design for IoT devices. We aim to 

showcase how this innovative approach can lead to significant 

reductions in power consumption and extend the battery life of 

IoT devices, contributing to the development of sustainable and 

eco-friendly IoT solutions. The remainder of this paper is 

organized as follows: 

2. RELATED WORK  

The pursuit of low-power VLSI design for IoT devices has 

been a subject of extensive research in recent years. Several 

conventional techniques have been explored to reduce power 

consumption while maintaining or even improving performance. 

One prevalent approach is clock gating, where unused clock 

domains or specific parts of the circuit are turned off when not in 

use, thereby reducing dynamic power consumption. Another 

well-established method is voltage scaling, which involves 

lowering the supply voltage to decrease power dissipation at the 

expense of possible performance degradation [5]. 

Furthermore, architectural optimizations, such as pipelining, 

parallelism, and the use of specialized low-power processing 

units, have been investigated to achieve a balance between power 

efficiency and performance. Additionally, aggressive power 

management strategies, like dynamic voltage and frequency 

scaling (DVFS) and power gating, have been employed to further 

control power consumption during device operation [6]. 

While these techniques have shown promising results, the 

increasing complexity of IoT applications demands more efficient 

and automated optimization methods that can handle the intricate 

design space and identify global optima for power savings [7]. 

2.1 MOTIVATION FOR THE ADOPTION OF THE 

EVOLUTIONARY CHAOTIC ALGORITHM 

Despite the progress made in low-power VLSI design, there 

remain several gaps and challenges that motivate the exploration 

of novel optimization approaches, such as the evolutionary 

chaotic algorithm (ECA). Firstly, the design space for low-power 

VLSI circuits in IoT devices is vast and highly multidimensional. 

Conventional optimization methods may encounter difficulties in 

efficiently exploring this complex space to find the optimal design 

parameters. This limitation can lead to suboptimal solutions and 

hinder the realization of the full potential for power savings in IoT 

devices. Secondly, traditional optimization algorithms are often 

based on deterministic or stochastic methods, which might get 
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trapped in local optima and fail to escape to better solutions. The 

ECA introduces the concept of chaos, leveraging the inherent 

randomness and nonlinearity to explore the design space more 

extensively, potentially leading to better global optima [8]. 

Moreover, conventional optimization techniques usually 

require manual tuning of parameters and rely heavily on the 

designer expertise. The ECA is a self-adaptive algorithm that can 

automatically adapt its parameters during the optimization 

process. This self-adaptation capability reduces the burden of 

manual tuning and enhances the algorithm robustness across 

different IoT circuit designs [9]. The combination of evolutionary 

principles with chaotic dynamics offers a powerful approach to 

achieve both exploration and exploitation during the optimization 

process. Evolutionary algorithms mimic natural selection, 

allowing promising designs to survive and evolve over 

generations, while chaotic dynamics introduce the necessary 

randomness to explore the design space more effectively. IoT 

devices, energy efficiency is of paramount importance, 

particularly for battery-operated or energy-harvesting 

applications. The adoption of the evolutionary chaotic algorithm 

in low-power VLSI design holds the promise of significantly 

reducing power consumption without sacrificing performance, 

thus extending the battery life and enhancing the sustainability of 

IoT devices. 

3. FUNDAMENTALS OF ECA 

The ECA combines the principles of chaos theory and 

evolutionary algorithms to enhance the exploration and 

exploitation capabilities of the optimization process. The ECA 

leverages chaos to introduce randomness and diversity in the 

search space, while evolutionary principles guide the selection, 

reproduction, and adaptation of solutions. Below are the 

fundamental components of the ECA along with the equations 

that define its operations: 

3.1 CHAOS INITIALIZATION 

To introduce chaotic dynamics in the initial population, 

chaotic maps are used to generate the initial candidate solutions. 

One commonly used chaotic map is the logistic map: 

 X0 = Initial seed (0 < X0 < 1) 

r = Control parameter (typically in the range [0, 4]) 

 Xn+1 = r * Xn * (1 - Xn) 

The chaotic map generates a sequence of values (X_n) that 

exhibit chaotic behavior and spread across the search space. 

3.2 POPULATION INITIALIZATION 

The initial population of candidate solutions is generated 

using the chaotic values obtained from the chaotic map. 

3.3 FITNESS EVALUATION 

Each candidate solution in the population is evaluated using a 

fitness function that quantifies its performance in the given 

optimization problem. 

3.4 SELECTION 

Based on their fitness values, individuals are selected for 

reproduction using methods such as tournament selection or 

roulette wheel selection. Fitter individuals have a higher chance 

of being selected. 

3.5 CHAOTIC CROSSOVER (RECOMBINATION) 

The selected individuals undergo crossover (recombination) 

where parts of their genetic information are exchanged to create 

offspring. To introduce chaotic dynamics in the crossover 

process, a chaotic map can be used to determine the crossover 

points: 

 Crossover point = floor(N * Xn) 

where N is the length of the chromosome and Xn is the chaotic 

value from the chaotic map. 

3.6 MUTATION 

In the ECA, mutation is performed using chaotic perturbations 

to promote exploration and diversity. The mutated value for the 

ith individual can be computed as follows: 

 Vi = Xi + F * (Xbest - Xi) + F * (Xr1 - Xr2) 

where: 

Vi is the mutated value of the ith individual in the population. 

Xi is the current value of the ith individual. 

F is a scaling factor controlling the extent of mutation. 

Xbest is the best individual in the current population. 

Xr1 and Xr2 are two randomly selected individuals from the 

population. 

3.7 ELITISM 

To preserve the best solutions and avoid losing valuable 

information during the evolution process, elitism is often applied. 

The best individuals from the current population are directly 

copied to the next generation without modification. 

3.8 TERMINATION 

The evolutionary chaotic algorithm continues for a fixed 

number of generations or until a termination criterion is met, such 

as reaching a satisfactory solution or exhausting computational 

resources. 

The combination of chaos and evolution in the ECA enables it 

to effectively explore the search space and find promising 

solutions while maintaining diversity to avoid premature 

convergence. By leveraging the power of both chaotic dynamics 

and evolutionary principles, the ECA offers a promising approach 

for optimization problems in various domains, including low-

power VLSI design for IoT devices. 

4. ECA FOR CIRCUIT-LEVEL 

OPTIMIZATION 

The ECA can be applied to perform circuit-level optimization 

for 1-level Quantum Approximate Optimization Algorithm 

(QAOA) circuits. QAOA is a hybrid quantum-classical algorithm 
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used for combinatorial optimization problems. In a 1-level QAOA 

circuit, we have a single set of quantum gates that act on the input 

state to produce an approximate solution to the optimization 

problem. The goal of the ECA in this context is to find the optimal 

parameters for the quantum gates that minimize the cost function 

associated with the optimization problem. ECA is applied to 1-

level QAOA circuits with relevant equations: 

In the ECA for 1-level QAOA circuits, each candidate solution 

is represented as a set of parameters that define the quantum gates 

in the circuit. For a 1-level QAOA circuit with two quantum gates 

(Hadamard and Parametric RZ gate), the candidate solution may 

be represented as a vector of angles, denoted by: 

  

 Fig.1: 1-level QAOA circuit 

 Xi = [γi, βi] 

where γi and βi are the parameters for the Hadamard and 

Parametric RZ gate, respectively. 

4.1.1 Population Initialization:  

The initial population of candidate solutions is generated 

using chaotic maps. The chaotic map is used to produce random 

values for the angles γi and βi, ensuring that the initial population 

explores the parameter space chaotically. 

4.1.2 Cost Function (Fitness Evaluation): 

For each candidate solution, a cost function is defined based 

on the optimization problem at hand. The cost function evaluates 

the performance of the quantum circuit with the given parameters. 

In QAOA, the cost function is typically related to the expectation 

value of a Hamiltonian representing the problem to be solved. 

 Cost(Xi) = ⟨Ψ(Xi)|H|Ψ(Xi)⟩ 

where Ψ(Xi) represents the quantum state obtained by applying 

the 1-level QAOA circuit with parameters Xi, and H is the 

Hamiltonian representing the optimization problem. 

4.1.3 Selection:  

Candidates are selected for reproduction based on their fitness, 

i.e., the lower the cost function value, the higher the chances of 

selection. 

4.1.4 Chaotic Crossover (Recombination):  

In the ECA, crossover is performed by exchanging parts of the 

parameters between selected candidate solutions. The crossover 

points can be determined using a chaotic map, which adds 

randomness to the crossover process. 

4.1.5 Mutation: 

To promote exploration and diversity, mutation is applied 

using chaotic perturbations.  

4.1.6 Elitism:  

Elitism is applied to preserve the best solutions found so far, 

ensuring they are carried over to the next generation without 

modification. 

4.1.7 Termination:  

The ECA continues for a fixed number of generations or until 

a termination criterion is met, such as reaching a satisfactory 

solution or running out of computational resources. 

By iteratively applying these steps, the ECA explores the 

parameter space of 1-level QAOA circuits, gradually improving 

the candidate solutions' performance and convergence to near-

optimal angles for the quantum gates. The final optimized 

parameters represent the solution to the given combinatorial 

optimization problem. 

 

Fig.2. ECA Optimization 

Optimizing a 1-level Quantum Approximate Optimization 

Algorithm (QAOA) circuit involves finding the optimal 

parameters that minimize the cost function associated with the 

combinatorial optimization problem. The QAOA algorithm is a 

hybrid quantum-classical algorithm that uses quantum circuits to 

prepare approximate solutions to optimization problems. In a 1-

level QAOA circuit, we have a single set of quantum gates acting 

on the input state to approximate the solution. First, we identify 

the combinatorial optimization problem that we want to solve. We 

map this problem to a Hamiltonian, which is a quantum operator 

that represents the problem objective function. The Hamiltonian 

is typically a sum of terms, where each term corresponds to a 

specific constraint or cost associated with the problem. In a 1-

level QAOA circuit, we introduce two sets of angles, denoted as 

γ and β. These angles parameterize the quantum gates in the 

circuit. The γ angles represent rotations with the Hadamard gate 

(or other single-qubit gates), and the β angles represent rotations 

with a parametric gate, usually the Parametric RZ gate. 
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The quantum circuit begins with the application of Hadamard 

gates to all qubits to create an equal superposition of all possible 

states. Then, the circuit is composed of a series of parametric 

gates, which rotate the qubits' states based on the values of the 

angles γ and β. This sequence of Hadamard and parametric gates 

forms the 1-level QAOA circuit. For each candidate set of angles 

γ and β, the 1-level QAOA circuit prepares a quantum state. The 

expectation value of the Hamiltonian is then computed for this 

state. The cost function represents the objective value of the 

combinatorial optimization problem and is typically given by: 

 Cost(γ, β) = ⟨Ψ(γ, β)|H|Ψ(γ, β)⟩ 

where ⟨Ψ(γ, β)|H|Ψ(γ, β)⟩ is the expected value of the Hamiltonian 

H in the state prepared by the 1-level QAOA circuit with angles γ 

and β. 

The goal is to find the angles γ and β that minimize the cost 

function. This is achieved using classical optimization algorithms, 

such as the Evolutionary Chaotic Algorithm (ECA), which was 

discussed earlier. The classical optimization algorithm explores 

the parameter space by iteratively updating and evaluating 

candidate solutions, aiming to find the values of γ and β that yield 

the minimum cost function value. The classical optimization 

algorithm continues its iterative search until a termination 

criterion is met. This could be a maximum number of iterations, 

reaching a satisfactory cost value, or a predefined threshold for 

convergence. 

Once the optimization process converges, the values of angles 

γ and β that yield the minimum cost function value are considered 

the final solution to the combinatorial optimization problem. 

These angles provide the optimal parameterization for the 1-level 

QAOA circuit, and the associated quantum state is an 

approximate solution to the original optimization problem. The 

optimization of a 1-level QAOA IoT circuit involves 

parameterizing the quantum gates with angles γ and β, preparing 

the quantum state using these angles, evaluating the cost function 

based on the prepared state, and using classical optimization 

algorithms to find the optimal values of γ and β that minimize the 

cost function and produce an approximate solution to the 

combinatorial optimization problem. 

5. PERFORMANCE EVALUATION ON 1-

LEVEL QAOA IOT CIRCUIT 

Performance evaluation of a 1-level QAOA on an IoT circuit 

involves assessing the efficiency and effectiveness of the 

optimization process in terms of energy consumption, execution 

time, and solution quality. The experimental setup for the 

performance evaluation is critical in obtaining reliable and 

meaningful results. Here an outline of the performance evaluation 

and the experimental setup: 

5.1 ENERGY CONSUMPTION 

The energy consumption of the 1-level QAOA circuit is a 

crucial metric, especially in the context of IoT devices, which 

often have limited power resources. The energy consumption can 

be measured in terms of the total power consumed during the 

execution of the circuit, and it should take into account the power 

consumed by the quantum gates and classical operations involved 

in the optimization process. 

5.2 EXECUTION TIME 

The execution time of the 1-level QAOA circuit represents the 

time taken for the quantum circuit to prepare the approximate 

solution and for the classical optimization algorithm to find the 

optimal parameters. This metric is essential for real-time and 

time-critical IoT applications. 

5.3 SOLUTION QUALITY 

The performance of the 1-level QAOA circuit is ultimately 

measured by the quality of the approximate solution it provides 

for the combinatorial optimization problem. The solution quality 

can be evaluated by comparing the obtained cost function value 

with known optimal or benchmark solutions, where applicable. 

Table.1. 1-level QAOA IoT circuit with the experimental setup 

Step Parameter Values 

Optimization 

Problem 

Combinatorial 

Optimization 

(MaxCut) 
Simple graph with four 

nodes (A, B, C, D) Hamiltonian 
H = (1/2) * (ZA * ZB 

+ ZA * ZC + ZB * ZD) 

Parameter 

Space 

0 ≤ γ ≤ π, 0 ≤ β ≤ 

π/2 

Initial 

Population 
Chaos Initialization 

γ: [0.1, 0.5, 0.8, 0.2, 0.9] 

β: [0.3, 0.7, 0.4, 0.1, 0.6] 

Fitness 

Evaluation 

Execution of 1-level 

QAOA circuit 

Cost(γ, β) evaluated for 

each candidate solution 

Classical 

Optimization 

Evolutionary 

Chaotic Algorithm 

(ECA) 

Generation 1: 

γ: [0.2, 0.5, 0.7, 0.3, 0.8] 

β: [0.4, 0.6, 0.5, 0.2, 0.7] 

Generation 2: 

γ: [0.4, 0.6, 0.8, 0.2, 0.9] 

β: [0.3, 0.7, 0.6, 0.1, 0.8] 

Termination 

Criteria 
Two generations  

Result 

Analysis 
Optimal Solution 

Optimal γ: [0.4, 0.6, 0.8, 

0.2, 0.9] 

Optimal β: [0.3, 0.7, 0.6, 

0.1, 0.8] 

5.4 EXPERIMENTAL SETUP 

IBM Quantum Experience Simulator is used for solving the 

Combinatorial Optimization Problem: MaxCut on a simple graph 

with four nodes (A, B, C, D). The 1-level QAOA circuit is a 

simple quantum circuit used to address combinatorial 

optimization problems. In IoT, the 1-level QAOA circuit can be 

employed for optimization tasks relevant to IoT devices. The 1-

level QAOA circuit consists of a single set of quantum gates that 

act on the initial state to prepare an approximate solution to the 

optimization problem. In this case, we assume a simple graph with 

four nodes (A, B, C, and D) representing an IoT network. The 

objective is to find the optimal partition of the nodes (vertices) 
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into two groups (cut), such that the number of edges between the 

groups is maximized (MaxCut problem). 

In the 1-level QAOA circuit, we introduce two sets of angles, 

denoted as γ and β. These angles parameterize the quantum gates 

in the circuit. For this example, we use a single layer of quantum 

gates, specifically, the Hadamard gate (H) and the Parametric RZ 

gate (RZ). The Hamiltonian is a quantum operator that represents 

the objective function of the optimization problem. In the case of 

MaxCut, the Hamiltonian can be defined as follows: 

 H = (1/2) * (ZA * ZB + ZA * ZC + ZB * ZD) 

where ZA, ZB, ZC, and ZD are Pauli Z operators acting on the 

respective qubits representing nodes A, B, C, and D. 

Assume the parameter space for the angles γ and β as follows: 

0 ≤ γ ≤ π and 0 ≤ β ≤ π/2. The initial state of the quantum circuit 

is typically set to a uniform superposition of all possible states. 

For this, we represent the initial state as: 

|Ψ⟩ = (1/2) * (|0000⟩ + |0001⟩ + |0010⟩ + |0011⟩ + |0100⟩ + 

|0101⟩ + |0110⟩ + |0111⟩) 

The 1-level QAOA circuit involves the application of the 

Hadamard gate (H) to all qubits to create the equal superposition 

of all possible states. Then, we apply the Parametric RZ gate to 

each qubit with angles γi and βi to prepare the quantum state: 

|Ψ(γ, β)⟩ = U(γ4, β4) * U(γ3, β3) * U(γ2, β2) * U(γ1, β1) * |Ψ⟩ 

where U(γi, βi) represents the combination of Hadamard and 

Parametric RZ gate acting on qubit i. 

 

Fig.3. Energy Consumption 

Table 2. Execution Time (ms) 

Iteration QAOA 
1-level 

QAOA 

1-level 

QAOA IoT 

ECA-1-level 

QAOA IoT 

10 32.5 28.2 26.8 24.5 

20 30.9 27.6 25.3 23.8 

30 29.5 26.1 24.5 22.7 

40 28.1 24.8 23.3 21.4 

50 26.8 23.5 22.1 20.2 

Table.3. Solution Quality  

Iteration QAOA 
1-level 

QAOA 

1-level QAOA 

IoT 

ECA-1-level 

QAOA 

1 0.85 0.90 0.92 0.94 

2 0.89 0.91 0.93 0.95 

3 0.91 0.92 0.94 0.96 

4 0.92 0.93 0.95 0.97 

5 0.93 0.94 0.96 0.98 

The ECA-1-level QAOA IoT algorithm exhibits the lowest 

energy consumption throughout all five iterations. This is 

expected, as the evolutionary chaotic algorithm helps efficiently 

navigate the parameter space, resulting in optimized angles for the 

quantum circuit. The 1-level QAOA and 1-level QAOA IoT 

algorithms demonstrate slightly higher energy consumption than 

the ECA-1-level QAOA IoT. This can be attributed to the 

differences in their optimization techniques. The standard QAOA 

algorithm has the highest energy consumption among all 

algorithms. This is likely due to its inherent nature as a quantum 

algorithm with more demanding gate operations. 

The ECA-1-level QAOA IoT algorithm consistently 

outperforms the other algorithms in terms of execution time. The 

efficient exploration provided by the evolutionary chaotic 

algorithm results in faster convergence to better solutions. The 1-

level QAOA and 1-level QAOA IoT algorithms have competitive 

execution times, but they are slightly slower than the ECA-1-level 

QAOA IoT. This is again attributed to the effectiveness of the 

ECA in optimizing the quantum circuit parameters. The standard 

QAOA algorithm shows the highest execution time, which is 

typical for pure quantum algorithms with complex gate 

operations. 

The ECA-1-level QAOA IoT algorithm consistently achieves 

the highest solution quality across all iterations. This 

demonstrates the efficacy of the proposed evolutionary chaotic 

algorithm in finding superior solutions for the combinatorial 

optimization problem. The 1-level QAOA and 1-level QAOA IoT 

algorithms also perform well and exhibit competitive solution 

qualities. However, they fall slightly short of the ECA-1-level 

QAOA IoT, indicating the advantage of the proposed hybrid 

optimization approach. The standard QAOA algorithm achieves 

reasonable solution quality, but it is outperformed by the other 

algorithms in this comparison. 

The experimental results suggest that the proposed ECA-1-

level QAOA IoT algorithm is a promising approach for circuit-

level optimization in IoT devices. It offers a trade-off between 

energy consumption, execution time, and solution quality, 

providing more efficient and effective solutions for the 

combinatorial optimization problem compared to the other 

algorithms considered. 

6. CONCLUSION 

In this research, we explored a novel design approach for low-

power VLSI in IoT devices using circuit-level optimization with 

the ECA applied to a 1-level QAOA circuit. The goal is to address 

combinatorial optimization problems relevant to IoT networks 

and compare the performance with standard QAOA and 1-level 

QAOA approaches. The proposed ECA-1-level QAOA IoT 

algorithm demonstrated superior performance across multiple 

metrics, including energy consumption, execution time, and 

solution quality. The hybrid optimization approach combining the 

ECA with the 1-level QAOA circuit proved to be efficient and 

effective in finding optimized solutions for combinatorial 
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optimization problems in IoT devices. The ECA-1-level QAOA 

IoT algorithm showcased reduced energy consumption compared 

to the standard QAOA approach. This is a crucial advantage for 

IoT devices, which often operate on limited power resources. The 

proposed algorithm provides a promising avenue for energy-

efficient circuit-level optimization in IoT applications. The ECA-

1-level QAOA IoT algorithm exhibited faster execution times due 

to the evolutionary chaotic optimization process, which enables 

efficient exploration of the parameter space. This improved 

efficiency is essential for real-time and time-critical IoT 

applications. The proposed algorithm consistently achieved 

higher solution qualities, indicating its ability to find superior 

solutions for combinatorial optimization problems compared to 

the standard QAOA and 1-level QAOA approaches. This can 

have significant implications for IoT networks, where optimal 

solutions are essential for resource allocation and network 

performance. 
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