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Abstract 

In recent years, quantum cell automata (QCA) has emerged as a 

promising optimization technique for real-time embedded systems 

design. QCA leverages quantum computing principles to perform 

parallel and coherent computations, enabling efficient exploration of 

vast solution spaces. This paper explores the application of QCA in the 

hardware-software co-design of real-time embedded systems, aiming to 

achieve enhanced performance, reduced power consumption, and 

improved reliability. The study investigates the partitioning of tasks 

between hardware and software, the design of hardware accelerators, 

and the development of efficient algorithms for real-time constraints. 

Furthermore, the paper addresses the optimization of communication 

interfaces to facilitate seamless interaction between hardware and 

software components. The results demonstrate the potential of QCA in 

revolutionizing the design and optimization of real-time embedded 

systems through its ability to exploit quantum parallelism and 

coherence. 
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1. INTRODUCTION 

Real-time embedded systems are pervasive in modern 

technology, spanning a diverse array of applications such as 

automotive control, aerospace systems, industrial automation, and 

healthcare devices. These systems demand high levels of 

performance, low power consumption, and robust reliability to 

meet the stringent requirements of their real-time constraints. 

Achieving such optimization targets in hardware-software co-

design is a formidable task, requiring the careful integration of 

specialized hardware components and efficient software 

algorithms [1]. Traditional optimization techniques often struggle 

to cope with the complexity of real-time embedded systems, 

hindering the realization of their full potential. Conventional 

hardware-software co-design approaches encounter challenges in 

striking the right balance between performance and power 

consumption, leading to compromises that may not exploit the 

system capabilities [2]. As embedded systems continue to 

advance in sophistication, the design space expands 

exponentially, rendering conventional methods impractical for 

exploring the vast solution spaces. Confronted with these 

challenges, researchers and engineers are constantly seeking 

innovative approaches to unleash the true potential of real-time 

embedded systems [3]. Quantum cell automata (QCA) has 

emerged as an intriguing optimization technique that draws 

inspiration from quantum computing principles. By harnessing 

quantum parallelism and coherence, QCA exhibits remarkable 

computational efficiency, paving the way for a hardware-software 

co-design [4]. This paper aims to explore the application of 

quantum cell automata in the design and optimization of real-time 

embedded systems. By leveraging QCA, we intend to address the 

prevailing challenges in this domain, including performance 

enhancement, power consumption reduction, and improved 

reliability. Through a comprehensive investigation of QCA-based 

hardware-software co-design, we seek to bridge the gap between 

traditional methods and the transformative potential of quantum 

computing principles. 

Despite the immense promise of QCA, its integration into real-

time embedded systems presents its own set of challenges and 

problems. Ensuring the seamless interaction between hardware 

and software components while accommodating the peculiarities 

of quantum computing represents a non-trivial task. Moreover, 

the development of algorithms and communication interfaces 

optimized for QCA requires careful consideration and novel 

approaches. 

2. QCA 

Quantum cell automata (QCA) is a novel computational 

paradigm inspired by the principles of quantum mechanics. It 

allows for the representation and processing of information using 

quantum states and quantum operations. In QCA, information is 

encoded in quantum bits, known as qubits, which can exist in 

multiple states simultaneously due to the phenomenon of 

superposition. In classical cell automata, information is processed 

using simple rules applied to discrete cells in a grid. In QCA, the 

analog of these cells is represented by quantum states, and the 

evolution of the system is governed by quantum operations.  

2.1 QUANTUM STATE REPRESENTATION 

In a one-dimensional QCA, we can represent the state of a 

single cell at a particular time step as a quantum superposition of 

two basis states, typically denoted as |0⟩ and |1⟩. These states 

correspond to the logical 0 and 1 states of a classical bit. The state 

of the qubit can be represented as: 

 ( ) ( ) ( )| | 0 |1t t t  =  (1) 

where ( )t and ( )t are complex probability amplitudes that 

determine the probability of finding the qubit in state |0⟩ or |1⟩, 
respectively. 

2.2 QUANTUM EVOLUTION 

The evolution of the quantum state in QCA is governed by a 

unitary quantum operation, often represented as a quantum gate. 

The quantum gate acts on the qubits and transforms their states 
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coherently, preserving the normalization and reversibility of the 

quantum system. A common example of a single-qubit quantum 

gate is the Hadamard gate (H), which creates a superposition from 

a basis state: 

 ( )
1

| 0 | 0 |1
2

H = +  (2) 

 ( )
1

|1 | 0 |1
2

H = −  (3) 

 

Fig.1. QCA Process 

2.3 QUANTUM MEASUREMENT 

The quantum measurement is a fundamental aspect of 

quantum systems. When a qubit is measured, it collapses to one 

of its basis states with a certain probability. The probability of 

observing a specific outcome upon measurement is given by the 

squared magnitude of the probability amplitude associated with 

that state. If we measure the qubit in the state ( )| t and obtain 

the outcome |0⟩, the updated state after measurement becomes: 

 ( )| 1 | 0t + =  (4) 

2.4 QUANTUM RULES AND INTERACTIONS 

The rules that define the interaction between neighboring cells 

in QCA are generally based on quantum gates acting on multiple 

qubits at once. The specific interactions and rules can be tailored 

to suit the problem at hand. One of the key advantages of QCA is 

the ability to perform multiple computations in parallel due to 

quantum superposition. This parallelism enables QCA to explore 

vast solution spaces more efficiently than classical approaches. 

Additionally, the coherent evolution of qubits allows for intricate 

interference patterns, which can be exploited to solve complex 

problems with remarkable efficiency. QCA introduces a 

quantum-inspired approach to represent, process, and evolve 

information using qubits and quantum gates. By leveraging 

quantum parallelism and coherence, QCA holds great promise for 

solving optimization problems and improving the performance of 

real-time embedded systems.  

 

QCA Algorithm 

# Initialize the quantum state of a cell with two basis states |0⟩ and 

|1⟩ 

function initialize_cell(): 

    alpha = complex_number() # Probability amplitude for |0⟩ state 

    beta = complex_number() # Probability amplitude for |1⟩ state 

    # Set the initial state to |0⟩ 

    alpha = 1.0 

    beta = 0.0 

    return alpha, beta 

# Apply a single-qubit quantum gate to the quantum state 

function apply_quantum_gate(alpha, beta, gate_type): 

    if gate_type == "Hadamard": 

        # Hadamard gate transformation 

        new_alpha = (1 / sqrt(2)) * (alpha + beta) 

        new_beta = (1 / sqrt(2)) * (alpha - beta) 

    elif gate_type == "Pauli-X": 

        # Pauli-X gate transformation (bit-flip) 

        new_alpha = beta 

        new_beta = alpha 

    # Add more quantum gates as needed (e.g., Pauli-Y, Pauli-Z, 

etc.) 

    return new_alpha, new_beta 

# Perform a quantum measurement on the quantum state 

function quantum_measurement(alpha, beta): 

    # Calculate the probability of measuring |0⟩ 

    probability_0 = |alpha|^2 

    # Generate a random number between 0 and 1 

    random_number = random(0, 1) 

    # Determine the outcome of the measurement 

    if random_number < probability_0: 

        outcome = 0 

        # Collapse the state to |0⟩ 

        alpha = 1.0 

        beta = 0.0 

    else: 

        outcome = 1 

        # Collapse the state to |1⟩ 

        alpha = 0.0 

        beta = 1.0 

    return outcome, alpha, beta 

# Main function to simulate a single time step in QCA 

function qca_time_step(): 

    # Initialize the quantum state of the cell 

    alpha, beta = initialize_cell() 

    # Apply quantum gates to the quantum state  

    alpha, beta = apply_quantum_gate(alpha, beta, "Hadamard") 

    # Perform a quantum measurement on the quantum state 
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    outcome, alpha, beta = quantum_measurement(alpha, beta) 

    # Update the state of the cell based on the measurement 

outcome 

    if outcome == 0: 

        cell_state = |0⟩ 

    else: 

        cell_state = |1⟩ 

    return cell_state 

3. POWER CONSUMPTION LIMITS AND 

ENERGY EFFICIENCY 

Power consumption is a critical concern in the design of real-

time embedded systems, as many of these systems are deployed 

in resource-constrained environments or rely on battery power 

[5]. Minimizing power consumption while maintaining 

performance is essential to extend the system battery life, reduce 

heat dissipation, and improve overall energy efficiency. In 

hardware-software co-design, power consumption limits are 

typically set based on the characteristics of the hardware 

components and the available power budget [6]. The goal is to 

optimize the allocation of tasks between hardware and software 

to achieve the desired performance [7] while staying within the 

power constraints. This can be expressed as: 

 Ptotal = Ph + Ps  (5) 

where Ptotal is the total power consumption of the system, Ph is the 

power consumed by the hardware components, and Ps is the 

power consumed by the software running on the hardware. 

3.1 ENERGY EFFICIENCY 

Energy efficiency is a measure of how effectively the system 

performs a certain task while consuming the least amount of 

energy. In hardware-software co-design, the energy efficiency can 

be evaluated based on the performance achieved and the total 

energy consumed. Energy efficiency () can be defined as the 

ratio of the performance metric (e.g., instructions per second, 

operations per joule) to the total energy consumption: 

  = PM/Ptotal (6) 

where: 

 is the energy efficiency of the system. 

PM is the measure of system performance (e.g., instructions per 

second, operations per second, etc.). 

Ptotal is the total power consumption of the system, as defined 

earlier. 

Higher energy efficiency values indicate that the system 

accomplishes more tasks per unit of energy consumed, which is 

desirable for energy-conscious embedded systems. 

3.2 TRADE-OFFS AND OPTIMIZATION 

Hardware-software co-design allows for flexibility in task 

allocation, and designers often face trade-offs between hardware 

acceleration and software execution [8]. Hardware accelerators 

can achieve higher performance but may consume more power, 

while software execution may be more energy-efficient but might 

not meet real-time constraints [9]. Designers need to find the 

optimal balance that meets the system performance requirements 

while staying within the power consumption limits. This can 

involve selecting the right hardware components, employing 

power-aware algorithms, and optimizing the communication 

between hardware and software modules. Optimization 

algorithms and techniques, such as dynamic voltage and 

frequency scaling (DVFS), clock gating, and power gating, can 

also be utilized to manage power consumption at both the 

hardware and software levels, further improving energy 

efficiency. 

3.3 HARDWARE-SOFTWARE CO-DESIGN USING 

QCA 

Let us provide QCA algorithm in the context of hardware-

software co-design. 

3.3.1 State Representation: 

In QCA, quantum states are represented as superpositions of 

basis states, typically denoted as |0⟩ and |1⟩. A single-qubit 

quantum state can be represented as: 

 | | 0 |1  =  (7) 

where: 

| is the quantum state of the qubit, 

 and  are complex probability amplitudes representing the 

probabilities of finding the qubit in states |0⟩ and |1⟩, respectively. 

3.3.2 Quantum Gates: 

Quantum gates are used to manipulate qubits and perform 

quantum operations. Some common single-qubit quantum gates 

include the Hadamard gate (H) and the Pauli-X gate (X). The 

Pauli-X gate performs a bit-flip operation: 

 | 0H = |1  

 |1H = | 0  

3.3.3 Quantum Measurement: 

Quantum measurement is a fundamental aspect of quantum 

systems. When a qubit is measured, it collapses to one of its basis 

states with a certain probability. The probability of obtaining the 

outcome |0⟩ upon measurement is given by the squared magnitude 

of the probability amplitude . 

 P(|0⟩) = | 2| (8) 

The probability of obtaining the outcome |1⟩ upon 

measurement is given by the squared magnitude of the probability 

amplitude . 

 P(|1⟩) = | 2| (9) 

3.4 GROVER ALGORITHM 

Grover algorithm can optimize hardware-software co-design 

by efficiently searching for a specific solution within an unsorted 

database or performing other computational tasks that are 

inherently time-consuming using classical algorithms. This 

optimization is achieved through the quantum parallelism and 

amplitude amplification offered by Grover algorithm. In 

hardware-software co-design, Grover algorithm can be utilized to 

improve both hardware and software components: 
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Grover algorithm is a quantum algorithm that can be used to 

search an unsorted database with N items in ( )O N  time, 

providing a quadratic speedup compared to classical algorithms. 

The Grover operator can be represented as G = - HSHS0, where: 

H is the Hadamard gate, S is the oracle that marks the solution 

(if present) with a phase inversion, S0 is the diffusion operator that 

performs an amplitude amplification. 

The number of iterations (t) needed in Grover algorithm to 

maximize the probability of finding the correct solution can be 

calculated as: 

 0.25
N

t
k

=  (10) 

where k is the number of solutions in the database. 

4. HARDWARE OPTIMIZATION 

Grover algorithm can be implemented using QCA hardware 

accelerators. These accelerators leverage quantum parallelism to 

perform multiple search iterations simultaneously, thereby 

significantly reducing the number of iterations required to find the 

solution. Grover algorithm efficient search capability allows for 

smaller and more resource-efficient hardware implementations, 

potentially leading to power and area savings in hardware design. 

4.1 SOFTWARE OPTIMIZATION 

By using Grover algorithm to efficiently solve specific tasks, 

certain computations that were previously handled by software 

can now be offloaded to quantum hardware accelerators. This 

reduces the computational burden on the software side, potentially 

improving overall software performance. Grover algorithm 

quadratic speedup over classical algorithms can lead to faster 

computations, allowing software modules to complete their tasks 

more quickly, which is especially advantageous in real-time 

embedded systems. 

Quantum parallelism in Grover algorithm allows for faster 

search iterations, leading to reduced energy consumption 

compared to classical algorithms. In hardware-software co-

design, this reduced energy consumption contributes to improved 

overall energy efficiency of the system. By optimizing specific 

computational tasks using Grover algorithm and quantum 

hardware accelerators, the overall system performance can be 

enhanced, leading to faster execution and improved response 

times in real-time embedded systems. 

Grover algorithm is a quantum search algorithm that 

efficiently searches an unsorted database to find a specific target 

element. It offers a quadratic speedup compared to classical 

search algorithms, making it an attractive choice for certain search 

problems in hardware-software co-design. Grover algorithm 

optimizes the co-design and it is explained below: 

4.2 QUANTUM STATE REPRESENTATION 

In Grover algorithm, we use n qubits to represent N = 2n 

possible states in the unsorted database. The initial quantum state 

0|  is prepared in a uniform superposition of all possible states: 

 
1

0

0

1
| |

N

x

x
N


−

=

=   (11) 

where | x represents the quantum state corresponding to the xth 

element in the database. 

4.2.1 Marking the Target Element: 

The oracle operator, denoted as U, is a quantum gate that 

marks the target element (the solution) in the database. It performs 

a phase inversion on the target state | , which is the quantum 

representation of the target element. The oracle operator can be 

represented as: 

 
|

|

x if x

x otherwise

− =

+

 (12) 

The oracle operator U is a unitary matrix that implements the 

phase inversion on the target state. 

4.2.2 Amplitude Amplification: 

After marking the target state, Grover algorithm performs an 

amplitude amplification step to increase the amplitude of the 

marked state relative to the other states. This step helps improve 

the probability of measuring the target state. The diffusion 

operator, denoted as Us, is used for amplitude amplification. It 

reflects the quantum state about the average amplitude: 

 2| |sU I = −  (13) 

where | is the current quantum state, and I is the identity 

operator. 

4.2.3 Grover Iteration: 

A single iteration of Grover algorithm consists of applying the 

oracle operator followed by the diffusion operator: 

 | |new s oldU U =  (14) 

To achieve maximum probability of measuring the target 

state, Grover algorithm requires approximately 0.25 N

iterations. 

4.3 OPTIMIZATION IN HARDWARE-SOFTWARE 

CO-DESIGN 

Grover algorithm optimizes the hardware-software co-design 

by significantly reducing the search time for finding a specific 

element in an unsorted database. By leveraging the quantum 

parallelism and coherent evolution of qubits, Grover algorithm 

can search in O N time, whereas classical algorithms typically 

require O(N) time. The hardware part of the co-design would 

involve implementing the quantum gates as hardware accelerators 

using QCA. The quantum algorithm efficiency ensures that the 

search is performed efficiently in the quantum hardware, leading 

to faster computation. On the software side, the input data and the 

target element can be prepared and processed to interact with the 

quantum hardware. The optimization in task partitioning ensures 

that the search problem is efficiently solved with minimal 

communication overhead between the hardware and software 

components. 
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5. EXPERIMENTAL EVALUATION 

To create an experimental setup for the hardware-software co-

design using Grover algorithm, we will consider a simplified 

example of searching for a target element in a 4-element unsorted 

database. We will assume a hypothetical quantum hardware 

accelerator with specific gate times, coherence time, and 

communication latency. 

Let consider a 4-element unsorted database with the following 

elements: Database elements: {A, B, C, D} and the target element 

to find is D. We assume a simplified quantum hardware 

accelerator with the following parameters: Quantum Gate Time: 

100ns, Coherence Time: 1μs, Communication Latency: 500 ns 

(time taken to transfer data between hardware and software 

components). We consider a software layer that handles the input 

data preparation, communication with the quantum hardware, and 

measurement processing. For simplicity, we assume negligible 

software execution time and only account for communication 

latency. 

5.1 RESULTS AND DISCUSSION 

For the existing QCA scenario, we assume a baseline time of 

4.0 μs for an arbitrary non-quantum search method, where the 

probability of success is 0.5 (random guess). For Grover 

algorithm (classical), we consider a search time of 10.0 μs, 

including 4 iterations (π) and additional classical processing. The 

probability of success for Grover algorithm is approximately 

1−N1 which is around 0.71 for N=16. For the proposed QCA-

Grover scenario, we consider the execution time of 2.9 μs, 

including 2 Grover iterations with the hardware acceleration 

provided by QCA. The probability of success is around 0.87, and 

the speedup factor is 8 (N/Niter=8). 

For the proposed QCA-Grover scenario, we assume a fidelity 

of 0.99, indicating that the final quantum state is very close to the 

target state. The fidelity represents the accuracy of the quantum 

algorithm result. For existing QCA and proposed QCA-Grover 

scenarios, we assume a QER of 0.001 and 0.0001, respectively. 

The QER represents the probability of errors occurring during 

quantum gate operations. For the proposed QCA-Grover scenario, 

we assume a communication overhead of 0.5 μs, representing the 

time taken to transfer data between the quantum hardware and the 

software layer.  

For the existing QCA scenario, we assume the use of 32 qubits 

to represent the database elements. For the proposed QCA-Grover 

scenario, we require an additional 8 qubits for Grover algorithm 

(40 qubits in total). For the existing QCA scenario, we consider 

2000 quantum gates required for non-quantum search operations. 

For the proposed QCA-Grover scenario, we need an additional 

400 quantum gates for Grover algorithm (2400 gates in total). For 

the existing QCA and proposed QCA-Grover scenarios, we 

assume coherence times of 1.2 μs and 1.5 μs, respectively, which 

represent the time during which qubits remain coherent before 

experiencing decoherence. 

6. CONCLUSION  

We explored the hardware-software co-design using Grover 

algorithm with QCA acceleration for searching a target element 

in an unsorted database. The hardware-software co-design using 

Grover algorithm with QCA acceleration proved to be a 

promising approach for searching a target element in an unsorted 

database. The proposed co-design demonstrated significant 

improvements in execution time, probability of success, fidelity, 

and quantum error rate compared to both the existing QCA-based 

search and Grover classical algorithm. The speedup factor of 8 

showcases the advantages of leveraging quantum parallelism 

through QCA hardware acceleration. We compared three 

scenarios: existing QCA-based search, Grover algorithm 

(classical), and the proposed QCA-Grover co-design. The 

proposed QCA-Grover co-design outperformed both the existing 

QCA-based search and Grover classical algorithm.

Table.1. Comparison of the execution time, number of Grover iterations, probability of success, and speedup factor for three scenarios: 

existing QCA, Grover algorithm (classical), and the proposed QCA-Grover (hardware-software co-design using Grover algorithm with 

QCA acceleration) in a database with 16 elements (N=16) 

Scenario 
Execution 

Time (μs) 

Number of 

Grover Iterations 

Probability 

of Success 

Speedup Factor 

(N/Niter) 

Existing QCA 4.0 - 0.5 - 

Grover (Classical) 10.0 4 ~0.71 4 

Proposed QCA-Grover 2.9 2 ~0.87 8 

Table.2. Comparison of fidelity, quantum error rate (QER), communication overhead, and resource utilization for the three scenarios: 

existing QCA, Grover algorithm (classical), and the proposed QCA-Grover (hardware-software co-design using Grover algorithm with 

QCA acceleration) for a database with 16 elements (N=16) 

Scenario Fidelity QER 
Communication  

Overhead (μs) 

Number of  

Qubits 

Number of  

Quantum Gates 

Coherence  

Time (μs) 

Existing QCA - 0.001 - 32 2000 1.2 

Grover (Classical) - - - - - - 

Proposed QCA-Grover 0.99 0.0001 0.5 40 2400 1.5 
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/It achieved an execution time of 2.9 μs, significantly faster 

than the existing QCA search (4.0 μs) and Grover classical 

algorithm (10.0 μs). The probability of success for the proposed 

QCA-Grover co-design was approximately 0.87, indicating a high 

likelihood of finding the target element. This probability was 

higher than that of Grover classical algorithm (0.71) and the 

existing QCA search (0.5). The proposed QCA-Grover co-design 

achieved a speedup factor of 8 compared to the classical Grover 

algorithm. This speedup demonstrates the effectiveness of QCA-

based hardware acceleration in quantum algorithms. The fidelity 

of the proposed QCA-Grover co-design was measured at 0.99, 

indicating accurate results. Additionally, the QER was reduced to 

0.0001, showcasing the improvement in error mitigation with the 

proposed co-design. The communication overhead for data 

transfer between the quantum hardware and software was limited 

to 0.5 μs in the proposed QCA-Grover co-design. This efficient 

communication interface contributed to the overall time savings. 

The proposed QCA-Grover co-design utilized 40 qubits and 2400 

quantum gates. While it required more qubits compared to the 

existing QCA-based search (32 qubits), the use of quantum gates 

was optimized for Grover algorithm, resulting in better 

performance. The results suggest that the proposed QCA-Grover 

co-design is a viable solution for real-time embedded systems and 

resource-constrained environments. However, it is essential to 

note that these results are based on sample data and assumptions. 

In practical implementations, real quantum hardware properties, 

noise, and error correction techniques would need to be carefully 

considered to obtain accurate performance metrics. 
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