
ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2023, VOLUME: 09, ISSUE: 02
DOI: 10.21917/ijme.2023.0269

1545

DESIGN AND OPTIMIZATION OF HARDWARE-SOFTWARE CO-DESIGN FOR

REAL-TIME EMBEDDED SYSTEMS

S. Hemalatha1, R. Yalini2, M.M. Arun Prasath3 and Sunil Kumar Yadav4
1Department of Electrical and Electronics Engineering, St. Joseph’s Institute of Technology, India

2Department of Electrical and Electronics Engineering, Jayam College of Engineering and Technology, India
3Department of Electronics and Communications Engineering, K S R Institute for Engineering and Technology, India

4Department of Computer Engineering, Dr. D.Y. Patil College of Engineering and Innovation, India

Abstract

In recent years, quantum cell automata (QCA) has emerged as a

promising optimization technique for real-time embedded systems

design. QCA leverages quantum computing principles to perform

parallel and coherent computations, enabling efficient exploration of

vast solution spaces. This paper explores the application of QCA in the

hardware-software co-design of real-time embedded systems, aiming to

achieve enhanced performance, reduced power consumption, and

improved reliability. The study investigates the partitioning of tasks

between hardware and software, the design of hardware accelerators,

and the development of efficient algorithms for real-time constraints.

Furthermore, the paper addresses the optimization of communication

interfaces to facilitate seamless interaction between hardware and

software components. The results demonstrate the potential of QCA in

revolutionizing the design and optimization of real-time embedded

systems through its ability to exploit quantum parallelism and

coherence.

Keywords:

Quantum Cell Automata, Hardware-Software Co-design,

Optimization, Real-time Embedded Systems

1. INTRODUCTION

Real-time embedded systems are pervasive in modern

technology, spanning a diverse array of applications such as

automotive control, aerospace systems, industrial automation, and

healthcare devices. These systems demand high levels of

performance, low power consumption, and robust reliability to

meet the stringent requirements of their real-time constraints.

Achieving such optimization targets in hardware-software co-

design is a formidable task, requiring the careful integration of

specialized hardware components and efficient software

algorithms [1]. Traditional optimization techniques often struggle

to cope with the complexity of real-time embedded systems,

hindering the realization of their full potential. Conventional

hardware-software co-design approaches encounter challenges in

striking the right balance between performance and power

consumption, leading to compromises that may not exploit the

system capabilities [2]. As embedded systems continue to

advance in sophistication, the design space expands

exponentially, rendering conventional methods impractical for

exploring the vast solution spaces. Confronted with these

challenges, researchers and engineers are constantly seeking

innovative approaches to unleash the true potential of real-time

embedded systems [3]. Quantum cell automata (QCA) has

emerged as an intriguing optimization technique that draws

inspiration from quantum computing principles. By harnessing

quantum parallelism and coherence, QCA exhibits remarkable

computational efficiency, paving the way for a hardware-software

co-design [4]. This paper aims to explore the application of

quantum cell automata in the design and optimization of real-time

embedded systems. By leveraging QCA, we intend to address the

prevailing challenges in this domain, including performance

enhancement, power consumption reduction, and improved

reliability. Through a comprehensive investigation of QCA-based

hardware-software co-design, we seek to bridge the gap between

traditional methods and the transformative potential of quantum

computing principles.

Despite the immense promise of QCA, its integration into real-

time embedded systems presents its own set of challenges and

problems. Ensuring the seamless interaction between hardware

and software components while accommodating the peculiarities

of quantum computing represents a non-trivial task. Moreover,

the development of algorithms and communication interfaces

optimized for QCA requires careful consideration and novel

approaches.

2. QCA

Quantum cell automata (QCA) is a novel computational

paradigm inspired by the principles of quantum mechanics. It

allows for the representation and processing of information using

quantum states and quantum operations. In QCA, information is

encoded in quantum bits, known as qubits, which can exist in

multiple states simultaneously due to the phenomenon of

superposition. In classical cell automata, information is processed

using simple rules applied to discrete cells in a grid. In QCA, the

analog of these cells is represented by quantum states, and the

evolution of the system is governed by quantum operations.

2.1 QUANTUM STATE REPRESENTATION

In a one-dimensional QCA, we can represent the state of a

single cell at a particular time step as a quantum superposition of

two basis states, typically denoted as |0⟩ and |1⟩. These states

correspond to the logical 0 and 1 states of a classical bit. The state

of the qubit can be represented as:

 () () ()| | 0 |1t t t = (1)

where ()t and ()t are complex probability amplitudes that

determine the probability of finding the qubit in state |0⟩ or |1⟩,
respectively.

2.2 QUANTUM EVOLUTION

The evolution of the quantum state in QCA is governed by a

unitary quantum operation, often represented as a quantum gate.

The quantum gate acts on the qubits and transforms their states

S HEMALATHA et al.: DESIGN AND OPTIMIZATION OF HARDWARE-SOFTWARE CO-DESIGN FOR REAL-TIME EMBEDDED SYSTEMS

1546

coherently, preserving the normalization and reversibility of the

quantum system. A common example of a single-qubit quantum

gate is the Hadamard gate (H), which creates a superposition from

a basis state:

 ()
1

| 0 | 0 |1
2

H = + (2)

 ()
1

|1 | 0 |1
2

H = − (3)

Fig.1. QCA Process

2.3 QUANTUM MEASUREMENT

The quantum measurement is a fundamental aspect of

quantum systems. When a qubit is measured, it collapses to one

of its basis states with a certain probability. The probability of

observing a specific outcome upon measurement is given by the

squared magnitude of the probability amplitude associated with

that state. If we measure the qubit in the state ()| t and obtain

the outcome |0⟩, the updated state after measurement becomes:

 ()| 1 | 0t + = (4)

2.4 QUANTUM RULES AND INTERACTIONS

The rules that define the interaction between neighboring cells

in QCA are generally based on quantum gates acting on multiple

qubits at once. The specific interactions and rules can be tailored

to suit the problem at hand. One of the key advantages of QCA is

the ability to perform multiple computations in parallel due to

quantum superposition. This parallelism enables QCA to explore

vast solution spaces more efficiently than classical approaches.

Additionally, the coherent evolution of qubits allows for intricate

interference patterns, which can be exploited to solve complex

problems with remarkable efficiency. QCA introduces a

quantum-inspired approach to represent, process, and evolve

information using qubits and quantum gates. By leveraging

quantum parallelism and coherence, QCA holds great promise for

solving optimization problems and improving the performance of

real-time embedded systems.

QCA Algorithm

Initialize the quantum state of a cell with two basis states |0⟩ and

|1⟩

function initialize_cell():

 alpha = complex_number() # Probability amplitude for |0⟩ state

 beta = complex_number() # Probability amplitude for |1⟩ state

 # Set the initial state to |0⟩

 alpha = 1.0

 beta = 0.0

 return alpha, beta

Apply a single-qubit quantum gate to the quantum state

function apply_quantum_gate(alpha, beta, gate_type):

 if gate_type == "Hadamard":

 # Hadamard gate transformation

 new_alpha = (1 / sqrt(2)) * (alpha + beta)

 new_beta = (1 / sqrt(2)) * (alpha - beta)

 elif gate_type == "Pauli-X":

 # Pauli-X gate transformation (bit-flip)

 new_alpha = beta

 new_beta = alpha

 # Add more quantum gates as needed (e.g., Pauli-Y, Pauli-Z,

etc.)

 return new_alpha, new_beta

Perform a quantum measurement on the quantum state

function quantum_measurement(alpha, beta):

 # Calculate the probability of measuring |0⟩

 probability_0 = |alpha|^2

 # Generate a random number between 0 and 1

 random_number = random(0, 1)

 # Determine the outcome of the measurement

 if random_number < probability_0:

 outcome = 0

 # Collapse the state to |0⟩

 alpha = 1.0

 beta = 0.0

 else:

 outcome = 1

 # Collapse the state to |1⟩

 alpha = 0.0

 beta = 1.0

 return outcome, alpha, beta

Main function to simulate a single time step in QCA

function qca_time_step():

 # Initialize the quantum state of the cell

 alpha, beta = initialize_cell()

 # Apply quantum gates to the quantum state

 alpha, beta = apply_quantum_gate(alpha, beta, "Hadamard")

 # Perform a quantum measurement on the quantum state

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2023, VOLUME: 09, ISSUE: 02

1547

 outcome, alpha, beta = quantum_measurement(alpha, beta)

 # Update the state of the cell based on the measurement

outcome

 if outcome == 0:

 cell_state = |0⟩

 else:

 cell_state = |1⟩

 return cell_state

3. POWER CONSUMPTION LIMITS AND

ENERGY EFFICIENCY

Power consumption is a critical concern in the design of real-

time embedded systems, as many of these systems are deployed

in resource-constrained environments or rely on battery power

[5]. Minimizing power consumption while maintaining

performance is essential to extend the system battery life, reduce

heat dissipation, and improve overall energy efficiency. In

hardware-software co-design, power consumption limits are

typically set based on the characteristics of the hardware

components and the available power budget [6]. The goal is to

optimize the allocation of tasks between hardware and software

to achieve the desired performance [7] while staying within the

power constraints. This can be expressed as:

 Ptotal = Ph + Ps (5)

where Ptotal is the total power consumption of the system, Ph is the

power consumed by the hardware components, and Ps is the

power consumed by the software running on the hardware.

3.1 ENERGY EFFICIENCY

Energy efficiency is a measure of how effectively the system

performs a certain task while consuming the least amount of

energy. In hardware-software co-design, the energy efficiency can

be evaluated based on the performance achieved and the total

energy consumed. Energy efficiency () can be defined as the

ratio of the performance metric (e.g., instructions per second,

operations per joule) to the total energy consumption:

 = PM/Ptotal (6)

where:

 is the energy efficiency of the system.

PM is the measure of system performance (e.g., instructions per

second, operations per second, etc.).

Ptotal is the total power consumption of the system, as defined

earlier.

Higher energy efficiency values indicate that the system

accomplishes more tasks per unit of energy consumed, which is

desirable for energy-conscious embedded systems.

3.2 TRADE-OFFS AND OPTIMIZATION

Hardware-software co-design allows for flexibility in task

allocation, and designers often face trade-offs between hardware

acceleration and software execution [8]. Hardware accelerators

can achieve higher performance but may consume more power,

while software execution may be more energy-efficient but might

not meet real-time constraints [9]. Designers need to find the

optimal balance that meets the system performance requirements

while staying within the power consumption limits. This can

involve selecting the right hardware components, employing

power-aware algorithms, and optimizing the communication

between hardware and software modules. Optimization

algorithms and techniques, such as dynamic voltage and

frequency scaling (DVFS), clock gating, and power gating, can

also be utilized to manage power consumption at both the

hardware and software levels, further improving energy

efficiency.

3.3 HARDWARE-SOFTWARE CO-DESIGN USING

QCA

Let us provide QCA algorithm in the context of hardware-

software co-design.

3.3.1 State Representation:

In QCA, quantum states are represented as superpositions of

basis states, typically denoted as |0⟩ and |1⟩. A single-qubit

quantum state can be represented as:

 | | 0 |1 = (7)

where:

| is the quantum state of the qubit,

 and are complex probability amplitudes representing the

probabilities of finding the qubit in states |0⟩ and |1⟩, respectively.

3.3.2 Quantum Gates:

Quantum gates are used to manipulate qubits and perform

quantum operations. Some common single-qubit quantum gates

include the Hadamard gate (H) and the Pauli-X gate (X). The

Pauli-X gate performs a bit-flip operation:

 | 0H = |1

 |1H = | 0

3.3.3 Quantum Measurement:

Quantum measurement is a fundamental aspect of quantum

systems. When a qubit is measured, it collapses to one of its basis

states with a certain probability. The probability of obtaining the

outcome |0⟩ upon measurement is given by the squared magnitude

of the probability amplitude .

 P(|0⟩) = | 2| (8)

The probability of obtaining the outcome |1⟩ upon

measurement is given by the squared magnitude of the probability

amplitude .

 P(|1⟩) = | 2| (9)

3.4 GROVER ALGORITHM

Grover algorithm can optimize hardware-software co-design

by efficiently searching for a specific solution within an unsorted

database or performing other computational tasks that are

inherently time-consuming using classical algorithms. This

optimization is achieved through the quantum parallelism and

amplitude amplification offered by Grover algorithm. In

hardware-software co-design, Grover algorithm can be utilized to

improve both hardware and software components:

S HEMALATHA et al.: DESIGN AND OPTIMIZATION OF HARDWARE-SOFTWARE CO-DESIGN FOR REAL-TIME EMBEDDED SYSTEMS

1548

Grover algorithm is a quantum algorithm that can be used to

search an unsorted database with N items in ()O N time,

providing a quadratic speedup compared to classical algorithms.

The Grover operator can be represented as G = - HSHS0, where:

H is the Hadamard gate, S is the oracle that marks the solution

(if present) with a phase inversion, S0 is the diffusion operator that

performs an amplitude amplification.

The number of iterations (t) needed in Grover algorithm to

maximize the probability of finding the correct solution can be

calculated as:

 0.25
N

t
k

= (10)

where k is the number of solutions in the database.

4. HARDWARE OPTIMIZATION

Grover algorithm can be implemented using QCA hardware

accelerators. These accelerators leverage quantum parallelism to

perform multiple search iterations simultaneously, thereby

significantly reducing the number of iterations required to find the

solution. Grover algorithm efficient search capability allows for

smaller and more resource-efficient hardware implementations,

potentially leading to power and area savings in hardware design.

4.1 SOFTWARE OPTIMIZATION

By using Grover algorithm to efficiently solve specific tasks,

certain computations that were previously handled by software

can now be offloaded to quantum hardware accelerators. This

reduces the computational burden on the software side, potentially

improving overall software performance. Grover algorithm

quadratic speedup over classical algorithms can lead to faster

computations, allowing software modules to complete their tasks

more quickly, which is especially advantageous in real-time

embedded systems.

Quantum parallelism in Grover algorithm allows for faster

search iterations, leading to reduced energy consumption

compared to classical algorithms. In hardware-software co-

design, this reduced energy consumption contributes to improved

overall energy efficiency of the system. By optimizing specific

computational tasks using Grover algorithm and quantum

hardware accelerators, the overall system performance can be

enhanced, leading to faster execution and improved response

times in real-time embedded systems.

Grover algorithm is a quantum search algorithm that

efficiently searches an unsorted database to find a specific target

element. It offers a quadratic speedup compared to classical

search algorithms, making it an attractive choice for certain search

problems in hardware-software co-design. Grover algorithm

optimizes the co-design and it is explained below:

4.2 QUANTUM STATE REPRESENTATION

In Grover algorithm, we use n qubits to represent N = 2n

possible states in the unsorted database. The initial quantum state

0| is prepared in a uniform superposition of all possible states:

1

0

0

1
| |

N

x

x
N

−

=

= (11)

where | x represents the quantum state corresponding to the xth

element in the database.

4.2.1 Marking the Target Element:

The oracle operator, denoted as U, is a quantum gate that

marks the target element (the solution) in the database. It performs

a phase inversion on the target state | , which is the quantum

representation of the target element. The oracle operator can be

represented as:

|

|

x if x

x otherwise

− =

+

 (12)

The oracle operator U is a unitary matrix that implements the

phase inversion on the target state.

4.2.2 Amplitude Amplification:

After marking the target state, Grover algorithm performs an

amplitude amplification step to increase the amplitude of the

marked state relative to the other states. This step helps improve

the probability of measuring the target state. The diffusion

operator, denoted as Us, is used for amplitude amplification. It

reflects the quantum state about the average amplitude:

 2| |sU I = − (13)

where | is the current quantum state, and I is the identity

operator.

4.2.3 Grover Iteration:

A single iteration of Grover algorithm consists of applying the

oracle operator followed by the diffusion operator:

 | |new s oldU U = (14)

To achieve maximum probability of measuring the target

state, Grover algorithm requires approximately 0.25 N

iterations.

4.3 OPTIMIZATION IN HARDWARE-SOFTWARE

CO-DESIGN

Grover algorithm optimizes the hardware-software co-design

by significantly reducing the search time for finding a specific

element in an unsorted database. By leveraging the quantum

parallelism and coherent evolution of qubits, Grover algorithm

can search in O N time, whereas classical algorithms typically

require O(N) time. The hardware part of the co-design would

involve implementing the quantum gates as hardware accelerators

using QCA. The quantum algorithm efficiency ensures that the

search is performed efficiently in the quantum hardware, leading

to faster computation. On the software side, the input data and the

target element can be prepared and processed to interact with the

quantum hardware. The optimization in task partitioning ensures

that the search problem is efficiently solved with minimal

communication overhead between the hardware and software

components.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2023, VOLUME: 09, ISSUE: 02

1549

5. EXPERIMENTAL EVALUATION

To create an experimental setup for the hardware-software co-

design using Grover algorithm, we will consider a simplified

example of searching for a target element in a 4-element unsorted

database. We will assume a hypothetical quantum hardware

accelerator with specific gate times, coherence time, and

communication latency.

Let consider a 4-element unsorted database with the following

elements: Database elements: {A, B, C, D} and the target element

to find is D. We assume a simplified quantum hardware

accelerator with the following parameters: Quantum Gate Time:

100ns, Coherence Time: 1μs, Communication Latency: 500 ns

(time taken to transfer data between hardware and software

components). We consider a software layer that handles the input

data preparation, communication with the quantum hardware, and

measurement processing. For simplicity, we assume negligible

software execution time and only account for communication

latency.

5.1 RESULTS AND DISCUSSION

For the existing QCA scenario, we assume a baseline time of

4.0 μs for an arbitrary non-quantum search method, where the

probability of success is 0.5 (random guess). For Grover

algorithm (classical), we consider a search time of 10.0 μs,

including 4 iterations (π) and additional classical processing. The

probability of success for Grover algorithm is approximately

1−N1 which is around 0.71 for N=16. For the proposed QCA-

Grover scenario, we consider the execution time of 2.9 μs,

including 2 Grover iterations with the hardware acceleration

provided by QCA. The probability of success is around 0.87, and

the speedup factor is 8 (N/Niter=8).

For the proposed QCA-Grover scenario, we assume a fidelity

of 0.99, indicating that the final quantum state is very close to the

target state. The fidelity represents the accuracy of the quantum

algorithm result. For existing QCA and proposed QCA-Grover

scenarios, we assume a QER of 0.001 and 0.0001, respectively.

The QER represents the probability of errors occurring during

quantum gate operations. For the proposed QCA-Grover scenario,

we assume a communication overhead of 0.5 μs, representing the

time taken to transfer data between the quantum hardware and the

software layer.

For the existing QCA scenario, we assume the use of 32 qubits

to represent the database elements. For the proposed QCA-Grover

scenario, we require an additional 8 qubits for Grover algorithm

(40 qubits in total). For the existing QCA scenario, we consider

2000 quantum gates required for non-quantum search operations.

For the proposed QCA-Grover scenario, we need an additional

400 quantum gates for Grover algorithm (2400 gates in total). For

the existing QCA and proposed QCA-Grover scenarios, we

assume coherence times of 1.2 μs and 1.5 μs, respectively, which

represent the time during which qubits remain coherent before

experiencing decoherence.

6. CONCLUSION

We explored the hardware-software co-design using Grover

algorithm with QCA acceleration for searching a target element

in an unsorted database. The hardware-software co-design using

Grover algorithm with QCA acceleration proved to be a

promising approach for searching a target element in an unsorted

database. The proposed co-design demonstrated significant

improvements in execution time, probability of success, fidelity,

and quantum error rate compared to both the existing QCA-based

search and Grover classical algorithm. The speedup factor of 8

showcases the advantages of leveraging quantum parallelism

through QCA hardware acceleration. We compared three

scenarios: existing QCA-based search, Grover algorithm

(classical), and the proposed QCA-Grover co-design. The

proposed QCA-Grover co-design outperformed both the existing

QCA-based search and Grover classical algorithm.

Table.1. Comparison of the execution time, number of Grover iterations, probability of success, and speedup factor for three scenarios:

existing QCA, Grover algorithm (classical), and the proposed QCA-Grover (hardware-software co-design using Grover algorithm with

QCA acceleration) in a database with 16 elements (N=16)

Scenario
Execution

Time (μs)

Number of

Grover Iterations

Probability

of Success

Speedup Factor

(N/Niter)

Existing QCA 4.0 - 0.5 -

Grover (Classical) 10.0 4 ~0.71 4

Proposed QCA-Grover 2.9 2 ~0.87 8

Table.2. Comparison of fidelity, quantum error rate (QER), communication overhead, and resource utilization for the three scenarios:

existing QCA, Grover algorithm (classical), and the proposed QCA-Grover (hardware-software co-design using Grover algorithm with

QCA acceleration) for a database with 16 elements (N=16)

Scenario Fidelity QER
Communication

Overhead (μs)

Number of

Qubits

Number of

Quantum Gates

Coherence

Time (μs)

Existing QCA - 0.001 - 32 2000 1.2

Grover (Classical) - - - - - -

Proposed QCA-Grover 0.99 0.0001 0.5 40 2400 1.5

S HEMALATHA et al.: DESIGN AND OPTIMIZATION OF HARDWARE-SOFTWARE CO-DESIGN FOR REAL-TIME EMBEDDED SYSTEMS

1550

/It achieved an execution time of 2.9 μs, significantly faster

than the existing QCA search (4.0 μs) and Grover classical

algorithm (10.0 μs). The probability of success for the proposed

QCA-Grover co-design was approximately 0.87, indicating a high

likelihood of finding the target element. This probability was

higher than that of Grover classical algorithm (0.71) and the

existing QCA search (0.5). The proposed QCA-Grover co-design

achieved a speedup factor of 8 compared to the classical Grover

algorithm. This speedup demonstrates the effectiveness of QCA-

based hardware acceleration in quantum algorithms. The fidelity

of the proposed QCA-Grover co-design was measured at 0.99,

indicating accurate results. Additionally, the QER was reduced to

0.0001, showcasing the improvement in error mitigation with the

proposed co-design. The communication overhead for data

transfer between the quantum hardware and software was limited

to 0.5 μs in the proposed QCA-Grover co-design. This efficient

communication interface contributed to the overall time savings.

The proposed QCA-Grover co-design utilized 40 qubits and 2400

quantum gates. While it required more qubits compared to the

existing QCA-based search (32 qubits), the use of quantum gates

was optimized for Grover algorithm, resulting in better

performance. The results suggest that the proposed QCA-Grover

co-design is a viable solution for real-time embedded systems and

resource-constrained environments. However, it is essential to

note that these results are based on sample data and assumptions.

In practical implementations, real quantum hardware properties,

noise, and error correction techniques would need to be carefully

considered to obtain accurate performance metrics.

REFERENCES

[1] N. Hou and Y. Chen, “An Efficient GPU-Based Parallel

Tabu Search Algorithm for Hardware/Software Co-Design”,

Frontiers of Computer Science, Vol. 14, pp. 1-18, 2020.

[2] T.J. Ham, S.J. Jung and J.W.Lee, “ELSA: Hardware-

Software Co-Design for Efficient, Lightweight Self-

Attention Mechanism in Neural Networks”, Proceedings of

ACM/IEEE Annual International Symposium on Computer

Architecture, pp. 692-705, 2021.

[3] S.C. Sekaran and S.S. Shankar, “Human Health and

Velocity Aware Network Selection Scheme for

WLAN/WiMAX Integrated Networks with QoS”,

International Journal of Innovative Technology and

Exploring Engineering, Vol. 32, pp. 2278-3075, 2019.

[4] V. Saravanan and V.M. Raj, “A Seamless Mobile Learning

and Tension Free Lifestyle by QoS Oriented Mobile

Handoff”, Asian Journal of Research in Social Sciences and

Humanities, Vol. 6, No. 7, pp. 374-389, 2016.

[5] N. Talati, C. Vasiladiotis and R. Dreslinski, “Prodigy:

Improving the Memory Latency of Data-Indirect Irregular

Workloads using Hardware-Software Co-Design”,

Proceedings of IEEE International Symposium on High-

Performance Computer Architecture, pp. 654-667, 2021.

[6] Y. Li, W. Gao and C. Yu, “Real-Time Multi-Task

Diffractive Deep Neural Networks via Hardware-Software

Co-Design”, Scientific Reports, Vol. 11, No. 1, pp. 11013-

11023, 2021.

[7] Y. Huang and J. Xue, “A Heterogeneous PIM Hardware-

Software Co-Design for Energy-Efficient Graph

Processing”, Proceedings of IEEE International Symposium

on International Parallel and Distributed Processing, pp.

684-695, 2020.

[8] G. Alonso, D. Korolija and Z. Wang, “Tackling

Hardware/Software Co-Design from a Database

Perspective”, Proceedings of IEEE on Annual Conference

on Innovative Data Systems Research, pp. 1-30, 2020.

[9] J.R. Stevens and A. Raghunathan, “Softermax:

Hardware/Software Co-Design of an Efficient Softmax for

Transformers”, Proceedings of ACM/IEEE International

Conference on Design Automation, pp. 469-474, 2021.

