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Abstract 

Digital Filter Optimization (DFO) is one of the features that manages 

limiting the expansion of optical fiber transmission networks to 

exceedingly high speeds, large capacities, and great distances. DFO 

requires a great amount of computational effort, and this paper 

presents a novel optimisation technique that is based on the DFO 

approach. The optimisation approach that has been described has the 

potential to significantly cut down on the required quantity of 

mathematical effort that is essential for scenarios involving vast 

distances and enormous DFOs. When compared to the existing method 

that is the way that is most generally used, the proposed approach can 

reduce the complexity of the hardware implementation of commercial 

systems by more than 60%, and the optimisation impact is highlighted 

when the transmission distance is increased. 
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1. INTRODUCTION 

When optical signals that have multiple frequency 

components or multiple model components are sent via an optical 

fibre, the signal pulses expand because of the varying group 

velocities that occur throughout the transmission. This is because 

optical signals have multiple frequency components and optical 

models have numerous model components [1]. The overlapping 

of the front optical pulse with the rear optical pulse creates inter-

symbol interference (ISI), which in turn causes an increased bit 

error rate (BER). This happens as the CD builds up. As a result of 

this, the Chromatic dispersion (CD) is one of the features that 

manages limiting the expansion of optical fibre transmission 

networks to exceedingly high speeds, large capacities, and great 

distances [2]. 

The use of dispersion compensation fibres (DCF) or 

dispersion compensating modules (DCM) to enable CDE in the 

optical domain increases the level of technological complexity as 

well as the overall cost of deployment. Digital coherent receivers 

are typically used in high-speed coherent optical communication 

systems because to their capacity to conduct CDE in the electrical 

domain, recover pulse signal broadening and distortion, and 

conduct dynamic compensation [3].  

Examples of digital filters that can be used for chromatic 

dispersion equalisation (CDE) include the time-domain CD filter 

and the frequency-domain chromatic dispersion equaliser (FD-

CDE) filter [4]. Both filters are time-domain filters and 

frequency-domain filters, respectively.  

The CDE module needs to be streamlined to ease 

improvements in the functionality of coherent receivers [5]. This 

is necessary because the CDE module has a large power 

consumption, and the development of coherent receivers requires 

a considerable number of calculation units. The CDE module 

places high memory demands on the Digital Signal Processor 

(DSP) [6].  

Time aliasing and poor contact with other TD modules may 

prevent significant power savings from being realised [7], even 

though the FD-CDE approach is the best possibility for 

commercial coherent receivers. This is because time aliasing is a 

form of interference that occurs when two different time domains 

interact with each other. The reason for this is that the time and 

frequency of the input sequence need to be transformed before 

they can be used. Because the entire process is conducted in TD, 

the concerns of FFT block size and temporal aliasing are 

sidestepped by TD-CDE. The principal concentration of this 

investigation is directed on TD-CDE and the optimisation 

approaches that are used by it. 

The conventional truncation approach for the infinite and non-

causal TD impulse response function as a rectangular window 

function. This is one way to think about the method. It is possible 

to truncate the function by using this method.  

It is difficult to say how much of an impact the proportion of 

the energy of the primary lobe of the window function to the total 

energy has on the filtering performance after the function has been 

truncated because this proportion is a ratio. Due to the high-

spectrum side lobe that the rectangular window features, it is 

possible to quickly inject interference at high frequencies into the 

window transformation [8].  

This is made possible by the fact that the window 

transformation itself is quite simple. It has been recommended 

that a variety of traditional window functions, such as the FIR 

window, the Blackman-Harris window, and the Rife-Vincent 

window, should be used to further improve the effectiveness of 

the window function [9].  

These windows include the FIR window, the Blackman-Harris 

window, and the Rife-Vincent window. These window functions 

get extremely near to delivering the perfect combination of a 

narrow main lobe, tiny side lobes, and quick attenuation; but they 

do not yet provide this optimal combination of characteristics. Jia 

postulated that a triangular pulse may be produced by putting a 

rectangular pulse through the process of self-convolution [10].  

As an extension of this theory, convolution windows that are 

based on the FIR transform, triangular self-convolution windows, 

and hybrids incorporating rectangle and cosine windows have all 

been published in rapid succession [11]. As a possible extension 

of this idea, convolution windows that are derived from the FIR 

have also been proposed. The method that came before it does 

help in certain respects, but the TD-CDE has not yet been put to 

the test in actual practise.  
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The method that came before it does help. When there are 

more taps on the TD-CDE filter, the accumulative CD of the filter 

has a better chance of reaching a higher value. Achieve CDE in 

ultra-fast long-distance coherent optical communication systems, 

not only is a great amount of mathematical effort needed, but also 

a huge number of TD-CDE filter taps are essential components. 

2. FINITE IMPULSE RESPONSE (FIR) 

DIGITAL FILTER 

When the impulse response of a digital filter can be broken 

down into discrete portions of time, we say that the filter has a 

finite impulse response. The filter does not get any input, the 

impulse response will consistently be a limited value even if there 

is no feedback. 

The illustration of the typical transfer function H(z) for a one-

dimensional FIR digital filter that follows is as follows: 

 H(z)= ( )
1

0

N

n

h n
−

=

 z-n. (1)  

 H(z)=h(0)+h(1)z-1+⋯+h(n)z-(N-1) (2)  

The length N of the filter is what defines the impulse response of 

the filter, which is represented by h(n). The constituent parts of a 

1D FIR filter may be found in the attached file. In this situation, 

the result in the time domain, which is represented by the symbol 

y(n), is. 

 y(n)=x(n)∗h(n) (3)  

The results of the frequency domain are represented by Y(z), 

and they are as follows: 

 Y(z)=X(z)H(z) (4)  

When input signals in the frequency domain are represented 

by X(z) and time-domain signals are represented by the symbol 

x(n), respectively. The following is an example of the frequency 

response of a 1D FIR filter: 

 H(ωk) = ( )
0

N

n

h n
=

 e-jωkn (5)  

where ωk=2πkN; H(ωk) is the complex vector that the Fourier 

transform produces.  

As can be seen in the preceding section, the frequency 

response of the FIR filter is consistent with what was expected. 

Samples of the frequency are taken from a total of N distinct 

locations across the interval [0, π]. 

2.1.1 2D FIR Filter: 

In the interest of simplicity, we will refer to the impulse 

response of a two-dimensional FIR filter as h(n1,n2) in the 

following discussion. 

To be more explicit, in the scenario that the two-dimensional 

transfer function 0≤n1≤N1-1 and 0≤n2≤N2-1, the following 

statements are true with respect to the transfer function H(z1,z2) 

will be, 

 H(z1,z2) = ( )
1 2

11 22

1 2

1 1

1 2

0 0
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n n
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h n n z z
− −

− −

= =

   

A schematic representation of the operational architecture of 

a 2D FIR filter and the output Y(z1,z2) is: 

 Y(z1,z2)=H(z1,z2) . X(z1,z2) (7)  

where  

X(z1,z2) – 2D input.  

The input is in two dimensions is carried out by exchanging 

z1=exp(jω1) and z2=exp(jω2). After performing the multiplication, 

we now get the frequency response of a 2D FIR filter, which can 

be expressed as 

 ( )1 2j jH e e 
 = ( )

1 2

1 1 2 2

1 2

1 1

1 2

0 0

,
N N

j n j n

n n
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− −

= =

    (8)  

3. INFINITE IMPULSE RESPONSE FILTER 

The conventional IIR filter can be represented with the help of 

the difference equation that is given below: 

 y(n) = ( ) ( )
0 0

M N

k k

k k

p x n k q y n k
= =

− − −   (9)  

The pk and qk refer to the filter coefficients. x(n) and y(n) are used 

to denote the filter input and output, respectively. Each of the filter 

coefficients has a value of M and N, with N≥M. 

3.1.1 1D FIR Filter:  

The following is a 1D depiction of the transfer function of an 

IIR filter can be represented as follows: 

 H(z) = 1

0 0

M N
k k

k k

k k

p z q z
− −

= =

+   (10)  

The schematic representation of a one-dimensional IIR filter 

component part. In the time domain, the input and output signals 

are denoted by x(n) and y(n), while in the frequency domain, the 

input and output signals are denoted by X(z) and Y(z).  

3.1.2 2D IIR filter:  

The transfer function of a 2D IIR filter can be found below. In 

a(0,0)=1, then the following represents the 2D transfer function:  

 H(z1,z2) =  

( ) ( )
( )

11 21 11 21

1 2 1 2 0,0

1 2 1 2

, ,

, ,
b a

k k k k

k k R k k R

b k k z z a k k z z
−

− − − −

 

+      (11)  

To find the values of the filter coefficients a(k1,k2) and b(k1,k2) to 

filter the data. The region of support for the function a(k1,k2) that 

does not have the origin (0, 0) is denoted by Ra-(0,0), while the 

region of support for the function b(k1,k2) is denoted by Rb. The 

origin (0, 0) is not included in the region of support for the 

function b(k1,k2). 

3.2 WAVELET FILTER BANK 

A filter bank is a collection of several types of filters that are 

used for the purpose of spectral decomposition and recomposition 

of one- or two-dimensional signals. These filters can be FIR or 

IIR filters, low-pass and high-pass filters, and other sorts of filters 

as well.  

Analysis filters are applied to a piece of information signal at 

the point where it goes through a wavelet filter bank. This happens 

when the signal is conveying information. Filters are both H0 and 

H1, but H0 is a low-pass filter and H1 is a high-pass filter. While 

both H0 and H1 are filters, H0 is a low-pass filter and H1 is a high-

pass filter.  
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After the application of each filter, a sample that is taken twice 

is done so that the results can be compared. Upsampling, filtering, 

and a summation of the subbands are utilised during the synthesis 

phase so that the original signal may be reconstructed. This phase 

also occurs when the signal is being synthesised. 

The following are the findings of the analysis (after any down 

sampling that may have been needed): 

 S(z)=0.5(H0(z12)X(z12)+H0(-z12)X(-z12)) (12)  

 D(z)=0.5(H1(z12)X(z12)+H1(-z12)X(-z12)) (13)  

The result of the computations 

A(z)=12(H0(z)F0(z)+H0(z)F1(z)) and B(z)=12(H0(-z) F0(z)+H0(-

z)F1(z)), respectively, is denoted by the variable Y(z). 

 Y(z)=A(z)X(z)+B(z)X(-z) (14)  

To accurately reconstruct Y(z), it is needed for X(z)=A(z)X(z)+ 

B(z)X(-z), where X(z) might have any value. This equation must 

be satisfied before one can go ahead with the reconstruction of 

Y(z). The following are the prerequisites for an impeccable 

reconstruction: 

 H0(-z)F0(z)+H1(-z)F1(z)=0 (15a)  

 H0(z)F0(z)+H1(z)F1(z)=2 (15b)  

Achieve a full output reconstruction, it is required to verify 

that the synthesis low-pass filter F0 and the synthesis high-pass 

filter F1 are compatible with the analysis filters H0 and H1. 

4. WINDOW FUNCTION WEIGHT 

OPTIMIZATION 

The HDes(ejωT) is used to show the response in the frequency 

domain. In a filter that is perfect, the amplitude-frequency 

characteristic of the passband does not change. To get the most 

out of the CDE effect, it is essential to focus most of the spectral 

energy that the window function produces on the primary lobe. 

This can be achieved by building the filter in such a way that its 

FD response is as close to HDes(ejωT) as is practically possible. 

The filtered spectrum H(k) that is generated by truncating a 

rectangular window will, in contrast to the perfect FD response 

HDes(ejωT), exhibit extremely severe spectrum leakage. This is 

since the rectangular window has been truncated. 

frequency-domain response HDes(ejωT) of an ideal filter has 

a constant amplitude-frequency characteristic in the passband. 

When the FD response of the designed filter is close to 

HDes(ejωT), the CDE effect is better, so the spectral energy of 

the window function is required to be concentrated on the main 

lobe as much as possible. The filtered spectrum H(k) obtained by 

the rectangular window truncation will have serious spectrum 

leakage, which is quite different from the ideal FD response 

HDes(ejωT) 

In this research, the second-order self-convolution window 

function is used since it owns the features of having the shortest 

side lobe as well as the fastest side lobe attenuation. This is since, 

in comparison to other window functions, the window with four 

terms and three orders has the quickest attenuation speed: 

The following is a list of qualities that the TD has:  

 wR(n) = 
1 1,2,...

0

n N

otherwise

=



 (16)  

Aside from the fact that its spectral characteristics are defined 

by, 

 WR(ω)=sin(ωN/2)sin(ω/2)exp(-jωN-0.5) (17)  

The window is a combination window because of the 

advantageous qualities possessed by its side lobes; the TD 

representation of this window is: 

 ωN(n) = ( )
1

1

2
1 cos , 1,2,..., 1

M

cm

m

nm
m n N

N

−

=

 
− = − 

 
  (18)  

The list of constraints M that follows, along with the length of 

the window function (denoted by N), the number of terms that are 

contained within the window function (denoted by Cm), and the 

total number of terms, are as follows: 

 ( )
1 1

0 0

1 0, 1
M M

cm

m m

m cm
− −

= =

− = =    (19)  

In this instance, the spectral function of the rectangular 

window is represented by W. The shape of the window is like that 

of a rectangle. These are the coefficients that have been picked for 

the window to be used. 

This window is of the third order and has four terms and it is 

possible to buy the second-order self-convolution window 

function by performing a self-convolution operation on the four-

term, third-order window. 

 wRN(n)=wN(n)∗wN(n) (20)  

The self-convolution window outperforms the rectangular 

window when it comes to the performance of the side lobes, as 

seen by the comparison between the two windows. It is possible 

to successfully cut the signal with the use of the self-convolution 

window, which is a handy technique that can be beneficial in 

reducing the amount of spectrum leakage.  

Amplitude restoration is something that needs to be done 

because the signal original amplitude in the FD will be different 

after it has been shortened in the TD using the window function.  

The amplitude-restoration coefficient, denoted by h(n), has 

been given a definition that can be used in practise. The fact that 

the amplitude does not vary even when extra window functions 

are added to a window that has the same length as a rectangular 

window. This is referred to as the rectangular window property.  

 Km = A1/A2 (21)  

where, A1 stands for the amplitude of the zero-frequency point 

after the application of a rectangular window, and A2 stands for 

the amplitude of the zero-frequency point after the application of 

further windows. The TD-CDE is only capable of producing a 

certain level of equalisation effect due to the limitations imposed 

by the constant modulus of the tap coefficient.  

If there is no longer a constant value, the following strategy is 

equivalent to using a window function to optimise the weight of 

the CDE taps, which ultimately results in an increase in the 

efficiency of the CDE filter. If there is no longer a constant value, 

the following strategy is analogous to using a window function to 

optimise the weight of the CDE taps. 

5. RESULTS AND DISCUSSION 

The proposed algorithm is confirmed by first putting in place 

a coherent optical communication system using the programme 
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Optisystem 15, and then doing so through the implementation of 

DSP using components from MATLAB. In the graphic, you can 

see an example of how this procedure works. 

This is achieved by using a square root raised cosine (SRRC) 

pulse signal generator at the transmitter and an SRRC filter at the 

receiver. Both components are in the receiver. The method of 

matched filtering is utilised by the system. The fibre link is 

formed of a loop controller, an optical filter, and optical fibre that 

extends for 100 kilometres.  

In addition, there is twenty decibels of gain correction and six 

decibels of noise that are present in the system. Moving the 

sequence from the ADC, which samples it at twice the symbol 

rate, to the MATLAB part is the final stage in the development of 

the DSP. The study considers multiple quantization levels M, 

investigates how the bit error rate (BER) changes with 

transmission distance for a variety of different filters, and 

compare the chromatic dispersion equalisation (CDE) 

performance of the filter.  

In an actual connection, the signal OSNR changes depending 

on the link length. The minimum OSNR that must be achieved to 

reach the target bit error rate (BER) is computed. The rate at 

which bits are dropped during transmission is referred to as the bit 

error rate (BER).  

Table.1. Parameters 

Parameter Value 

Wavelength 1450 nm 

Sequence Length 131000 

Symbol Rate 26 GBaud 

Modulation Format QPSK/32QAM 

Roll-off Factor 0.35/1 

Chromatic Dispersion Coefficient 16.5 ps/nm/km 

Group Velocity Dispersion Coefficient 0.2 ps/km 

Width 0.1 MHz 

Attenuation Coefficient 0.2 db/km 

Signal Power 10 dbm 

In the simulation experiment that is discussed in this paper, we 

hold the OSNR constant while taking into consideration the 

natural variation in BER. To guarantee that we would be able to 

generate a particular amount of noise within the simulation, we 

arranged the setup OSNR component in such a way that it would 

run after the fibre link transmission. This was done to ensure that 

we would be able to do so.  

The results of the four filters that used DP-QPSK and DP-

16QAM modulations and had an OSNR of 15 dB and 21 dB, 

respectively. The quality factor Q so that an objective 

investigation of the performance reduction brought on by 

quantization may be carried out. This factor is defined as the ratio 

of the difference in BER before and after quantization to the BER 

before quantization. This ratio is referred to as the BER factor.  

Table.2. degree of correlation 

L/km N M mul add 

100 200 8 95.30 41.00 

12 94.03 40.51 

16 92.76 39.92 

200 400 

8 96.58 41.49 

12 95.99 41.19 

16 95.30 41.00 

300 600 

8 96.97 41.68 

12 96.58 41.29 

16 96.18 41.29 

The Table.2 illustrates that anytime the number of 

quantization stages is raised, the computational complexity of the 

optimised approach will, on average, experience a slight increase. 

This is the case even when the fibre transmission distance is held 

constant at the value shown in the table. Using computer 

optimisation, the complexity of the operation known as real-

number multiplication (mul) can still be reduced by more than 

91%.  

Increasing the quantization order is one method by which the 

performance of the approach can be considerably enhanced. Other 

methods are also discussed. There is an inverse relationship 

between the transmission distance and the reduction in the 

computation cost of the optimised technique when the 

quantization step M is held constant. This relationship exists 

because there is a correlation between the two variables.  

In conclusion, the optimisation technique that was described 

has the potential to significantly cut down on the required quantity 

of computational effort that is essential for scenarios involving 

vast distances and enormous CDs. Even though it was essential to 

make a performance sacrifice and M = 16 was used for the 

quantization phases, the optimisation indices mul and add 

nevertheless show effective optimisation. This is the case even 

though M = 16 was used for the quantization phases. 

6. CONCLUSION 

There is a 90% decrease in the real-number multiplication 

operation and a 40% decrease in the real-number addition 

operation when the quantization coefficient M is equal to 16. 

Despite this, there is a 4% decrease in performance when the 

quantization coefficient M = 16. When compared to the proposed 

method, which is the way that is most generally used, the 

proposed approach that has been presented can reduce the 

complexity of the hardware implementation of commercial 

systems by more than 55%, and the optimisation impact is 

highlighted when the transmission distance is increased. This is 

because the method that was proposed considers a certain 

equilibrium performance loss in the long-distance optical fibre 

link.  
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