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Abstract 

This paper deals with the design of a tree logic machine learning system 

agent that is based on a hybrid technique that blends graph handmade 

properties with graph neural network embeddings. It is a combination 

of traditional reinforcement learning and deep learning that involves 

the substitution of tree logic machine learning system in the learning 

process. The proposed agent uses a new EMAC-TLML system that is 

compatible with the inference made by deep learning networks that use 

8 bits of precision, and we demonstrate that this compatibility works 

quite well. It has been demonstrated that the proposed research uses 

resources and produces energy delay products in a manner that is 

analogous to that of their floating-point counterparts. The solution that 

has been suggested provides a greater maximum working frequency in 

contrast to the floating-point method. 
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1. INTRODUCTION 

The quality of the VLSI placement has significant 

repercussions on the quality of the design as well as the 

completion of the design in the procedures that come after it. 

These procedures are referred to as the physical design. However, 

recent research [1] has shown that the placers that are now in use 

are unable to produce solutions that are nearly ideal. This is the 

case because the placers cannot find the optimal solution [2].  

The placement job is to search the chip for regions that are 

suitable for the placement of the various types of cells and then 

find those areas. The primary goal of today modern placers is to 

reduce the overall interconnect length, which is defined by the 

estimated half perimeter wire length (HPWL) between each 

adjacent pair of cells. This measure is used to characterise the total 

interconnect length [3]. 

The users of the EDA tools can modify the parameters of the 

algorithms that are used within the tools so that they can obtain 

the power performance area (PPA) that they require. The authors 

have made the startling discovery that the time necessary to adjust 

and operate a commercial placer after it has been initially created 

takes far longer than the time necessary to develop the system 

itself [4]. The ever-increasing complexity of both the tools 

themselves and the flows that they are meant to support is 

demonstrated by the fact that contemporary location and route 

tools contain more than 10,000 distinct parameter options. The 

most modern nodes of technology are not only expensive but also 

dangerous, and as a result, their implementation requires the 

assistance of qualified professionals [5]. 

When tuning, one will frequently rely on experience and 

domain knowledge because the design space of the parameters is 

typically much too wide and complex to be explored by a single 

human engineer working alone [6]. On the other hand, it is not 

impossible for the interactions between the many different 

components and the PPA that is produced as a result to be 

convoluted or to run counter to what one would anticipate.  

As a result of the fact that placement engines are dependent on 

the rules and metaheuristics that were developed by humans, it is 

feasible for these systems to exhibit tendencies that are 

nondeterministic. Additionally, it is not always the case that the 

aim that is specified for a parameter is the same as the actual 

metric that is being measured. This is something else to keep in 

mind when working with parameters [7]. 

It is possible to improve the quality of results (QoR) in EDA 

tools like [8] and [9] for FPGA and high-level synthesis (HLS) 

compilation flows with the assistance of a cutting-edge tool 

known as auto-tuner [10]. It does this by coordinating a few 

conventional approaches to optimisation and by employing a 

method to carry out an effective exploration of the design space.  

These methods are based on heuristics that are way too 

generic, and therefore, they ignore the details that make each 

netlist one of a kind. The parameter needs to begin all over again 

from the very beginning with each netlist.  

We can avoid this limitation in our RL agent by employing a 

hybrid technique that blends graph handmade properties with 

graph neural network embeddings. This allows us to overcome the 

issue. As a result of this, you will be able to reduce costs and save 

time during the placement phase of the project by adopting a 

tuning method that is more adaptable and applying it across 

several different netlists [11]. 

By training and inferring the network using a numerical 

representation that has a low level of precision, it is possible to 

lessen the weight of a trained network without having to resort to 

quantization as a solution [12]. This is made possible by the fact 

that the weight can be reduced. In earlier studies, comparisons and 

contrasts were made between low-precision and high-precision 

floating-point implementations of DNN inference.  

This research compares a numerical representation with 

varying bit-widths, which leads to an inaccurate picture of the 

effectiveness of the network. To become an expert in an 

optimisation strategy for identifying placement parameters that, 

when applied, result in the minimum wire length that is feasible 

after placement is the ultimate objective of our framework.  

2. KERNEL ADAPTIVE FILTERS 

Traditional adaptive filter methods such as LMS, RLS, and 

their variants take it as a given that there is linearity between the 

input un and the goal output dn when they are used to activities 
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such as system identification and regression. This is because these 

approaches assume that there is a relationship between the two 

variables. When we apply this formula to the facts that have been 

presented to us, we get the result: 

 *T

n n nd u h v= + ,  (1)  

where h∗ ∈ RL is the amount that is unknown to us. It is necessary 

to compute the parameter vector h, and un = [un, un-1,...,un-L+1]T. T 

is a vector that represents the input signal, and n is the variance-

squared noise σν2 that is produced because of the observations; 

this noise has a mean value of zero. Nonlinear models are 

typically found in a wide variety of engineering problems in 

applications that take place in the real world. The equation can be 

used to model input-output interactions,  

 dn = f(un) + νn  (2)  

where the function f : RL → R is a continuous nonlinear function. 

The ability of linear adaptive filters to deal with input-output 

interactions that are as complex as these is severely restricted. As 

a result of the study that has been conducted on this subject, a 

number of different approaches to estimating f(·) from the data 

pairs {ui}i=1:n have been proposed. These approaches have been 

discussed.  

The kernel adaptive filters that operate in the replicating 

kernel Hilbert space (RKHS) is becoming increasingly common 

as a direct result of the relative simplicity that is required to put 

them into mathematical implementation. 

Kernel approaches involve mapping the input regressors ui = 

1:n onto a high-dimensional feature space that is denoted by the 

symbol φ(ui). This is done so that the inner products of a nonlinear 

function can be calculated. For a kernel function to fulfil the 

requirements of Mercer criterion, it must be continuous, have 

symmetric behaviour, and have a positive-definite value. 

 κ(·,·) : RL×RL → R (3) 

Even if the mapping φ(·) is unknown, it is possible to construct 

inner products in higher-dimensional space by evaluating kernel 

functions and using those results in the construction. If a kernel 

can satisfy the requirements and then it is referred to as a 

replicating kernel. 

 κ(ui,un) = φT(ui)φ(un).  (4) 

Given that H provides the specification of the replicating 

kernel, we shall refer to the corresponding inner product as H.  
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The ui is provided for the user interface evaluation. This work 

is solely concerned with the Gaussian kernel, which is a well-

known Mercer kernel due to the universal approximation 

capabilities that it provides. This kernel is the only item that this 

work concentrates on. When we consider the pair ui, we get the 

result, which is the assessment of the output of the nonlinear 

model. The representer theorem is given as below: 
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Since the model order is increasing, kernel approaches are 

becoming increasingly inappropriate for usage in real-time 

applications. Several different sparsification processes, which can 

be used to acquire a lexicon of constant size, can be put into effect 

to get over this issue. These procedures can be used to learn 

words.  

These sparsification algorithms make use of a similarity 

metric that compares the candidate to the current vocabulary to 

decide whether to include the candidate regressor in the existing 

dictionary.  

These methodologies are not appropriate for usage in dynamic 

situations since dictionary training needs to be performed every 

time the underlying system experiences a change. This makes it 

impossible to employ these approaches. 

2.1 TLML 

The method of machine learning known as multi-agent 

reinforcement learning (MARL) needs a group of agents to 

collaborate with one another to maximise an expected reward 

signal that is produced by the agent interactions with a certain 

environment. This signal is formed because of the agent 

interactions with the environment.  

The Markov game (MG) model is one that is used rather 

frequently to describe scenarios such as the one that we are 

looking at now. The agents start off knowing nothing at all about 

this model; hence, they make the decision to learn as much as they 

possibly can about it to improve their chances of effectively 

obtaining incentives and carrying out the policies defined by the 

model. 

In an n-agent Markov game, the value of M is the tuple S, 

 M = ⟨S, A1 ,…,An, P, R1,…,Rn, 𝛾⟩ (7) 

where S represents the state space, A1 ,…,An, P, R1,…,Rn, 
represent the initial circumstances, and Rn represents the ultimate 

payout and S is the state space.  

Ai denotes the action space of any agent i, where i can have 

any value between i ≤ n; this is because i can have any value 

between i ≤ n. 

P is the transition function, where Pa ∈ ss′ is the probability of 

moving from state s∈S to state s′∈S via the joint action a = ⟨a1 

,…,an⟩, where all ai∈Ai are the simultaneous actions done by the 

agents, and where P is the chance of shifting from state s to state 

s′.  

Every single MARL agent works in accordance with the 

procedure that she has laid out for herself. Deterministic policies 

are utilised throughout the entirety of this body of work, and the 

policy of agent i is defined as :i iS A → . Every agent is always 

looking for the optimal strategy that will maximise the rewards 

are anticipating obtaining and has found the right one. To sum 

everything up, the representation of a group policy is the tuple 

1 2, ,..., n   = . 

The research provides a significant emphasis on fully 

cooperative problems, which are situations in which all the agents 

work together to increase the ultimate payoff for the group. We 

recommend utilising the Independent Q-Learning (IQL) method 

since it is straightforward to construct as well as the fact that it is 

a extension of the tabular Q-Learning that was usually utilised in 

previous single-agent shielding-based techniques.  

According to IQL, the values of the state-action pairs for agent 

i ought to be modified to reflect the following changes: The 

learning rate is between 0 and 1 is defined as below:  
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where 0 < 𝛼 ≤ 1 is the learning rate. 

When an agent that uses IQL has finished the learning process, 

the optimum policy for that agent will be to return to the state-

action pair in her Q-table that has the greatest Q-value. This will 

be the agent default state. Deep reinforcement learning, which is 

a blend of traditional reinforcement learning and deep learning, is 

utilised in this work. The scalability of conventional tabular RL 

algorithms is going to be significantly improved because of our 

work. 

Independent deep Q-learning, commonly known as IDQL, is 

an extension of IQL that involves the substitution of neural 

networks for the Q-tables used by the agents in the learning 

process. Safeguard RL. Our method makes use of a shield to make 

certain that it abides by all the relevant safety rules, both in actual 

use and when being tested. The agents are protected by a shield, 

which stops them from taking any acts that could put them in 

danger if the shield ever malfunctions. 

The shield is frequently viewed as a go-between for the agents 

and the environment, and its primary objective is to restrict the 

agents to actions that are safe. This is since the shield one and only 

function is to shield the agents from the surrounding environment. 

It is crucial to bear in mind that the ideal shield would have a 

minimal level of intrusiveness and would not hinder the agent 

capacity to freely study their surroundings.  

If this is the case, the shield may make it difficult for the agents 

to determine which course of action will have the greatest impact. 

As a result of this, a wide variety of various kinds of protection 

measures incorporate a mechanism that punishes agents for 

trespassing in the system. 

2.2 EXACT MULTIPLY-AND-ACCUMULATE 

(EMAC)  

The operation that is known as multiply-and-accumulate 

(MAC) is an action that is carried out by each neuron in a DRL to 

carry out a weighted sum of the inputs that it receives. This is an 

imprecise operation that, in most implementations, leads in an 

increase in inaccuracy of rounding or truncation. This is because 

most implementations round or truncate the numbers.  

The EMAC can get around this problem by utilising a 

modified version of the Kulisch accumulator to carry out an 

aggregation of the products of all layers in advance of the 

insertion of an error. This allows the EMAC to avoid the 

occurrence of the problem. When precision is low, there is an 

increased need to cut down on the number of errors that crop up 

in a particular location. A fixed-point value is accumulated in a 

broad register throughout the processing of each EMAC module. 

After that, during a delayed stage, the value is rounded to the 

nearest integer and stored. Calculating the accumulator width, 

also known as Wa for k multiplications can be done as follows:   

 Wa = ⌈log2(k)⌉ + 2 × (l/log2max(min(m))) + 2 (9)  

where, max and min refer to the maximum and minimum value 

magnitudes for a particular numerical system, while l refers to the 

length of the accumulator. The value that stands for the width of 

the accumulator is denoted by Wa.  

Multiplication, accumulation, and rounding are operations 

that are carried out in turn on each EMAC as part of a pipeline 

that operates in a sequential fashion. The fourth step of 

development involves the creation of a fundamental activation 

function for the neurons in the buried layer. This function may be 

represented as: 

 ReLU(x) = max(x, 0). (10) 

3. EXPERIMENTS 

As can be seen in Table 5, our agent training and evaluation 

will centre on the following benchmark designs: 15 from 

OpenCores, two from the ISPD 2012 contest, and two RISC-V 

single cores. The first eleven are utilised for teaching purposes, 

while the remaining four are submitted to an examination. The 

Synopsys Design Compiler is utilised to facilitate the process of 

doing the synthesis of the RTL netlists. The 28nm technology 

node that TSMC must provide is the one that we employ. 

The placements are performed with the help of the software 

version Cadence Innovus 17.1. The floor layouts have an aspect 

ratio of 1, and the proper fixed clock frequencies have been 

chosen for the various clocks. The manual placement of memory 

macros in advance is required by both RocketTile and OpenPiton 

Core. The parameter max density, which represents the ratio of 

the total cell area to the floorplan area, has a minimum value that 

has been assigned to it. This is done to ensure that the best possible 

location is obtained. The IO pins will be positioned in the 

intermediate layer, which is located between layer 4 and layer 6 

and will be done automatically by the tool. 

 

The ability of our agent to generalise is evaluated by observing 

how well it performs on four different test networks that it has 

never been acquainted with previously. The agent will eventually 

enhance a random starting parameter set through the process of 

reinforcement learning. This will be accomplished by the agent 

repeatedly selecting the action that would result in the greatest 

anticipated value. 

The actions are deterministic, the parameters that were 

generated are already known and have been transmitted back to 

the network. This information can no longer be changed. We are 

going to continue to iterate until the estimated value has reduced 

for three iterations in a row, at which point we are going to revert 

to the settings that produce the best results. It is feasible to 

discover the set of parameters that define a good candidate by 

making use of this technique. This allows one to avoid the 

obligation of carrying out an actual placement. Following the 

selection of a particular set of parameters, we carry out a single 

placement and make a notation of the wirelength that is generated 

as a direct result of this action. 

On the other hand, for the TLML to be able to acquire the 

reward signal and suggest a new set of parameters, it is necessary 

for actual placements to be finished. This is one of the 

requirements. The TLML has been provided with the option to 

carry out a total of 50 rounds of iteration to discover the optimal 

wire length. 

We have made the surprising discovery that a single 

installation of our TLML agent is all that is required to produce 

dramatically improved wire lengths. The Table.1-Table.4 
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provides TLML recommendations for the best possible values 

that can be used for each of many parameters. It should come as 

no surprise that the two optimizers, WL, and congestion, used 

different approaches to reduce the amount of HPWL that was 

produced as in Table.1-Table.3. 

Table.1. Hardware Complexity 

Component Area (mm2) Complexity (kGE) Percentage (%) 

10 0.0765 59.9613 44.0872 

20 0.0446 34.6053 25.4528 

30 0.0358 27.7288 20.3874 

40 0.0048 3.8838 2.8571 

50 0.1617 126.1792 92.7845 

60 0.0010 0.9782 0.7167 

70 0.0048 3.7579 2.7603 

80 0.0019 1.2785 0.9395 

90 0.0077 6.0145 4.4165 

10 0.1695 132.1937 96.8523 

Table.2. Total Instruction per Cycle 

Round 
Number of  

Instructions (×10-7) 

Deviation 

(×10-7) 

Deviation 

(%) 

10 7.719 6.935 0.000 

20 7.913 1.598 0.019 

30 9.598 1.501 0.019 

40 4.378 5.627 0.010 

50 1.801 3.826 2.063 

60 2.024 8.174 3.913 

70 1.104 1.201 0.107 

80 3.632 1.356 0.039 

90 0.988 5.559 0.058 

100 2.354 8.591 0.039 

120 1.153 4.320 0.039 

140 1.230 4.630 0.039 

160 4.610 6.818 0.010 

Table.3. Area and Energy 

Design Area Delay Power Energy 
ADP  

(×10-7) 

EDP  

(×10-8) 

10 157.48 2.20 44.75 101.60 3.57 2.31 

20 91.72 1.13 24.21 28.38 1.08 3.32 

30 98.60 1.14 24.70 29.06 1.16 3.44 

40 87.36 1.14 23.34 27.51 1.03 3.24 

50 91.14 1.15 24.12 28.67 1.08 3.41 

60 90.17 1.14 24.12 28.57 1.07 3.36 

70 109.44 1.14 27.89 32.83 1.29 3.88 

80 109.73 1.08 26.34 29.44 1.23 3.31 

90 94.53 1.08 23.63 26.44 1.06 2.96 

100 83.68 1.15 22.86 27.22 1.00 3.23 

120 92.01 1.08 23.63 26.44 1.03 2.96 

140 102.13 1.08 24.985 27.94 1.145 3.135 

160 87.845 1.115 23.245 26.83 1.015 3.095 

4. CONCLUSION 

We show that the new EMAC-TLML system is compatible 

with the inference made by deep learning networks that use 8 bits 

of precision, and we demonstrate that this compatibility works 

quite well. It has been demonstrated that the proposed research 

uses resources and produces energy delay products in a manner 

that is analogous to that of the floating-point counterparts. The 

solution that has been suggested provides a greater maximum 

working frequency in contrast to the floating-point method.  

The performance reduction that is brought on by direct 

quantization to ultra-low precision is substantially less severe as 

compared to that which is brought on by fixed-point. In addition, 

EMAC-TLML consistently matches the floating points across a 

broad variety of datasets. The capabilities of the underlying 

technology have a direct consequence on the possibilities that can 

be realised by different kinds of learning algorithms, and these 

possibilities are directly influenced by the capabilities of the 

underlying technology. 
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