
T GOBINATH et al.: ANALYSING THE PERFORMANCE TRADEOFFS OF PARAMETERIZED VLSI ARCHITECTURE USING TREE-LOGIC MACHINE LEARNING SYSTEM

DOI: 10.21917/ijme.2023.0259

1498

ANALYSING THE PERFORMANCE TRADEOFFS OF PARAMETERIZED VLSI

ARCHITECTURE USING TREE-LOGIC MACHINE LEARNING SYSTEM

T. Gobinath1, A. Sumalatha2, M. Kumar3 and M. Dharani4
1Department of Computer Science and Engineering, Chettinad College of Engineering and Technology, India

2Department of Computer Science, Kristu Jayanti College, India
3Department of Electronics and Communication Engineering, Chettinad College of Engineering and Technology, India

4Department of Electronics and Communication Engineering, KSR Institute for Engineering and Technology, India

Abstract

This paper deals with the design of a tree logic machine learning system

agent that is based on a hybrid technique that blends graph handmade

properties with graph neural network embeddings. It is a combination

of traditional reinforcement learning and deep learning that involves

the substitution of tree logic machine learning system in the learning

process. The proposed agent uses a new EMAC-TLML system that is

compatible with the inference made by deep learning networks that use

8 bits of precision, and we demonstrate that this compatibility works

quite well. It has been demonstrated that the proposed research uses

resources and produces energy delay products in a manner that is

analogous to that of their floating-point counterparts. The solution that

has been suggested provides a greater maximum working frequency in

contrast to the floating-point method.

Keywords:

Machine Learning, Tree Logic, Performance Trade-off, VLSI

1. INTRODUCTION

The quality of the VLSI placement has significant

repercussions on the quality of the design as well as the

completion of the design in the procedures that come after it.

These procedures are referred to as the physical design. However,

recent research [1] has shown that the placers that are now in use

are unable to produce solutions that are nearly ideal. This is the

case because the placers cannot find the optimal solution [2].

The placement job is to search the chip for regions that are

suitable for the placement of the various types of cells and then

find those areas. The primary goal of today modern placers is to

reduce the overall interconnect length, which is defined by the

estimated half perimeter wire length (HPWL) between each

adjacent pair of cells. This measure is used to characterise the total

interconnect length [3].

The users of the EDA tools can modify the parameters of the

algorithms that are used within the tools so that they can obtain

the power performance area (PPA) that they require. The authors

have made the startling discovery that the time necessary to adjust

and operate a commercial placer after it has been initially created

takes far longer than the time necessary to develop the system

itself [4]. The ever-increasing complexity of both the tools

themselves and the flows that they are meant to support is

demonstrated by the fact that contemporary location and route

tools contain more than 10,000 distinct parameter options. The

most modern nodes of technology are not only expensive but also

dangerous, and as a result, their implementation requires the

assistance of qualified professionals [5].

When tuning, one will frequently rely on experience and

domain knowledge because the design space of the parameters is

typically much too wide and complex to be explored by a single

human engineer working alone [6]. On the other hand, it is not

impossible for the interactions between the many different

components and the PPA that is produced as a result to be

convoluted or to run counter to what one would anticipate.

As a result of the fact that placement engines are dependent on

the rules and metaheuristics that were developed by humans, it is

feasible for these systems to exhibit tendencies that are

nondeterministic. Additionally, it is not always the case that the

aim that is specified for a parameter is the same as the actual

metric that is being measured. This is something else to keep in

mind when working with parameters [7].

It is possible to improve the quality of results (QoR) in EDA

tools like [8] and [9] for FPGA and high-level synthesis (HLS)

compilation flows with the assistance of a cutting-edge tool

known as auto-tuner [10]. It does this by coordinating a few

conventional approaches to optimisation and by employing a

method to carry out an effective exploration of the design space.

These methods are based on heuristics that are way too

generic, and therefore, they ignore the details that make each

netlist one of a kind. The parameter needs to begin all over again

from the very beginning with each netlist.

We can avoid this limitation in our RL agent by employing a

hybrid technique that blends graph handmade properties with

graph neural network embeddings. This allows us to overcome the

issue. As a result of this, you will be able to reduce costs and save

time during the placement phase of the project by adopting a

tuning method that is more adaptable and applying it across

several different netlists [11].

By training and inferring the network using a numerical

representation that has a low level of precision, it is possible to

lessen the weight of a trained network without having to resort to

quantization as a solution [12]. This is made possible by the fact

that the weight can be reduced. In earlier studies, comparisons and

contrasts were made between low-precision and high-precision

floating-point implementations of DNN inference.

This research compares a numerical representation with

varying bit-widths, which leads to an inaccurate picture of the

effectiveness of the network. To become an expert in an

optimisation strategy for identifying placement parameters that,

when applied, result in the minimum wire length that is feasible

after placement is the ultimate objective of our framework.

2. KERNEL ADAPTIVE FILTERS

Traditional adaptive filter methods such as LMS, RLS, and

their variants take it as a given that there is linearity between the

input un and the goal output dn when they are used to activities

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2023, VOLUME: 09, ISSUE: 01

1499

such as system identification and regression. This is because these

approaches assume that there is a relationship between the two

variables. When we apply this formula to the facts that have been

presented to us, we get the result:

 *T

n n nd u h v= + , (1)

where h∗ ∈ RL is the amount that is unknown to us. It is necessary

to compute the parameter vector h, and un = [un, un-1,...,un-L+1]T. T

is a vector that represents the input signal, and n is the variance-

squared noise σν2 that is produced because of the observations;

this noise has a mean value of zero. Nonlinear models are

typically found in a wide variety of engineering problems in

applications that take place in the real world. The equation can be

used to model input-output interactions,

 dn = f(un) + νn (2)

where the function f : RL → R is a continuous nonlinear function.

The ability of linear adaptive filters to deal with input-output

interactions that are as complex as these is severely restricted. As

a result of the study that has been conducted on this subject, a

number of different approaches to estimating f(·) from the data

pairs {ui}i=1:n have been proposed. These approaches have been

discussed.

The kernel adaptive filters that operate in the replicating

kernel Hilbert space (RKHS) is becoming increasingly common

as a direct result of the relative simplicity that is required to put

them into mathematical implementation.

Kernel approaches involve mapping the input regressors ui =

1:n onto a high-dimensional feature space that is denoted by the

symbol φ(ui). This is done so that the inner products of a nonlinear

function can be calculated. For a kernel function to fulfil the

requirements of Mercer criterion, it must be continuous, have

symmetric behaviour, and have a positive-definite value.

 κ(·,·) : RL×RL → R (3)

Even if the mapping φ(·) is unknown, it is possible to construct

inner products in higher-dimensional space by evaluating kernel

functions and using those results in the construction. If a kernel

can satisfy the requirements and then it is referred to as a

replicating kernel.

 κ(ui,un) = φT(ui)φ(un). (4)

Given that H provides the specification of the replicating

kernel, we shall refer to the corresponding inner product as H.

    
1

1
,

n

i i ni
u d u

−

=
. (5)

The ui is provided for the user interface evaluation. This work

is solely concerned with the Gaussian kernel, which is a well-

known Mercer kernel due to the universal approximation

capabilities that it provides. This kernel is the only item that this

work concentrates on. When we consider the pair ui, we get the

result, which is the assessment of the output of the nonlinear

model. The representer theorem is given as below:

 ()
1

1

,
n

n i n i

i

d u u 
−

=

= (6)

Since the model order is increasing, kernel approaches are

becoming increasingly inappropriate for usage in real-time

applications. Several different sparsification processes, which can

be used to acquire a lexicon of constant size, can be put into effect

to get over this issue. These procedures can be used to learn

words.

These sparsification algorithms make use of a similarity

metric that compares the candidate to the current vocabulary to

decide whether to include the candidate regressor in the existing

dictionary.

These methodologies are not appropriate for usage in dynamic

situations since dictionary training needs to be performed every

time the underlying system experiences a change. This makes it

impossible to employ these approaches.

2.1 TLML

The method of machine learning known as multi-agent

reinforcement learning (MARL) needs a group of agents to

collaborate with one another to maximise an expected reward

signal that is produced by the agent interactions with a certain

environment. This signal is formed because of the agent

interactions with the environment.

The Markov game (MG) model is one that is used rather

frequently to describe scenarios such as the one that we are

looking at now. The agents start off knowing nothing at all about

this model; hence, they make the decision to learn as much as they

possibly can about it to improve their chances of effectively

obtaining incentives and carrying out the policies defined by the

model.

In an n-agent Markov game, the value of M is the tuple S,

 M = ⟨S, A1 ,…,An, P, R1,…,Rn, 𝛾⟩ (7)

where S represents the state space, A1 ,…,An, P, R1,…,Rn,
represent the initial circumstances, and Rn represents the ultimate

payout and S is the state space.

Ai denotes the action space of any agent i, where i can have

any value between i ≤ n; this is because i can have any value

between i ≤ n.

P is the transition function, where Pa ∈ ss′ is the probability of

moving from state s∈S to state s′∈S via the joint action a = ⟨a1

,…,an⟩, where all ai∈Ai are the simultaneous actions done by the

agents, and where P is the chance of shifting from state s to state

s′.

Every single MARL agent works in accordance with the

procedure that she has laid out for herself. Deterministic policies

are utilised throughout the entirety of this body of work, and the

policy of agent i is defined as :i iS A → . Every agent is always

looking for the optimal strategy that will maximise the rewards

are anticipating obtaining and has found the right one. To sum

everything up, the representation of a group policy is the tuple

1 2, ,..., n   = .

The research provides a significant emphasis on fully

cooperative problems, which are situations in which all the agents

work together to increase the ultimate payoff for the group. We

recommend utilising the Independent Q-Learning (IQL) method

since it is straightforward to construct as well as the fact that it is

a extension of the tabular Q-Learning that was usually utilised in

previous single-agent shielding-based techniques.

According to IQL, the values of the state-action pairs for agent

i ought to be modified to reflect the following changes: The

learning rate is between 0 and 1 is defined as below:

T GOBINATH et al.: ANALYSING THE PERFORMANCE TRADEOFFS OF PARAMETERIZED VLSI ARCHITECTURE USING TREE-LOGIC MACHINE LEARNING SYSTEM

1500

 () ()
()

()

,

, 1 , 1

,

, max ,
, ,

,

i i i i t i

i t i i t i

i t i

r t a AQ s
Q s a Q s a

Q s a

 
+ +

  +   
 +  

−  

 (8)

where 0 < 𝛼 ≤ 1 is the learning rate.

When an agent that uses IQL has finished the learning process,

the optimum policy for that agent will be to return to the state-

action pair in her Q-table that has the greatest Q-value. This will

be the agent default state. Deep reinforcement learning, which is

a blend of traditional reinforcement learning and deep learning, is

utilised in this work. The scalability of conventional tabular RL

algorithms is going to be significantly improved because of our

work.

Independent deep Q-learning, commonly known as IDQL, is

an extension of IQL that involves the substitution of neural

networks for the Q-tables used by the agents in the learning

process. Safeguard RL. Our method makes use of a shield to make

certain that it abides by all the relevant safety rules, both in actual

use and when being tested. The agents are protected by a shield,

which stops them from taking any acts that could put them in

danger if the shield ever malfunctions.

The shield is frequently viewed as a go-between for the agents

and the environment, and its primary objective is to restrict the

agents to actions that are safe. This is since the shield one and only

function is to shield the agents from the surrounding environment.

It is crucial to bear in mind that the ideal shield would have a

minimal level of intrusiveness and would not hinder the agent

capacity to freely study their surroundings.

If this is the case, the shield may make it difficult for the agents

to determine which course of action will have the greatest impact.

As a result of this, a wide variety of various kinds of protection

measures incorporate a mechanism that punishes agents for

trespassing in the system.

2.2 EXACT MULTIPLY-AND-ACCUMULATE

(EMAC)

The operation that is known as multiply-and-accumulate

(MAC) is an action that is carried out by each neuron in a DRL to

carry out a weighted sum of the inputs that it receives. This is an

imprecise operation that, in most implementations, leads in an

increase in inaccuracy of rounding or truncation. This is because

most implementations round or truncate the numbers.

The EMAC can get around this problem by utilising a

modified version of the Kulisch accumulator to carry out an

aggregation of the products of all layers in advance of the

insertion of an error. This allows the EMAC to avoid the

occurrence of the problem. When precision is low, there is an

increased need to cut down on the number of errors that crop up

in a particular location. A fixed-point value is accumulated in a

broad register throughout the processing of each EMAC module.

After that, during a delayed stage, the value is rounded to the

nearest integer and stored. Calculating the accumulator width,

also known as Wa for k multiplications can be done as follows:

 Wa = ⌈log2(k)⌉ + 2 × (l/log2max(min(m))) + 2 (9)

where, max and min refer to the maximum and minimum value

magnitudes for a particular numerical system, while l refers to the

length of the accumulator. The value that stands for the width of

the accumulator is denoted by Wa.

Multiplication, accumulation, and rounding are operations

that are carried out in turn on each EMAC as part of a pipeline

that operates in a sequential fashion. The fourth step of

development involves the creation of a fundamental activation

function for the neurons in the buried layer. This function may be

represented as:

 ReLU(x) = max(x, 0). (10)

3. EXPERIMENTS

As can be seen in Table 5, our agent training and evaluation

will centre on the following benchmark designs: 15 from

OpenCores, two from the ISPD 2012 contest, and two RISC-V

single cores. The first eleven are utilised for teaching purposes,

while the remaining four are submitted to an examination. The

Synopsys Design Compiler is utilised to facilitate the process of

doing the synthesis of the RTL netlists. The 28nm technology

node that TSMC must provide is the one that we employ.

The placements are performed with the help of the software

version Cadence Innovus 17.1. The floor layouts have an aspect

ratio of 1, and the proper fixed clock frequencies have been

chosen for the various clocks. The manual placement of memory

macros in advance is required by both RocketTile and OpenPiton

Core. The parameter max density, which represents the ratio of

the total cell area to the floorplan area, has a minimum value that

has been assigned to it. This is done to ensure that the best possible

location is obtained. The IO pins will be positioned in the

intermediate layer, which is located between layer 4 and layer 6

and will be done automatically by the tool.

The ability of our agent to generalise is evaluated by observing

how well it performs on four different test networks that it has

never been acquainted with previously. The agent will eventually

enhance a random starting parameter set through the process of

reinforcement learning. This will be accomplished by the agent

repeatedly selecting the action that would result in the greatest

anticipated value.

The actions are deterministic, the parameters that were

generated are already known and have been transmitted back to

the network. This information can no longer be changed. We are

going to continue to iterate until the estimated value has reduced

for three iterations in a row, at which point we are going to revert

to the settings that produce the best results. It is feasible to

discover the set of parameters that define a good candidate by

making use of this technique. This allows one to avoid the

obligation of carrying out an actual placement. Following the

selection of a particular set of parameters, we carry out a single

placement and make a notation of the wirelength that is generated

as a direct result of this action.

On the other hand, for the TLML to be able to acquire the

reward signal and suggest a new set of parameters, it is necessary

for actual placements to be finished. This is one of the

requirements. The TLML has been provided with the option to

carry out a total of 50 rounds of iteration to discover the optimal

wire length.

We have made the surprising discovery that a single

installation of our TLML agent is all that is required to produce

dramatically improved wire lengths. The Table.1-Table.4

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2023, VOLUME: 09, ISSUE: 01

1501

provides TLML recommendations for the best possible values

that can be used for each of many parameters. It should come as

no surprise that the two optimizers, WL, and congestion, used

different approaches to reduce the amount of HPWL that was

produced as in Table.1-Table.3.

Table.1. Hardware Complexity

Component Area (mm2) Complexity (kGE) Percentage (%)

10 0.0765 59.9613 44.0872

20 0.0446 34.6053 25.4528

30 0.0358 27.7288 20.3874

40 0.0048 3.8838 2.8571

50 0.1617 126.1792 92.7845

60 0.0010 0.9782 0.7167

70 0.0048 3.7579 2.7603

80 0.0019 1.2785 0.9395

90 0.0077 6.0145 4.4165

10 0.1695 132.1937 96.8523

Table.2. Total Instruction per Cycle

Round
Number of

Instructions (×10-7)

Deviation

(×10-7)

Deviation

(%)

10 7.719 6.935 0.000

20 7.913 1.598 0.019

30 9.598 1.501 0.019

40 4.378 5.627 0.010

50 1.801 3.826 2.063

60 2.024 8.174 3.913

70 1.104 1.201 0.107

80 3.632 1.356 0.039

90 0.988 5.559 0.058

100 2.354 8.591 0.039

120 1.153 4.320 0.039

140 1.230 4.630 0.039

160 4.610 6.818 0.010

Table.3. Area and Energy

Design Area Delay Power Energy
ADP

(×10-7)

EDP

(×10-8)

10 157.48 2.20 44.75 101.60 3.57 2.31

20 91.72 1.13 24.21 28.38 1.08 3.32

30 98.60 1.14 24.70 29.06 1.16 3.44

40 87.36 1.14 23.34 27.51 1.03 3.24

50 91.14 1.15 24.12 28.67 1.08 3.41

60 90.17 1.14 24.12 28.57 1.07 3.36

70 109.44 1.14 27.89 32.83 1.29 3.88

80 109.73 1.08 26.34 29.44 1.23 3.31

90 94.53 1.08 23.63 26.44 1.06 2.96

100 83.68 1.15 22.86 27.22 1.00 3.23

120 92.01 1.08 23.63 26.44 1.03 2.96

140 102.13 1.08 24.985 27.94 1.145 3.135

160 87.845 1.115 23.245 26.83 1.015 3.095

4. CONCLUSION

We show that the new EMAC-TLML system is compatible

with the inference made by deep learning networks that use 8 bits

of precision, and we demonstrate that this compatibility works

quite well. It has been demonstrated that the proposed research

uses resources and produces energy delay products in a manner

that is analogous to that of the floating-point counterparts. The

solution that has been suggested provides a greater maximum

working frequency in contrast to the floating-point method.

The performance reduction that is brought on by direct

quantization to ultra-low precision is substantially less severe as

compared to that which is brought on by fixed-point. In addition,

EMAC-TLML consistently matches the floating points across a

broad variety of datasets. The capabilities of the underlying

technology have a direct consequence on the possibilities that can

be realised by different kinds of learning algorithms, and these

possibilities are directly influenced by the capabilities of the

underlying technology.

REFERENCES

[1] C. Rao, Y. Zhang and X. Lou, “An Energy-Efficient

Accelerator for Medical Image Reconstruction from Implicit

Neural Representation”, IEEE Transactions on Circuits and

Systems I: Regular Papers, Vol. 78, No. 2, pp. 1-14, 2022.

[2] C. Kumar and K. Naik, “Smartphone Processor

Architecture, Operations, and Functions: Current State-of-

the-Art and Future Outlook: Energy Performance Trade-Off:

Energy Performance Trade-Off for Smartphone

Processors”, The Journal of Supercomputing, Vol. 77, pp.

1377-1454, 2021.

[3] A. Guler and N.K. Jha, “McPAT-Monolithic: An

Area/Power/Timing Architecture Modeling Framework for

3-D Hybrid Monolithic Multicore Systems”, IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 28, No. 10, pp. 2146-2156, 2020.

[4] Y. Shen and V. Chen, “Class-E Power Amplifiers

Incorporating Fingerprint Augmentation with

Combinatorial Security Primitives for Machine-

Learningbased Authentication in 65 nm CMOS”, IEEE

Transactions on Circuits and Systems I: Regular Papers,

Vol. 69, No. 5, pp. 1896-1909, 2022.

[5] K.G. Devi and N.T.D. Linh, “Artificial Intelligence Trends

for Data Analytics using Machine Learning and Deep

Learning Approaches”, CRC Press, 2020.

[6] S. Zheng and S. Yin, “An Ultra-Low Power Binarized

Convolutional Neural Network-Based Speech Recognition

Processor with On-Chip Self-Learning”, IEEE Transactions

on Circuits and Systems I: Regular Papers, Vol. 66, No. 12,

pp. 4648-4661, 2019.

[7] C. Niu and D. Liu, “Detector Processor for a 5G Base

Station”, Sensors, Vol. 22, No. 20, pp. 7731-7739, 2022.

T GOBINATH et al.: ANALYSING THE PERFORMANCE TRADEOFFS OF PARAMETERIZED VLSI ARCHITECTURE USING TREE-LOGIC MACHINE LEARNING SYSTEM

1502

[8] M.K. Adimulam and M.B. Srinivas, “A 12-Bit, 1.1-GS/s,

Low-Power Flash ADC”, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 30, No. 3, pp. 277-

290, 2022.

[9] Z. Zhang and M. Zhang, “A Fast Parameter Tuning

Framework via Transfer Learning and Multi-Objective

Bayesian Optimization”, Proceedings of ACM/IEEE

Conference on Design Automation, pp. 133-138, 2022.

[10] G. Sapone and G. Palmisano, “A 3-10-GHz Low-Power

CMOS Low- Noise Amplifier for Ultra- Wideband

Communication”, IEEE Transactions on Microwave Theory

and Techniques, Vol. 59, No. 3, pp. 678-686, 2011.

[11] V.R.G.D. Silva and S. Xavier-De-Souza, “Analytical

Energy Model Parametrized by Workload, Clock Frequency

and Number of Active Cores for Share-Memory High-

Performance Computing Applications”, Energies, Vol. 15,

No. 3, pp. 1213-1219, 2022.

[12] Y. Parmar and K. Sridharan, “A High-Performance VLSI

Architecture for a Self-Feedback Convolutional Neural

Network”, IEEE Transactions on Circuits and Systems II:

Express Briefs, Vol. 68, No. 1, pp. 456-460, 2020.

