
J SEETHA et al.: DETECTING THE SIDE CHANNEL ATTACK IN EMBEDDED PROCESSORS USING FEDERATED MODEL
DOI: 10.21917/ijme.2023.0258

1492

DETECTING THE SIDE CHANNEL ATTACK IN EMBEDDED PROCESSORS USING

FEDERATED MODEL

J. Seetha1, Ananda Ravuri2, Yamini Tondepu3 and T. Kuntavai4
1Department of Computer Science and Business Systems, Panimalar Engineering College, India

2Software Engineer, Intel Corporation, Oregon, United States
3Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, India

4Department of Electrical and Electronics Engineering, Adhiparasakthi Engineering College, India

Abstract

Embedded processors, which are an essential component of any

Internet of Things (IoT) device, are vulnerable to a considerable risk

posed by power side-channel attacks. Defences against power attacks

have been implemented at the application level, such as ways for

masking a device power use, or at the hardware level, in the form of

leakage concealment methods. In this paper, we describe an innovative

method for mitigating power side channel attacks through the

utilisation of integrated cache. We employ an open-source embedded

cache simulator that can be used as the basis for the embedded cache

model. The results show that Federated Learning (FL) can discover

attack sequences on real-world processors without requiring

knowledge of the processor replacement policies and prefetchers.

Keywords:

Attack, Federated Learning, IoT, Processor, Embedded

1. INTRODUCTION

Embedded processors, which are an essential component of

any Internet of Things (IoT) device, are vulnerable to a

considerable risk posed by power side-channel attacks [1]. These

types of attacks can obtain sensitive information that has been

exposed because they exploit a relationship that exists between

the sensitive data and the amount of power that the processor uses

[2]. These methods have seen considerable application in recent

years for the purpose of deciphering encryption algorithms and

recovering misplaced keys [3].

Defences against power attacks have been implemented at the

application level, such as ways for masking a device power use

[4], or at the hardware level, in the form of leakage concealment

methods [5]. However, these approaches result in enormous

additional expenses because of the enormous increases in area and

energy required to carry them out. This means that they can only

be utilised in very specialised places, such as cryptography

modules, and that the rest of the system is wide open to attack

because of it [6].

To protect the CPU from power vulnerabilities, we investigate

the primary cause of the leakage and then implement remedies for

it, module by module. This is performed by verifying that the

translated EDA not only operates as expected but also does not

introduce any extra side-channel vulnerabilities into the system.

In addition to this, we make it a point to hide the data path of the

CPU as much as possible.

This indicates that the data that is saved in locations such as

the pipeline buffers, line buffers, GPRs, and internal cache

memory of the CPU is all encrypted. Because the obfuscation

eliminates any possible link between the data and the amount of

power consumed, the leakage has been significantly reduced.

Only in the execution stage of the processor does data de-

obfuscation take place when it is necessary to perform an

operation on the data. Before it is written to the registers, the result

of the operation is concealed once more [7].

Embedded caches are susceptible to three distinct types of

side-channel attacks, each of which can be launched by

adversaries possessing a different level of capability:

• Access-driven SCA: This is a type of attack that an adversary

can employ to identify what data sets of embedded cache a

victim has accessed in the past. The Prime and Probe attack

is the most well-known strategy that can be used in this

scenario. A new prime and probe attack has also been

developed by our team. This attack is a variation on the one

that was developed previously, and it involves the disclosure

of private data via the exchange of memory pages and

embedded CPU cache lines. The spy process analyses the

amount of time necessary to get certain lines of code from

the victim shared memory and compares the results. Also,

there are many different varieties of access-driven

embedded cache side-channel attacks to choose from [12].

• Time-driven SCA: This is an attempt to calculate the total

amount of time necessary to carry out a sequence of

cryptographic procedures using a given key. These attacks

are carried out by computers. The value of the key influences

the total amount of time it takes for the programme to run.

For the attacker to determine whether the victim process

makes use of a specific embedded cache set, they will cause

some interruption [13].

• Trace-driven SCA: The total number of misses and hits that

occur in the embedded cache of the machine or process that

is being targeted [14].

In this research, we describe an innovative method for

mitigating side-channel attacks through the utilisation of

integrated cache. An approach to detection that guards cloud

servers from embedded cache side-channel attacks This study

focuses on the hardware that is used to host cloud computing

tenants. This is accomplished by tracking failures of embedded

caches that are caused by embedded CPUs.

Additionally, the frequency with which embedded cache

misses occur, as well as the circumstances under which they

occur, will be tracked, and examined in this study. The study

constructs a sequence, a standard deviation would be calculated,

and then that number would be compared to a threshold.

2. RELATED WORK

There is a detective solution that are capable of being

implemented in the cloud as a direct result of multi-tenancy and

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2023, VOLUME: 09, ISSUE: 01

1493

co-residency. The HomeAlone solution was developed by [8] to

provide tenants of cloud computing with the ability to ensure that

they are physically segregated from one another and to identify

the co-resident harmful embedded processor. Embedded cache

side-channel analysis is a sort of defensive detection that tenants

of the cloud are now able to use.

This detection method is only applicable to the one case in

which the two cloud tenants are geographically isolated from one

another. To determining whether the integrated cache in the CPU

is behaving normally, a classifier is used. Within a tenancy, it is

needed that each embedded processor has a coordinator and

remapper implemented so that it can store information in preset

embedded cache sets and share information with other embedded

processors. It possible that the presence of another embedded

processor will require virtual machines to be shut down as a result.

Our method, on the other hand, does not require the utilisation

of a classifier tool, any modifications to the guest operating

systems or kernels, or the muting of any embedded processors. It

does not make things go more slowly, and it does not bring any

more stress. The CPU integrated cache at all levels is inspected,

and any malicious integrated processor is discovered and

differentiated from other embedded processors in the system.

In [9] suggests using a two-stage mode approach to detect

embedded cache-side channel attacks that take place in the cloud.

The procedure consists of two stages. The OProfile can generate

at least 2,000 interrupts per second [10] for the CPU. These

interrupts can be used to measure the number of times an

embedded processor causes an embedded cache to miss on the

CPU.

For an embedded processor to interface with its host and

obtain data, it must additionally have an agent built into it. In

addition, there is a high percentage of false negatives, which is

40% [11]. On the other hand, the approach that we offer does not

require the use of any additional software or mobile applications.

The number of cache misses that occur during the fetch cycle of

the CPU can be easily quantified. In addition, the hypervisor

kernel only consists of a single stage of the implementation

process.

3. SIDE-CHANNEL FACTOR

The side-channel vulnerability factor (SVF) is a statistic that

can be used to determine how susceptible a device is to the

leakage of information through side channels. It determines how

closely the execution pattern of a sensitive application matches up

with the side-channel observations of an attacker. If the

correlation is high, then there must be a significant amount of

leakage across the side channel.

Fig.1. Main Units of Embedded Processors

When computing SVF, there are two stages: the online stage

and the post-processing step. In the context of the online

environment, N different stimuli are used. Each input has a ground

truth that is constructed in an Oracle trace and is associated with

it. This ground truth is something that an enemy would want to

read from the device.

 O = (o1, o2, . . . , oi ,oN) , (1)

where the value of the truth for the ith input, indicated by oi

(1≤i≤N), can be found. In the case of an AES victim, for example,

the execution is initiated by changing the input or the key. The

value S(p⊕k) might be an illustration of an AES S-box operation,

and it could appear in the Oracle Trace. In this case, p would be a

plaintext byte, k would be the associated secret key byte, and S

would be the AES S-box operation. A side channel trace that

contains information on the device power usage trends is prepared

at the conclusion of each run.

 S = (s1, s2, ,..., sj ,... sN) (2)

where sj represents the power curve as measured at input j in the

equation. By the time the online portion of the study was over,

two separate collections of data had been obtained. Following the

completion of the collection of all the traces, the data are analysed

to identify patterns within the traces and determine how they are

connected. To uncover patterns, a distance metric is applied to

each trace data to calculate the pairwise distances between the

data.

 DO = distance(oi,oj), ∀oi,oj ∈ O and i > j. (3)

In a similar manner, a distance metric is applied to S to

construct a side-channel distance vector DS. The next step in

determining the SVF involves computing the Pearson correlation

that exists between these two vectors. If the SVF is set too high,

the Oracle suffers from severe side-channel leakage. The distance

measurement that is used will be decided based on the data that is

submitted. In this investigation, we use the Hamming distance

metric to solve the challenge of determining how far apart binary

data sets are from one another. The following is our working

definition of the Hamming distance:

 HD(xi, xj) = (n-1)b = 0 where hb∈N, (4)

where xi and xj are binary strings with length n, and hb is the bit

that corresponds to the bth position in the product of (xi⊕xj).

4. SCA DETECTION

We begin our search for components that leak side-channel

information with the RTL of the CPU. Once we locate these

components, we patch them so that the processor is more resistant

to side-channel attacks. After that, we implemented fixes for the

modules that were causing the problems. By studying the RTL of

the processor modules, which we publish here, our approach

could identify leaky processor modules. A list of software

components is used to model the central processing unit.

Each module has its own unique collection of signals and

submodules, all of which are connected to one another through a

complex web of wires and registers. This method conducts a

separate analysis of each individual component of the CPU. It

determines the quantity of signal that is lost due to leakage from

the module. Leakage of individual sub-modules is evaluated

separately. The formal definition of the processor netlist, denoted

Decode and

Fetch

Execution

Unit

Memory

Access Unit

Write Back

Unit

Instruction

Unit

Program

Counter

Batch

Prediction

Unit

J SEETHA et al.: DETECTING THE SIDE CHANNEL ATTACK IN EMBEDDED PROCESSORS USING FEDERATED MODEL

1494

by P, is the collection of all the components, also known as

modules.

 P = {M1, M2,..., Mi,..., Mm} (5)

Each module comprises of signals (wires and registers), which

we denote by the set. Mi(1 ≤ i ≤ m) is the ith. The term set refers to

the components of a module, which include wires and registers,

respectively.

 Mi = {S1(i), S2(i),..., Sj(i),..., Sn(i)}, (6)

where Sj(i) (1 ≤ j ≤ n) is a signal that might have one bit or multiple

bits and is specified by the module Mi. The creation is based on

the following set of assumptions:

The amount of energy required to process a k-bit signal S is

directly proportional to its Hamming weight. It is being referred

to by the bth bit of S. Define the function Y(Mi) so that it is the

union of all the signals that are contained in Mi. This function can

be described in the following manner by us:

 Y(Mi) = (S1(i) || S2(i) || ... || Sn(i)) (7)

The concatenation operator is represented by ||. Therefore, if

the bit width of each Mi signal is 32, then the bit width of Y(Mi)

will be 32 × n if we assume that each Mi signal has its own bit

width. The predicted overall power consumption of Module Mi is

obtained by aggregating the individual power requirements of

each of its signals. This indicates that the amount of information

kept in Y(Mi) is directly proportional to the amount of energy that

module Mi consumes. Calculating the SVF between Y(Mi) and the

secret data can provide one with an estimate of the amount of side-

channel leakage that is caused by the module Mi.

Running benchmark routines multiple times with different

inputs while using a netlist that has already been synthesised.

Before beginning the actual execution, the user will go through

each benchmark programme and select one or more of the

exciting phases. Some of the more intriguing operations included

in the first phase of an AES benchmark programme.

These are the locations where Oracle trace data is saved. The

information included in Y(Mi) is what is used to build the side-

channel trace, which can then be used to measure the amount of

side-channel leakage coming from a module called Mi. Y(Mi) is a

time-series vector, and the members of this vector represent the

data that is present during each clock cycle for each benchmark

run.

5. FEDERATED LEARNING

The difficulty of federated learning is illustrated in Fig.1 and

consists of the following: training a high-quality shared global

model on a centralised server using data that is spread among

many clients. Let imagine, for the purpose of argument, that we

have K clients (in this context, anything from a smartphone to a

smartwatch to the data warehouse at a hospital counts as a client).

We refer to the data distribution of the customer K as Dk, and

the sample size of the customer K will be referred to as nk. To get

an accurate total, apply the formula n=∑Kk=1nk. The topic of

federated learning can be boiled down to the following when an

empirical risk minimization problem of this kind is considered:

 minw∈RdF(w) := ∑knknFk(w) (8)

where Fk(w) := (nk)-1∑xi∈Dkfi(w),

where w represents the undetermined value of the model learning

parameter. The loss function that is used to specify the function fi

is defined with the help of the input-output data pair known as

{xi,yi}. In most cases, xi∈Rd and yi∈R or yi ∈ {− 1, 1} are used.

Some obvious examples to consider are the following:

 fi(w)=0.5(xi
Tw−yi)2, yi ∈ R; (9)

 fi(w)=−log(1+exp(-yi xi
Tw)), yi ∈ {− 1,1}; (10)

 fi(w)=max{0,1-yixi
Tw}, yi ∈ {− 1,1}. (11)

When attempting to launch a side-channel attack on an

embedded CPU, there are several challenges that must be

surmounted.

5.1 STATISTICAL CHALLENGE

Due to the fact that customer data is dispersed in a very non-

uniform manner ∀k≠k~: Exi∼Dk[fi(w;xi)]≠Exi∼Dk~[fi(w;xi)] F(w)

is defined in such a way that any locally available data points are

not even close to being able to be considered a representative

sample of the overall distribution.

 Exi∼Dk[fi(w;xi)]≠F(w). (12)

5.2 COMMUNICATION EFFICIENCY

The number of customers K is substantial, and it is possible

that it is much higher than the average number of training samples

retained by active consumers, n, i.e., K ≫ (n/K).

5.3 PRIVACY AND SECURITY

Additional precautions must be taken to protect client privacy

who are deemed to be untrustworthy parties. It is not reasonable

to think that every single customer can be relied upon.

6. EVALUATION

The embedded cache simulator makes testing for potential

vulnerabilities in both new and older embedded cache systems

much more efficient. Exploring attacks on actual hardware makes

it possible to apply FL to real-world system designs, even when

the design details of those system designs are unknown. This is

because actual hardware is easier to exploit. An open-source

embedded cache simulator that can be used as the basis for the

embedded cache model has been incorporated into the FL

framework.

By making a few adjustments to the simulator for embedded

caches, it is possible to create multi-level embedded caches. We

have been employing embedded caches that are physically

indexed as well as physically tagged to keep things as simple as

possible, and we have also been allowing both the attacker

programmes and the victim programmes to make direct use of

physical addresses when making requests. This has enabled us to

keep things as plain as possible.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2023, VOLUME: 09, ISSUE: 01

1495

Table.1. Comparison of Various Schemes

Scheme Number of Multipliers (G) Top-5 Error (%) Speed upto Fine-Tuning Time (epochs)

HomeAlone 15.49 9.52 1.23× 5-10

Remapper 7.70 10.23 2.2× 10

CPU integrated cache 4.56 13.16 3.12× 15

OProfile 3.85 9.52 4.23× 1-6

Hypervisor kernel 3.04 11.02 5.11× 2-10

Proposed 1.32 9.62 10.23× 1-5

Table.3. Comparison with Various Attack Modes

Device Attack Mode HomeAlone Remapper CPU integrated cache OProfile Hypervisor kernel Proposed

Device 1

Unauthorized Access 26.95 53.90 105.56 210.00 421.13 844.50

DDoS 26.95 62.89 106.69 214.49 430.11 862.46

Man in the Middle 15.72 32.57 64.01 129.15 258.29 518.83

Insider threats 15.72 37.06 65.13 131.39 262.78 527.81

Device 2

Unauthorized Access 553.64 1107.28 2213.43 4423.50 8858.22 17766.98

DDoS 552.52 966.90 1693.48 2960.23 5193.88 9475.87

Man in the Middle 335.78 671.55 1343.11 2690.71 5375.80 11157.01

Insider threats 335.78 609.79 1114.02 2041.61 3759.80 7263.56

Device 3

Unauthorized Access 275.14 550.27 1100.54 2203.33 4397.67 8824.53

DDoS 277.38 486.26 852.36 1491.34 2610.98 4577.35

Man in the Middle 143.74 287.49 576.10 1151.08 2301.03 4606.55

Insider threats 143.74 257.17 461.55 827.65 1499.21 2714.29

Device 4

Unauthorized Access 548.02 1098.29 2194.34 4388.68 8780.74 17562.60

DDoS 554.76 970.27 1699.10 2973.70 5195.00 9141.22

Man in the Middle 285.24 571.61 1142.09 2283.06 4576.23 9172.66

Insider threats 285.24 510.97 914.12 1646.32 2970.34 5402.75

Device 5

Unauthorized Access 280.75 563.75 1130.86 2250.49 4505.48 9069.35

DDoS 278.50 489.63 854.60 1491.34 2601.99 4579.59

Man in the Middle 132.51 265.03 528.93 1057.87 2112.36 4240.45

Insider threats 132.51 234.71 415.51 736.69 1310.54 2341.46

Device 6

Unauthorized Access 559.25 1124.12 2243.75 4486.39 8925.60 17846.72

DDoS 554.76 974.76 1692.36 2971.46 5214.09 9098.55

Man in the Middle 259.41 518.83 1036.53 2070.81 4147.24 8289.99

Insider threats 259.41 460.43 814.18 1444.18 2578.41 4591.95

Device 7

Unauthorized Access 274.01 546.90 1100.54 2178.62 4390.93 8781.86

DDoS 270.64 472.78 829.90 1440.81 2526.75 4448.20

Man in the Middle 130.27 259.41 517.70 1033.16 2065.20 4132.64

Insider threats 130.27 229.09 402.03 707.49 1247.65 2202.20

Device 8

Unauthorized Access 537.92 1072.47 2152.79 4304.46 8619.03 17203.24

DDoS 532.30 930.97 1631.72 2859.16 4993.98 8771.75

Man in the Middle 249.31 497.49 992.73 1983.22 3957.45 7937.36

Insider threats 250.43 439.09 770.38 1358.83 2390.87 4235.96

Device 9

Unauthorized Access 132.51 266.15 532.30 1067.97 2133.70 4293.23

DDoS 131.39 231.34 406.53 708.61 1243.16 2175.25

Man in the Middle 73.00 143.74 285.24 569.36 1133.11 2257.23

Insider threats 73.00 126.90 221.23 387.44 680.54 1193.75

J SEETHA et al.: DETECTING THE SIDE CHANNEL ATTACK IN EMBEDDED PROCESSORS USING FEDERATED MODEL

1496

It is time-consuming to have the agent interface with hardware

for each operation, and doing so when working with actual

hardware makes the training more susceptible to disruption from

system noise. When training on real hardware, we tackle this

problem by performing all the instructions contained in each

episode simultaneously. All the instructions contained in an

episode are carried out; however, the agent is only able to

determine the latency of memory accesses after they have made a

guess.

Unless otherwise specified, all training is executed on clusters

that are equipped with Intel 2.20 GHz CPUs. The hardware that

is being used in the following table is representative of actual

hardware tests.

7. DISCUSSION

The results show that FL can discover attack sequences on

real-world processors without requiring knowledge of the

processor replacement policies, prefetchers, or anything else of

the sort. In most cases, human experts are required to have access

to such details to move recognised dangers to a new platform. For

instance, efficiently priming and probing an embedded cache set

requires knowledge of the replacement policy. This can be a

challenge. On the other hand, since replacement policies for

modern CPUs are rarely defined openly by the vendor, it can be

challenging to precisely reverse engineer these rules.

After manually reverse engineering an undetermined

replacement method from a real-world processor for a significant

period, it is possible to manually generate attack sequences. This

can be done in any order. According to the findings of our

investigations, FL can locate potentially useful attack sequences

in a matter of hours.

Because of the versatility of the embedded cache simulator,

we can study a far wider variety of embedded cache and attack

scenarios with much less effort. To determining how well it will

perform in a range of contexts, we conducted FL testing using a

wide variety of embedded cache and attack/victim programme

combinations. In these kinds of configurations, the LRU

replacement policy is always put into effect. The structure of the

attack and victim programming place restrictions on the many

kinds of attacks that can be carried out. We discovered that the FL

agent was able to identify potentially successful attack sequences

regardless of the environment.

This is since it may be impossible to attain a global optimum

in complicated combinations. However, the training will

eventually converge to local optima, which capture the important

mechanism that allows the attack for each configuration but have

a longer route. It is possible that the agent will uncover a

particularly fascinating pattern of attacks.

In contrast to deterministic replacement policies, where future

states are entirely predictable given the action and the current

state, pseudorandom replacement policies make it difficult to

forecast future states. When used in one evaluation, a successful

attack sequence may lead to an inaccurate assessment in a

different evaluation. The FL agent is also capable of generating

several answers, each of which is customised to the data that is

currently available. Given that the eviction rate in a random

replacement policy is dependent on both the total number and the

timing of memory accesses, it follows that no single attack

sequence will always succeed against such a strategy. This is

because the eviction rate is dependent on both the total number

and the timing of memory accesses. Instead, we put the FL agent

through a total of one hundred different tests to determine how

effective it is as an attacking agent.

8. CONCLUSION

Our tests have shown that the FL is capable of efficiently

discovering attack sequences against a wide variety of embedded

cache implementations. The FL agent was also responsible for

discovering this novel attack, which had a greater bit rate on

actual systems when compared to attacks recorded in the older

literature. When it comes to analysing timing attacks on

microarchitectures in real-world systems, FL has proven to be an

extremely helpful tool.

REFERENCES

[1] Y. Guo and J. Yang, “Adversarial Prefetch: New Cross-Core

Cache Side Channel Attacks”, Proceedings of IEEE

Symposium on Security and Privacy, pp. 1458-1473, 2022.

[2] J. Wan and Z. Li, “MeshUp: Stateless Cache Side-Channel

Attack on CPU Mesh”, Proceedings of IEEE Symposium on

Security and Privacy, pp. 1506-1524, 2022.

[3] I. Buhan and P. Schaumont, “SoK: Design Tools for Side-

Channel-Aware Implementations”, Proceedings of ACM on

Asia Conference on Computer and Communications

Security, pp. 756-770, 2022.

[4] R. Kumar, M.A. Anders and S.K. Mathew, “A Time-

/Frequency-Domain Side-Channel Attack Resistant AES-

128 and RSA-4K Crypto-Processor in 14-nm CMOS”, IEEE

Journal of Solid-State Circuits, Vol. 56, No. 4, pp. 1141-

1151, 2021.

[5] A. Sayakkara and M. Scanlon, “A Survey of

Electromagnetic Side-Channel Attacks and Discussion on

their Case-Progressing Potential for Digital Forensics”,

Digital Investigation, Vol. 29, pp. 43-54, 2019.

[6] M. Mushtaq, M.K. Bhatti and G. Gogniat, “Winter is Here!

A Decade of Cache-based Side-Channel Attacks, Detection

& Mitigation for RSA”, Information Systems, Vol. 92, pp.

101524-101534, 2020.

[7] N. Tsalis and T. Apostolopoulos, “A Taxonomy of Side

Channel Attacks on Critical Infrastructures and Relevant

Systems”, Proceedings of International Conference on

Critical Infrastructure Security and Resilience: Theories,

Methods, Tools and Technologies, pp. 283-313, 2019.

[8] M. Rajalakshmi and C. Karthik, “Machine Learning for

Modeling and Control of Industrial Clarifier Process”,

Intelligent Automation and Soft Computing, Vol. 32, No. 1,

pp. 1-14, 2022.

[9] Y. Guo and J. Yang, “Adversarial Prefetch: New Cross-Core

Cache Side Channel Attacks”, Proceedings of IEEE

Symposium on Security and Privacy, pp. 1458-1473, 2022.

[10] J. Wan and Z. Li, “MeshUp: Stateless Cache Side-Channel

Attack on CPU Mesh”, Proceedings of IEEE Symposium on

Security and Privacy, pp. 1506-1524, 2022.

[11] I. Buhan and P. Schaumont, “SoK: Design Tools for Side-

Channel-Aware Implementations”, Proceedings of ACM on

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2023, VOLUME: 09, ISSUE: 01

1497

Asia Conference on Computer and Communications

Security, pp. 756-770, 2022.

[12] A. Sayakkara and M. Scanlon, “A Survey of

Electromagnetic Side-Channel Attacks and Discussion on

their Case-Progressing Potential for Digital Forensics”,

Digital Investigation, Vol. 29, pp. 43-54, 2019.

[13] D. Townley and D. Ponomarev, “SMT-COP: Defeating

Side-Channel Attacks on Execution Units in SMT

Processors”, Proceedings of International Conference on

Parallel Architectures and Compilation Techniques, pp. 43-

54, 2019.

[14] M. Mushtaq, M.K. Bhatti and G. Gogniat, “Winter is Here!

A Decade of Cache-Based Side-Channel Attacks, Detection

and Mitigation for RSA”, Information Systems, Vol. 92, pp.

101524-101533, 2020.

