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Abstract 

Embedded processors, which are an essential component of any 

Internet of Things (IoT) device, are vulnerable to a considerable risk 

posed by power side-channel attacks. Defences against power attacks 

have been implemented at the application level, such as ways for 

masking a device power use, or at the hardware level, in the form of 

leakage concealment methods. In this paper, we describe an innovative 

method for mitigating power side channel attacks through the 

utilisation of integrated cache. We employ an open-source embedded 

cache simulator that can be used as the basis for the embedded cache 

model. The results show that Federated Learning (FL) can discover 

attack sequences on real-world processors without requiring 

knowledge of the processor replacement policies and prefetchers. 
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1. INTRODUCTION 

Embedded processors, which are an essential component of 

any Internet of Things (IoT) device, are vulnerable to a 

considerable risk posed by power side-channel attacks [1]. These 

types of attacks can obtain sensitive information that has been 

exposed because they exploit a relationship that exists between 

the sensitive data and the amount of power that the processor uses 

[2]. These methods have seen considerable application in recent 

years for the purpose of deciphering encryption algorithms and 

recovering misplaced keys [3].  

Defences against power attacks have been implemented at the 

application level, such as ways for masking a device power use 

[4], or at the hardware level, in the form of leakage concealment 

methods [5]. However, these approaches result in enormous 

additional expenses because of the enormous increases in area and 

energy required to carry them out. This means that they can only 

be utilised in very specialised places, such as cryptography 

modules, and that the rest of the system is wide open to attack 

because of it [6]. 

To protect the CPU from power vulnerabilities, we investigate 

the primary cause of the leakage and then implement remedies for 

it, module by module. This is performed by verifying that the 

translated EDA not only operates as expected but also does not 

introduce any extra side-channel vulnerabilities into the system. 

In addition to this, we make it a point to hide the data path of the 

CPU as much as possible.  

This indicates that the data that is saved in locations such as 

the pipeline buffers, line buffers, GPRs, and internal cache 

memory of the CPU is all encrypted. Because the obfuscation 

eliminates any possible link between the data and the amount of 

power consumed, the leakage has been significantly reduced. 

Only in the execution stage of the processor does data de-

obfuscation take place when it is necessary to perform an 

operation on the data. Before it is written to the registers, the result 

of the operation is concealed once more [7]. 

Embedded caches are susceptible to three distinct types of 

side-channel attacks, each of which can be launched by 

adversaries possessing a different level of capability: 

• Access-driven SCA: This is a type of attack that an adversary 

can employ to identify what data sets of embedded cache a 

victim has accessed in the past. The Prime and Probe attack 

is the most well-known strategy that can be used in this 

scenario. A new prime and probe attack has also been 

developed by our team. This attack is a variation on the one 

that was developed previously, and it involves the disclosure 

of private data via the exchange of memory pages and 

embedded CPU cache lines. The spy process analyses the 

amount of time necessary to get certain lines of code from 

the victim shared memory and compares the results. Also, 

there are many different varieties of access-driven 

embedded cache side-channel attacks to choose from [12]. 

• Time-driven SCA: This is an attempt to calculate the total 

amount of time necessary to carry out a sequence of 

cryptographic procedures using a given key. These attacks 

are carried out by computers. The value of the key influences 

the total amount of time it takes for the programme to run. 

For the attacker to determine whether the victim process 

makes use of a specific embedded cache set, they will cause 

some interruption [13]. 

• Trace-driven SCA: The total number of misses and hits that 

occur in the embedded cache of the machine or process that 

is being targeted [14]. 

In this research, we describe an innovative method for 

mitigating side-channel attacks through the utilisation of 

integrated cache. An approach to detection that guards cloud 

servers from embedded cache side-channel attacks This study 

focuses on the hardware that is used to host cloud computing 

tenants. This is accomplished by tracking failures of embedded 

caches that are caused by embedded CPUs.  

Additionally, the frequency with which embedded cache 

misses occur, as well as the circumstances under which they 

occur, will be tracked, and examined in this study. The study 

constructs a sequence, a standard deviation would be calculated, 

and then that number would be compared to a threshold. 

2. RELATED WORK  

There is a detective solution that are capable of being 

implemented in the cloud as a direct result of multi-tenancy and 



ISSN: 2395-1680 (ONLINE)                                                                                                                      ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2023, VOLUME: 09, ISSUE: 01 

1493 

co-residency. The HomeAlone solution was developed by [8] to 

provide tenants of cloud computing with the ability to ensure that 

they are physically segregated from one another and to identify 

the co-resident harmful embedded processor. Embedded cache 

side-channel analysis is a sort of defensive detection that tenants 

of the cloud are now able to use.  

This detection method is only applicable to the one case in 

which the two cloud tenants are geographically isolated from one 

another. To determining whether the integrated cache in the CPU 

is behaving normally, a classifier is used. Within a tenancy, it is 

needed that each embedded processor has a coordinator and 

remapper implemented so that it can store information in preset 

embedded cache sets and share information with other embedded 

processors. It possible that the presence of another embedded 

processor will require virtual machines to be shut down as a result.  

Our method, on the other hand, does not require the utilisation 

of a classifier tool, any modifications to the guest operating 

systems or kernels, or the muting of any embedded processors. It 

does not make things go more slowly, and it does not bring any 

more stress. The CPU integrated cache at all levels is inspected, 

and any malicious integrated processor is discovered and 

differentiated from other embedded processors in the system.  

In [9] suggests using a two-stage mode approach to detect 

embedded cache-side channel attacks that take place in the cloud. 

The procedure consists of two stages. The OProfile can generate 

at least 2,000 interrupts per second [10] for the CPU. These 

interrupts can be used to measure the number of times an 

embedded processor causes an embedded cache to miss on the 

CPU.  

For an embedded processor to interface with its host and 

obtain data, it must additionally have an agent built into it. In 

addition, there is a high percentage of false negatives, which is 

40% [11]. On the other hand, the approach that we offer does not 

require the use of any additional software or mobile applications. 

The number of cache misses that occur during the fetch cycle of 

the CPU can be easily quantified. In addition, the hypervisor 

kernel only consists of a single stage of the implementation 

process. 

3. SIDE-CHANNEL FACTOR 

The side-channel vulnerability factor (SVF) is a statistic that 

can be used to determine how susceptible a device is to the 

leakage of information through side channels. It determines how 

closely the execution pattern of a sensitive application matches up 

with the side-channel observations of an attacker. If the 

correlation is high, then there must be a significant amount of 

leakage across the side channel. 

 

Fig.1. Main Units of Embedded Processors 

When computing SVF, there are two stages: the online stage 

and the post-processing step. In the context of the online 

environment, N different stimuli are used. Each input has a ground 

truth that is constructed in an Oracle trace and is associated with 

it. This ground truth is something that an enemy would want to 

read from the device. 

 O = (o1, o2, . . . , oi , . . . .oN) ,  (1) 

where the value of the truth for the ith input, indicated by oi 

(1≤i≤N), can be found. In the case of an AES victim, for example, 

the execution is initiated by changing the input or the key. The 

value S(p⊕k) might be an illustration of an AES S-box operation, 

and it could appear in the Oracle Trace. In this case, p would be a 

plaintext byte, k would be the associated secret key byte, and S 

would be the AES S-box operation. A side channel trace that 

contains information on the device power usage trends is prepared 

at the conclusion of each run. 

 S = (s1, s2, ,..., sj ,... sN) (2)  

where sj represents the power curve as measured at input j in the 

equation. By the time the online portion of the study was over, 

two separate collections of data had been obtained. Following the 

completion of the collection of all the traces, the data are analysed 

to identify patterns within the traces and determine how they are 

connected. To uncover patterns, a distance metric is applied to 

each trace data to calculate the pairwise distances between the 

data.  

 DO = distance(oi,oj), ∀oi,oj ∈ O and i > j.  (3) 

In a similar manner, a distance metric is applied to S to 

construct a side-channel distance vector DS. The next step in 

determining the SVF involves computing the Pearson correlation 

that exists between these two vectors. If the SVF is set too high, 

the Oracle suffers from severe side-channel leakage. The distance 

measurement that is used will be decided based on the data that is 

submitted. In this investigation, we use the Hamming distance 

metric to solve the challenge of determining how far apart binary 

data sets are from one another. The following is our working 

definition of the Hamming distance: 

 HD(xi, xj) = (n-1)b = 0 where hb∈N,  (4) 

where xi and xj are binary strings with length n, and hb is the bit 

that corresponds to the bth position in the product of (xi⊕xj). 

4. SCA DETECTION 

We begin our search for components that leak side-channel 

information with the RTL of the CPU. Once we locate these 

components, we patch them so that the processor is more resistant 

to side-channel attacks. After that, we implemented fixes for the 

modules that were causing the problems. By studying the RTL of 

the processor modules, which we publish here, our approach 

could identify leaky processor modules. A list of software 

components is used to model the central processing unit. 

Each module has its own unique collection of signals and 

submodules, all of which are connected to one another through a 

complex web of wires and registers. This method conducts a 

separate analysis of each individual component of the CPU. It 

determines the quantity of signal that is lost due to leakage from 

the module. Leakage of individual sub-modules is evaluated 

separately. The formal definition of the processor netlist, denoted 
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by P, is the collection of all the components, also known as 

modules. 

 P = {M1, M2,..., Mi,..., Mm} (5)  

Each module comprises of signals (wires and registers), which 

we denote by the set. Mi(1 ≤ i ≤ m) is the ith. The term set refers to 

the components of a module, which include wires and registers, 

respectively. 

 Mi = {S1(i), S2(i),..., Sj(i),..., Sn(i)},  (6) 

where Sj(i) (1 ≤ j ≤ n) is a signal that might have one bit or multiple 

bits and is specified by the module Mi. The creation is based on 

the following set of assumptions:  

The amount of energy required to process a k-bit signal S is 

directly proportional to its Hamming weight. It is being referred 

to by the bth bit of S. Define the function Y(Mi) so that it is the 

union of all the signals that are contained in Mi. This function can 

be described in the following manner by us: 

 Y(Mi) = (S1(i) || S2(i) || ... || Sn(i)) (7)  

The concatenation operator is represented by ||. Therefore, if 

the bit width of each Mi signal is 32, then the bit width of Y(Mi) 

will be 32 × n if we assume that each Mi signal has its own bit 

width. The predicted overall power consumption of Module Mi is 

obtained by aggregating the individual power requirements of 

each of its signals. This indicates that the amount of information 

kept in Y(Mi) is directly proportional to the amount of energy that 

module Mi consumes. Calculating the SVF between Y(Mi) and the 

secret data can provide one with an estimate of the amount of side-

channel leakage that is caused by the module Mi. 

Running benchmark routines multiple times with different 

inputs while using a netlist that has already been synthesised. 

Before beginning the actual execution, the user will go through 

each benchmark programme and select one or more of the 

exciting phases. Some of the more intriguing operations included 

in the first phase of an AES benchmark programme.  

These are the locations where Oracle trace data is saved. The 

information included in Y(Mi) is what is used to build the side-

channel trace, which can then be used to measure the amount of 

side-channel leakage coming from a module called Mi. Y(Mi) is a 

time-series vector, and the members of this vector represent the 

data that is present during each clock cycle for each benchmark 

run. 

5. FEDERATED LEARNING 

The difficulty of federated learning is illustrated in Fig.1 and 

consists of the following: training a high-quality shared global 

model on a centralised server using data that is spread among 

many clients. Let imagine, for the purpose of argument, that we 

have K clients (in this context, anything from a smartphone to a 

smartwatch to the data warehouse at a hospital counts as a client).  

We refer to the data distribution of the customer K as Dk, and 

the sample size of the customer K will be referred to as nk. To get 

an accurate total, apply the formula n=∑Kk=1nk. The topic of 

federated learning can be boiled down to the following when an 

empirical risk minimization problem of this kind is considered: 

 minw∈RdF(w) := ∑knknFk(w)     (8) 

where   Fk(w) := (nk)-1∑xi∈Dkfi(w), 

where w represents the undetermined value of the model learning 

parameter. The loss function that is used to specify the function fi 

is defined with the help of the input-output data pair known as 

{xi,yi}. In most cases, xi∈Rd and yi∈R or yi ∈ {− 1, 1} are used. 

Some obvious examples to consider are the following: 

 fi(w)=0.5(xi
Tw−yi)2, yi ∈ R; (9) 

 fi(w)=−log(1+exp(-yi xi
Tw)), yi ∈ {− 1,1}; (10) 

 fi(w)=max{0,1-yixi
Tw}, yi ∈ {− 1,1}. (11) 

When attempting to launch a side-channel attack on an 

embedded CPU, there are several challenges that must be 

surmounted. 

5.1 STATISTICAL CHALLENGE 

Due to the fact that customer data is dispersed in a very non-

uniform manner ∀k≠k~: Exi∼Dk[fi(w;xi)]≠Exi∼Dk~[fi(w;xi)] F(w) 

is defined in such a way that any locally available data points are 

not even close to being able to be considered a representative 

sample of the overall distribution. 

 Exi∼Dk[fi(w;xi)]≠F(w).  (12) 

5.2 COMMUNICATION EFFICIENCY 

The number of customers K is substantial, and it is possible 

that it is much higher than the average number of training samples 

retained by active consumers, n, i.e., K ≫ (n/K). 

5.3 PRIVACY AND SECURITY 

Additional precautions must be taken to protect client privacy 

who are deemed to be untrustworthy parties. It is not reasonable 

to think that every single customer can be relied upon. 

6. EVALUATION 

The embedded cache simulator makes testing for potential 

vulnerabilities in both new and older embedded cache systems 

much more efficient. Exploring attacks on actual hardware makes 

it possible to apply FL to real-world system designs, even when 

the design details of those system designs are unknown. This is 

because actual hardware is easier to exploit. An open-source 

embedded cache simulator that can be used as the basis for the 

embedded cache model has been incorporated into the FL 

framework. 

By making a few adjustments to the simulator for embedded 

caches, it is possible to create multi-level embedded caches. We 

have been employing embedded caches that are physically 

indexed as well as physically tagged to keep things as simple as 

possible, and we have also been allowing both the attacker 

programmes and the victim programmes to make direct use of 

physical addresses when making requests. This has enabled us to 

keep things as plain as possible. 
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Table.1. Comparison of Various Schemes 

Scheme Number of Multipliers (G)  Top-5 Error (%) Speed upto Fine-Tuning Time (epochs) 

HomeAlone 15.49 9.52 1.23× 5-10 

Remapper 7.70 10.23 2.2× 10 

CPU integrated cache 4.56 13.16 3.12× 15 

OProfile 3.85 9.52 4.23× 1-6  

Hypervisor kernel 3.04 11.02 5.11× 2-10 

Proposed 1.32 9.62 10.23× 1-5 

Table.3. Comparison with Various Attack Modes 

Device  Attack Mode HomeAlone Remapper CPU integrated cache OProfile Hypervisor kernel Proposed 

Device 1 

Unauthorized Access 26.95 53.90 105.56 210.00 421.13 844.50 

DDoS 26.95 62.89 106.69 214.49 430.11 862.46 

Man in the Middle 15.72 32.57 64.01 129.15 258.29 518.83 

Insider threats 15.72 37.06 65.13 131.39 262.78 527.81 

Device 2 

Unauthorized Access 553.64 1107.28 2213.43 4423.50 8858.22 17766.98 

DDoS 552.52 966.90 1693.48 2960.23 5193.88 9475.87 

Man in the Middle 335.78 671.55 1343.11 2690.71 5375.80 11157.01 

Insider threats 335.78 609.79 1114.02 2041.61 3759.80 7263.56 

Device 3 

Unauthorized Access 275.14 550.27 1100.54 2203.33 4397.67 8824.53 

DDoS 277.38 486.26 852.36 1491.34 2610.98 4577.35 

Man in the Middle 143.74 287.49 576.10 1151.08 2301.03 4606.55 

Insider threats 143.74 257.17 461.55 827.65 1499.21 2714.29 

Device 4 

Unauthorized Access 548.02 1098.29 2194.34 4388.68 8780.74 17562.60 

DDoS 554.76 970.27 1699.10 2973.70 5195.00 9141.22 

Man in the Middle 285.24 571.61 1142.09 2283.06 4576.23 9172.66 

Insider threats 285.24 510.97 914.12 1646.32 2970.34 5402.75 

Device 5 

Unauthorized Access 280.75 563.75 1130.86 2250.49 4505.48 9069.35 

DDoS 278.50 489.63 854.60 1491.34 2601.99 4579.59 

Man in the Middle 132.51 265.03 528.93 1057.87 2112.36 4240.45 

Insider threats 132.51 234.71 415.51 736.69 1310.54 2341.46 

Device 6 

Unauthorized Access 559.25 1124.12 2243.75 4486.39 8925.60 17846.72 

DDoS 554.76 974.76 1692.36 2971.46 5214.09 9098.55 

Man in the Middle 259.41 518.83 1036.53 2070.81 4147.24 8289.99 

Insider threats 259.41 460.43 814.18 1444.18 2578.41 4591.95 

Device 7 

Unauthorized Access 274.01 546.90 1100.54 2178.62 4390.93 8781.86 

DDoS 270.64 472.78 829.90 1440.81 2526.75 4448.20 

Man in the Middle 130.27 259.41 517.70 1033.16 2065.20 4132.64 

Insider threats 130.27 229.09 402.03 707.49 1247.65 2202.20 

Device 8 

Unauthorized Access 537.92 1072.47 2152.79 4304.46 8619.03 17203.24 

DDoS 532.30 930.97 1631.72 2859.16 4993.98 8771.75 

Man in the Middle 249.31 497.49 992.73 1983.22 3957.45 7937.36 

Insider threats 250.43 439.09 770.38 1358.83 2390.87 4235.96 

Device 9 

Unauthorized Access 132.51 266.15 532.30 1067.97 2133.70 4293.23 

DDoS 131.39 231.34 406.53 708.61 1243.16 2175.25 

Man in the Middle 73.00 143.74 285.24 569.36 1133.11 2257.23 

Insider threats 73.00 126.90 221.23 387.44 680.54 1193.75 
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It is time-consuming to have the agent interface with hardware 

for each operation, and doing so when working with actual 

hardware makes the training more susceptible to disruption from 

system noise. When training on real hardware, we tackle this 

problem by performing all the instructions contained in each 

episode simultaneously. All the instructions contained in an 

episode are carried out; however, the agent is only able to 

determine the latency of memory accesses after they have made a 

guess.  

Unless otherwise specified, all training is executed on clusters 

that are equipped with Intel 2.20 GHz CPUs. The hardware that 

is being used in the following table is representative of actual 

hardware tests. 

7. DISCUSSION 

The results show that FL can discover attack sequences on 

real-world processors without requiring knowledge of the 

processor replacement policies, prefetchers, or anything else of 

the sort. In most cases, human experts are required to have access 

to such details to move recognised dangers to a new platform. For 

instance, efficiently priming and probing an embedded cache set 

requires knowledge of the replacement policy. This can be a 

challenge. On the other hand, since replacement policies for 

modern CPUs are rarely defined openly by the vendor, it can be 

challenging to precisely reverse engineer these rules. 

After manually reverse engineering an undetermined 

replacement method from a real-world processor for a significant 

period, it is possible to manually generate attack sequences. This 

can be done in any order. According to the findings of our 

investigations, FL can locate potentially useful attack sequences 

in a matter of hours. 

Because of the versatility of the embedded cache simulator, 

we can study a far wider variety of embedded cache and attack 

scenarios with much less effort. To determining how well it will 

perform in a range of contexts, we conducted FL testing using a 

wide variety of embedded cache and attack/victim programme 

combinations. In these kinds of configurations, the LRU 

replacement policy is always put into effect. The structure of the 

attack and victim programming place restrictions on the many 

kinds of attacks that can be carried out. We discovered that the FL 

agent was able to identify potentially successful attack sequences 

regardless of the environment. 

This is since it may be impossible to attain a global optimum 

in complicated combinations. However, the training will 

eventually converge to local optima, which capture the important 

mechanism that allows the attack for each configuration but have 

a longer route. It is possible that the agent will uncover a 

particularly fascinating pattern of attacks. 

In contrast to deterministic replacement policies, where future 

states are entirely predictable given the action and the current 

state, pseudorandom replacement policies make it difficult to 

forecast future states. When used in one evaluation, a successful 

attack sequence may lead to an inaccurate assessment in a 

different evaluation. The FL agent is also capable of generating 

several answers, each of which is customised to the data that is 

currently available. Given that the eviction rate in a random 

replacement policy is dependent on both the total number and the 

timing of memory accesses, it follows that no single attack 

sequence will always succeed against such a strategy. This is 

because the eviction rate is dependent on both the total number 

and the timing of memory accesses. Instead, we put the FL agent 

through a total of one hundred different tests to determine how 

effective it is as an attacking agent. 

8. CONCLUSION 

Our tests have shown that the FL is capable of efficiently 

discovering attack sequences against a wide variety of embedded 

cache implementations. The FL agent was also responsible for 

discovering this novel attack, which had a greater bit rate on 

actual systems when compared to attacks recorded in the older 

literature. When it comes to analysing timing attacks on 

microarchitectures in real-world systems, FL has proven to be an 

extremely helpful tool. 
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