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Abstract 

The ECG/EEG/EMG monitoring system is a new type of medical 

technology that has emerged because of the convergence of mobile 

technology and the increased demand for healthcare management 

caused by an ageing population. The ECG/EEG/EMG signal detecting 

system makes it possible to carry out a dynamic medical diagnosis in a 

manner that is both quicker and accurate by giving accurate 

ECG/EEG/EMG signals throughout a varied range of physical 

activities. This study covers the installation of a prototype biomedical 

measurement system, which can be used to pedagogically evaluate the 

usefulness of specific modules for detecting electrical activity in the 

brain, heart, and muscles. 
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1. INTRODUCTION 

Wearable medical devices are a new type of medical 

technology that has emerged because of the convergence of 

mobile technology and the increased demand for healthcare 

management caused by an ageing population [1]. It is now 

possible to prevent the emergence of diseases and protect persons 

from impending dangers to their health thanks to the capacity for 

continuous monitoring. Diagnostic techniques are increasingly 

making use of biosignals obtained from wearable medical devices 

[2]. Additional examples include one blood pressure and glucose 

levels in their blood. Electrocardiograms (ECGs) and 

electromyograms (EMGs) are created whenever there is a change 

in the electrical signal that is caused by the contraction of a 

muscle. Both categories of diagnostic procedures are utilised to a 

significant degree in the delivery of medical treatment [3]. 

Electrodes are connected to the patient skin to record the 

electrical activity created by the contracting and relaxing of the 

cardiac muscles. This is done during an electrocardiogram (ECG). 

The electrophysiologic rhythm of the heart muscle during each 

pulse generates the microscopic electrical change on the skin that 

is picked up by the ECG signal detection system. This change can 

be seen as a line on an ECG. The initial polarisation can be 

regarded of as having been inverted because of this alteration. The 

evolution of the ECG signal detecting system is targeted at 

miniaturisation, family use, and intelligence as people grow more 

health-conscious and as better diagnostic tools become accessible. 

ECG electrodes made of conductive fabric to carry out accurate 

ECG monitoring during physical exercise. The electrodes were 

sewn onto the shirt using conductive thread. A low-power 

wearable device based on a single-arm ECG with the goal of 

monitoring a subject heart rate while the subject is engaged in 

physical exercise. The device is designed to be worn by the 

subject. The wearable ECG monitoring device makes it possible 

to carry out a dynamic medical diagnosis in a manner that is both 

quicker and accurate by giving accurate ECG signals throughout 

a varied range of physical activities. This enables the device to 

improve patient care [4]. 

Electromyography is another method applied in the field of 

electrodiagnostic medicine. Its purpose is to analyse and record 

the electrical signal produced by the activity of skeletal muscles, 

and it is a technique that is utilised to analyse and record the 

signal. When the cells that make up a muscle are stimulated in any 

way, whether by electricity or by nerves, muscle potentials are 

formed. Muscle potentials can be either positive or negative. 

Human biomechanics, medical issues, and activation levels can 

all be observed and quantified thanks to modern scientific 

advancements [5]. EMG signal processing has been applied in an 

increasing variety of applications within the disciplines of 

healthcare and medicine. A configurable integrated platform for 

EMG recording to make gesture identification easier to 

accomplish. The controlled appropriateness of assistance devices 

by employing a dual-channel EMG biopotential amplifier and an 

artificial neural network to interpret and categorise EMG data. 

This allowed the researchers to investigate the controlled 

appropriateness of help devices. This is done to establish whether 

the assistive equipment is suitable for the individual. The feature 

analysis of an EMG signal has the potential to shed light on 

different characteristics of the activity of the muscles in the body 

[6]. These components include a person level of fitness, 

weariness, endurance, and gesture. 

People who have suffered a stroke but have been able to 

survive it often face a challenging and protracted road to recovery 

that involves the utilisation of physical therapy. This is since 

strokes can cause significant damage to nerves and muscles, 

which can make the process of rehabilitation both sluggish and 

hard. Even though this type of service frequently falls short of the 

survivor requirements, those who have survived a stroke may 

benefit from the physiological exercise treatment that is delivered 

under supervision in rehabilitation centres. Trained workers 

routinely explained monitored physiological signals to improve 

rehabilitation procedures; nevertheless, a shortage of therapists 

and exorbitant consultation rates impede recovery for a major 

percentage of stroke survivors [7].  

Robotics of the hand and wrist can be employed to restore 

function to the upper limbs, and patients may be able to use the 

devices on their own in the privacy and convenience of their own 

homes [8]. There has been no continuous detection work done on 

the great majority of the robot-assisted rehabilitation systems that 

are currently available on the market [9]. These systems have only 

been tested in the standard pre- and post-clinical settings. As a 

result of this, it is of the utmost importance to devise a monitoring 
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system that can be comprehended with relative ease and offers a 

detailed explanation of the training progression in the here and 

now. Patients will have a much easier time understanding the 

exercise recovery process that is connected to their treatment 

because of this. 

2. SYSTEM DESIGN  

In applications like wear monitoring, it is preferable to employ 

a smaller number of electrodes in fixed installations rather than a 

larger number of electrodes. When monitoring an ECG, a 

configuration consisting of three electrodes is typically utilised. 

This consists of a third ground electrode that shields the patient 

from potentially dangerous current leakage and two active 

electrodes that serve as differential inputs to an amplifier. The 

patient is protected from potential harm by these electrodes [10].  

An electrocardiogram, often known as an ECG, is a recording 

of the electrical activity of the heart. It is decided to use only two 

electrodes to monitor the ECG signal in this experiment because 

the two-electrode technique can build an isolated circuit to assure 

patient safety without adding ground.  

It is decided to use only two electrodes to monitor the ECG 

signal. Because the procedure involving two electrodes can 

produce an isolated circuit, this is done. The connection between 

the printed circuit board and the electrodes that were safely 

fastened is made with the help of two snap fasteners. The fact that 

the printed circuit board dimensions are 20x65 mm makes it a 

fantastic option for use in applications that take place in the real 

world.  

 

Fig.1. Overall architecture  

Stable electrodes ensure a good signal effect, which suggests 

that a precise monitoring location and adequate contact between 

the electrodes and the skin are necessary for capturing an accurate 

ECG signal and limiting the amount of external noise or 

interference. This is because stable electrodes ensure a good 

signal effect. A reliable signal effect can also be ensured by using 

electrodes that are stable. Previous research has demonstrated that 

the side of the chest and the area around the lower right rib (10th 

rib bone) are ideal locations for stable and high-quality ECG 

signal detection because they require minimum pressure from 

clothing. This is since human respiration, movement, and the 

pressure that clothing puts on the body are less likely to influence 

certain sections of the body. 

The microcontroller, signal processor, A/D converter, 

Bluetooth Low Energy (BLE), and power management module 

are all integrated onto the printed circuit board (PCB) (Fig.1). 

ECG signals were transmitted from the electrodes to a hardware 

filter. There, the signals were amplified with an operational 

amplifier, converted to digital value with an A/D converter read 

with an STM32 chip and transmitted to a smartphone or laptop 

via a BLE module in accordance with the communication 

protocol. 

Another important consideration is the amount of power that 

is used, which has a direct bearing on the capabilities of radio 

chips and microcontrollers. This is since the usability criteria of 

the wearable monitoring system place an emphasis on the 

capability of the device to be worn. The integrated circuit that 

plays the role of the circuit most important component is 

designated as the STM32. The STM32is a microcontroller that 

has a low power consumption, a very small size, an abundance of 

peripheral connectors, and the ability to communicate with a BLE 

module through a serial connection.  

The complex analogue front-end circuitry and the powerful 

digital signal processing structure allow it to be optimised for 

biosignal inputs in the microvolt (V) to millivolt (mV) ranges. 

This is possible because of the chip low power consumption. The 

microvolt range and the millivolt range are corresponding to these 

ranges, respectively. By combining high-pass filters with low-

pass filters, it is feasible to build a bandpass filter that has a 

passband extending from 0.5 to 40 Hz. This bandpass filter would 

have a passband. 

3. PHYSIOLOGICAL MONITORING SYSTEM 

The ECG and EMG devices can fulfil their intended duties 

when the EMG electrodes are positioned on the necessary upper-

limb muscles and the ECG electrodes are positioned on the 

appropriate chest muscles, respectively. After the internal BLE 

modules that are situated on the circuit boards of the wearable 

monitoring system have been enabled, the system will be able to 

begin the process of data collection and will be able to do so 

immediately. Using a programming tool, the initial calibration 

values were inserted into the registers of the STM32 

microcontroller. 

These types of data are obtained from patients. The software 

that is developed contains two built-in configuration choices that 

enable it to connect with the BLE modules of two separate devices 

and receive ECG and EMG data from each of those devices 

simultaneously. These options allow the programme to connect 

with the BLE modules of two different devices. Utilising a 

communication protocol is the first step that must be taken before 

reading the ECG or EMG measurements.  

After the raw data have been processed and analysed with the 

appropriate mathematical techniques, the results of those 

processes are displayed on the screen in real time in the form of 

curves. These curves show the relationship between the raw data 

and the processed and analysed data. These charts show how heart 

rate and muscle activity change over the course of the experiment. 

To provide users of the physiological monitoring system with 

information regarding rehabilitation, a computer software and an 

application are built for the system. 

To set the controller parameters, a link must first be made 

between the controller and a professional programme using the 

BLE module that is integrated right in. In addition to that, the 

controller makes use of a mode known as the fixed mode, in which 
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the user can adjust the air pressure and working duration by 

rotating the knob on the box. The BLE module is shown in Figure 

5c to be the component that oversees delivering the control 

strategy instructions from the physiological monitoring system to 

the control board. This demonstrates how the BLE module 

performs its functions.  

The pump applies the appropriate amount of pressure to the 

robotic glove in accordance with the control strategy to make 

hand rehabilitation training more accessible. Differential pressure 

sensors are used to monitor pressure. These same sensors also 

provide the controller with input regarding the present pressure 

that is being measured.  

The fact that electromyography (EMG) sensors assess the 

muscles in the upper limb makes this possible. It is chosen to 

conduct this research on a healthy individual whose hands would 

be held in their natural postures to ensure that the findings of the 

experiment on muscle activation could be relied upon and 

repeated. This is done since it is thought that this would be the 

best way to achieve these goals. 

Filtering and processing the received EMG signal, which is a 

combination of the EMG potentials as well as the real-time noise 

and offset, is necessary to make use of the data obtained from the 

EMG sensor. Before the raw EMG data can be utilised for 

analysis, the features of the data must first be extracted from the 

raw data, and any noise that is not necessary must be filtered out.  

Root mean square (RMS), mean absolute value (MAV), sign 

changes in slopes, zero crossings, and waveform duration are 

some examples of feature extraction approaches that have been 

used to evaluate human muscle activity in real time. Other 

techniques such as these have also been used. By applying the 

following equation, we can determine the value of the root mean 

squared for the EMG signal: 

 2

1

1 N

i

i

RMS v
N =

=   (1)  

where N is a constant number and vi is the voltage that is sampled 

at the ith point in time. The values of the root-mean-square, which 

are also known as RMS, were recovered from the original EMG 

signal so that the success of the strategy could be evaluated. It is 

feasible to utilise the estimated RMS values as a basis for 

attempting to define the activity level of the muscle based on the 

raw EMG signal.  

The value of the root-mean-square could be a measure of how 

intense the physiological processes that are taking place in the 

motor unit now of the contraction are. This is because the root-

mean-square is calculated after the contraction has taken place. 

Both types of weak muscle activity revealed a link between the 

degree of activity and the strength of the EMG signal that is 

comparable to one another. This is the case regardless of the type 

of weak muscle activity.  

At high levels of muscular activity, the amplitude of the 

muscle activity signal gets saturated; thus, the same connection 

does not hold for such levels; hence, a different calculation 

strategy is necessary. This is since high levels of muscular activity 

led the signal to reach its maximum possible value. 

However, because there is no baseline, it may be difficult to 

interpret the signal that is collected by the EMG module from the 

surface of the skin. This signal comes from the subject skeletal 

muscles. This is since variances between individuals may render 

it hard to compare the results. It is necessary to develop a method 

for normalising the EMG signal.  

After determining the maximum RMS value (RMSM) of the 

EMG data before the rehabilitation programme, the strategy may 

utilise the normalisation methods to determine the nonnormalized 

RMS values. After acquiring the RMS value that is determined to 

be the greatest possible one, this step is taken. The formula for the 

equation can be stated in written form as follows: 

 RMSN=RMS/RMSM (1)  

where RMSN, RMMS, and RMSM each stand for the maximum 

RMS value of EMG, the normalised RMS, and the nonnormalized 

RMS, respectively. By physically moving the hand that is being 

tested into the most extreme posture, we were able to capture the 

largest root-mean-square (RMS) EMG value. We carried out the 

analysis three times, with the average value serving as the RMSM, 

to cut down on the amount of uncertainty that is brought about by 

the experimental measurements. This is done to limit the amount 

of uncertainty that is introduced by the measurements. 

3.1 DESIGN OF ECG/EEG/EMG MODULES 

3.1.1 Gain: 

Due to the high common-mode rejection ratio and high level 

of precision that this amplifier possesses, it is ideally suited for 

usage with biomedical signals. This is because of the nature of 

these signals. When performing the calculation to determine the 

gain, the ratio that is used is the one that is provided. 

 G = 1+50 kΩRG (2)  

The RL electrode is utilised by the ECG module to accomplish 

the task of establishing a driven right leg circuit. This circuit is 

vitally necessary for maintaining the safety of humans. It can stop 

unbalanced currents and correct for common-mode noise 

problems at the differential input of the instrumentation amplifier. 

Both functions are located at the same location. Figure 8 is a 

diagram that illustrates the method of acquiring an 

electrocardiogram signal by using the INA128P instrumentation 

amplifier.  

3.1.2 60 Hz Notch Filter: 

Utilising the UAF42 integrated circuit in each of the ECG, 

EEG, EOG, and EMG components allowed for the successful 

implementation of the Notch filter in each of these portions. This 

application-specific integrated circuit (ASIC) is a Sallen-Key-

style second-order active filter that takes the values of six resistors 

(RF1, RF2, RZ1, RZ2, RZ3, and RQ) as inputs. The resistors are 

numbered from left to right: RF1, RF2, RZ1, RZ2, RZ3, and RQ. 

The following is the value for the frequency of the notch: 

 f0=12πRFC (3) 

 RQ = 25 kΩQ - 1  (4) 

 Q=RZ3/RZ1=RZ3/RZ2 (5) 

A Notch filter that satisfies the requirements of the application 

bulletin is constructed by adhering to the procedures that have 

been detailed in previous sections of this article.  

3.1.3 Band-pass Filter:  

A band-pass filter that comprises of a first-order passive high-

pass filter and a fifth-order active low-pass filter is intended for 

use with the ECG, EEG, and EOG modules. This filter is a band-
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pass filter. Utilising the parameters C11 = 1 μF and fc = 0.15 Hz 

allowed for the creation of a first-order high-pass filter that has a 

value of R10 = 1 MΩ.  

A low-pass filter with a cutoff frequency of 40 Hz and a unity-

gain, fifth-order, Butterworth-optimized, Sallen-Key topology is 

utilised. The cutoff frequency is determined to be 40 Hz.  

3.1.4 Cascaded Band-Pass Filter: 

Cascaded second-order active high-pass and low-pass filters 

were used to construct a band-pass filter for the EMG module with 

a passband extending from 20 Hz to 500 Hz (see Figure 11). This 

filter is designed to create a band-pass filter for the EMG module. 

The first filter is a Butterworth-optimized Sallen-Key high-

pass active filter with a unity gain and a cutoff frequency of 20 

Hz. The filter also had a Butterworth-optimized Sallen-Key low-

pass active filter. Additionally, a Butterworth-optimized Sallen-

Key low-pass filter is a part of this filter. By applying the 

following equations, we were able to ascertain the values of R7 

and R6: 

 R7 = 1/πfcCa1 (6)  

 R6 = a/14πfcCb1 (7)  

An active low-pass filter of order 2 is constructed, and it had 

a cutoff frequency of 500 hertz, a Butterworth-optimized gain of 

1, and unity gain. Additionally, it had a Butterworth-optimized 

gain of 1. In addition to that, the filter had a gain that is equal to 

one. Because these high-pass filter coefficients are of the same 

type and order as the ones that came before them, they were used 

once again in the process.  

3.1.5 Adjustable Gain: 

At this stage, the total gain of each module is being fine-tuned 

in preparation for the initial 500 V/V amplification that is going 

to be planned. This preparation took place in preparation for the 

initial 500 V/V amplification. This is made possible because it is 

possible to construct the amplifier. 

4. NOVEL MACHINE LEARNING 

Since the beginning of the development of this technology, 

artificial neural networks (ANN) have patterned the accuracy of 

their computations after that of human thought. In the discipline 

of statistics, this item is referred to as a model for interpreting data 

that is non-linear. The most up-to-date technique for this machine 

learning model is known as multilayer perception (MLP), and it 

is implemented in artificial neural networks (ANN) to evaluate 

and forecast the statistical dataset.  

The ANN model is a more advanced alternative to more 

standard statistical approaches, as it involves expertise with the 

structure of the input data as well as the kind of relationship that 

exists between variables (linear or non-linear). In addition, the 

ANN model requires knowledge of the kind of relationship that 

exists between variables (linear or non-linear). There are three 

distinct layers that make up the MLP technique that the ANN 

model uses.  

These layers are the input layer, the hidden layer, and the 

output layer. In a data structure, the information is evaluated at 

the nodes of the hidden levels if the input layers are not 

sufficiently involved in the process. This is the case if the input 

layers are not sufficiently involved in the process. In this scenario, 

the output layer is linked to the input layers, which are made up 

of parts like the several GECFs and the gully erosion training 

sites.  

Following this, the input and hidden layers will carry out a 

continuous function evaluation of the output, as well as create 

systematic predictions regarding the model structure of the input 

nodes. In the ANN model, the configuration of the input and 

output nodes is carried out in accordance with a preset set of 

criteria. The Boolean value of each pixel is denoted by the number 

of output nodes, which is either one or zero depending on the 

situation.  

If the value is 1, then there is evidence of gully erosion, 

however if the value is 0, then there is no evidence of gully 

erosion. The utilisation of hidden layers makes it possible to 

perform calculations about model trials and errors. 

4.1 GENERAL LINEAR MODEL (GLM) 

GLM is a well-known statistical probability strategy that may 

be used to model a wide variety of natural disasters. An alternative 

to the general linear regression model, which is the model that is 

generally employed, is the GLM.  

 GLM is a technique for doing statistical analysis that is 

gaining in popularity due to the relative simplicity involved in 

putting it into practise. This statistical machine learning model 

operates on the presumption that there is a linear relationship 

between the dependent variable and numerous independent 

variables, and that the link function may either be identity or 

logistic.  

This model assumes that the dependent variable is a 

continuous variable. In the scenario where the dataset has just true 

or false information, GLM is able to utilise a logistic regression 

model to convert the dataset into a binary data model. This is 

possible since the dataset contains only true or false information. 

When working with a dataset that only contains binary values, 

such as 0 and 1, the logit link function in GLM is used to simulate 

a fractional response. This is because binary values can only take 

on two possible states: either 0 or 1. The values 0 and 1 in binary 

are represented by the numerals 0 and 1, respectively. 

 Y = Pr(y=1) = eC0+C1X1+⋯+CnXn (8)  

4.2 MAXIMUM ENTROPY (MAXENT) 

The anticipatory model that is referred to as MaxEnt is built 

on the fundamental idea of maximising the amount of entropy. 

The maximisation of entropy is founded on the fundamentals of 

statistics and information theory, both of which are connected to 

the idea being discussed here. These principles serve as the 

foundation for the maximisation of entropy principle, which not 

only gives an appropriate approximation of an uncertain 

probability distribution, but also serves as the principle. It is 

argued that the MaxEnt model choose the probabilistic restriction 

that ends up producing the most entropy based on all the many 

possibilities that are accessible.  

MaxEnt is a well-known model for machine learning that is 

generated with presence-only features. It is created by using these 

characteristics. The presence-only feature is important for the aim 

of the machine learning model since it is more dependable in 

locations that are difficult to access. There is an average MaxEnt 

result for an unknown target allocation and true distribution across 
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all the pixels in the area x, which were all represented by pixel 

values of x.  

This result is calculated for all the pixels in the region. This 

finding is discovered throughout the entirety of the region pixel 

data. During this investigation into the GESM modelling, the 

MaxEnt model is tasked with finding the probability distribution 

of gully occurrence at point x. This is done as part of the study of 

the GESM modelling. This equation is used to provide a quick 

statistical description of the model. 

 P(y=1|x) = P(x|y=1)/P(y=1)P(x), (9)  

where P(y=1|x) represents the probability of the gully being 

present at the location of x, where P(x|y=1) represents being at the 

site of given x, P(y=1) is the overall prevalence, and P(x) is the 

probability of picking the location x. The above equation can also 

be rewritten as follows: 

 P(y=1|x) = π(x)/P(y=1)|x|. (10)  

The calculation of P(x) can also be done by the probability 

distribution of marginalizing, such as: 

 P(x)=∑yP(x,y)=P(x|y=1)/P(y=1)+P(x|y=0)/P(y=0). (11)  

The generative model basically deals with P(x,y) and P(y). 

The equation for the equal probability of MaxEnt is as follows: 

 P(y=1|x)=P(x|y=1)P(x|y=1)+(P(x|y=0). (12)  

5. EVALUATION  

The students were able to evaluate the effectiveness of each 

individual component that made up the measurement system 

because the prototype is designed in a modular fashion, which 

allowed them to do so.  

 

Fig.2. Noise Reduced ECG Signal using GLM 

 

Fig.3. Noise Reduced EMG Signal using GLM 

 

Fig.4. Noise Reduced EMG Signal using GLM 

 

Fig.6. Noise Reduced ECG Signals using MaxEnt 

 

Fig.7. Noise Reduced EMG Signal using MaxEnt 

This method allows for the investigation of all types of active 

filters, including band-pass, band-stop, high-pass, and low-pass 

filters, as well as their corresponding frequency responses. 

The primary objective is to design a prototype that could 

simultaneously evaluate ECG, EEG, and EMG data, in addition 

to skin bioimpedance. The ECG module made it possible to 

evaluate 12 separate leads coming from various parts of the body 

in addition to the heart rate, and the exercises that were included 

in this unit provided the students with a better understanding of 

the phenomenon of electrical activity that occurs during the heart 

cycle. 

In addition, the EOG module made it possible for us to 

interpret the electrical shift that occurred in the muscles that 
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control eyeball movement. A comparable amount of effort is put 

into the testing portion of the EEG module to acquaint students 

with brain electricity. The EMG module allowed students to 

investigate the difference in electrical potential that occurs 

because of utilising a wide variety of different muscle motions. 

 

Fig.7. Noise Reduced EEG Signal using MaxEnt 

6. CONCLUSION 

Users can test theoretical hypotheses by evaluating each stage 

of the device on its own. This study covers the installation of a 

prototype biomedical measurement system, which can be used to 

pedagogically evaluate the usefulness of specific modules for 

detecting electrical activity in the brain, heart, and muscles. The 

results of such an evaluation can be used to inform future 

developments in the field. In conclusion, the bioimpedance 

module demonstrated how the bioelectrical impedance varies at 

different locations throughout the body. It is essential to highlight 

the fact that the EMG, EEG, and EOG subsystems all utilise the 

same quantity of input channels that were incorporated into the 

prototype. 
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