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Abstract 

Estimating power consumption in CMOS VLSI circuits using 

supervised learning is the focus of this investigation. Unlike more 

conventional approaches like the SPICE circuit modelling that has 

been recommended, the proposed model does not assume a 

predetermined set of empirical equations or parameters. Unlike other 

technologies, and it doesn't require the user to pay attention to the 

circuit topology or the connectivity to provide precise results. An 

alternative interpretation with improved efficiency is suggested by the 

proposed design, but it will require a large amount of additional data 

for proper implementation. The proposed architecture has certain 

qualities that can improve power estimation for CMOS VLSI circuits. 
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1. INTRODUCTION 

The requirements of the platform in terms of data transmission 

are satisfied by the numerous communication lines that are 

included in the system-on-a-chip (SoC) [1]. Globally 

Asynchronous, Locally Synchronous Systems (GALS), is 

becoming increasingly popular because of the difficulties that are 

inherent in the design of these on-chip communication cables for 

sub-micron technology. This way of designing divides a platform 

up into many different synchronous areas, each of which can run 

a different application task in parallel.  

This sphere is synchronous just inside itself, and to 

communicate with other synchronous zones, it would employ 

asynchronous ways. The network-on-chip, often known as NoC, 

offers a new paradigm for the communication that takes place 

within a chip when applied to a particular topology design. 

Because of this, the GALS-based system enables communication 

to proceed without any problems. In addition to this, what 

emerges as a result is a layout that is efficient and extensible. 

Furthermore, the NoC is a scalable method for meeting 

application communication requirements [2] in heterogeneous 

CPUs with multiple cores. 

It is necessary to map diverse activities of a target application 

to different cores to achieve better performance from a GALS-

based SoC architecture. Fixing this issue, which is the root cause 

of the difficulty in mapping applications to the NoC architecture, 

may result in further quality of life enhancements. Therefore, it is 

vital to select the most effective solution for the performance of 

the NoC [3]. 

The computer industry will eventually shift its focus to 

artificial intelligence to manage the vast volumes of data that are 

required by cutting-edge programs. In the field of artificial 

intelligence (AI), one example of a rapidly evolving application 

that requires a high degree of parallelism to meet the application 

processing deadline is neural networks (NNs) [4]. In the case of 

NNs, it is possible to make use of this parallelism by distributing 

neurons throughout the various components of the NoC design. 

Throughout the years, there have been a great number of 

researchers who have focused on developing various application 

processes suitable for a variety of uses. It delves into the process 

of mapping multiple applications onto the architecture of the 

NoC. The mapping of AI algorithms onto a NoC infrastructure is 

not taken into consideration by this, though. In [5], a multi-

objective algorithm is constructed by considering the various 

temporal limits of the intended applications. This was done to 

optimise the algorithm performance. Due to the difficulty of 

reconfiguring, the way that was suggested did not demonstrate 

any evidence of progress, which is unfortunate. 

The article in [6] outlines the procedure that has been 

suggested as a means of locating this optimal zone for a certain 

application. The events took place in a sequential order, which 

may have contributed to the lack of noticeable results. Another 

paper [2] focused on developing a fault-tolerant method for 

application mapping and advocated giving healthy cores higher 

priority when constructing programmes. The concept was called 

application mapping.  

Mapping algorithms on heterogeneous multi-core processors 

with distinct features are discussed in both [5] and [6], while 

discusses a NoC application mapping to balance packet latency 

with other performance aspects. It also discusses mapping 

algorithms on heterogeneous multi-core processors. A technique 

that is based on rectangle analysis is presented by the authors of 

[4] as a means of selecting NoC zones for use in multi-application 

mapping. With the use of this design space exploration (DSE) 

method, we can zero in on the sweet spot for the efficient 

operation of an application about both its latency and its power 

consumption. 

2. RELATED WORKS 

This article will explore the various mapping strategies 

currently in use for NoC architectures. Mapping is a key stage in 

the process of developing a NoC since different parts of the 

programme need to be distributed over different processor cores. 

Several different objectives might be decided upon, depending on 

the use case. Latency in application processing, energy 

consumption, meeting of real-time deadlines, and throughput are 

all examples. The implementation of these algorithms has 

involved the use of a variety of different optimization approaches 

[7]. 

For NoC-based real-time application mapping, the branch-

and-bound (BB)-based exact mapping (BEMAP) technique is 

explained in full in reference [8]. The method reduces the amount 
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of power consumed and the amount of latency while 

simultaneously boosting the throughput for a given NOC 

bandwidth. The solution is associated with the multi-goal 

optimization of the NoC application mapping. The approach 

offers a reduction in network latency of up to 61.10% and an 

overall reduction in energy consumption of up to 19.93% for mesh 

and torus topologies, respectively. Although the article discusses 

certain applications that may be developed with AI, it does not go 

into detail regarding how these applications could be 

implemented. 

In reference [4], it is shown how to map several applications 

onto the NoC by first doing an analysis of the various regions that 

make up the NoC. A genetic algorithm is used to evaluate the 

effectiveness of the application tasks after they have been mapped 

into the prospective zones. In the second step of the process, you 

will derive a new task mapping by employing a simulated 

annealing strategy that is based on a B* tree. Based on the results 

of the experiments, the authors claim that the selected apps 

experienced a reduction in latency of 24.42 percent and a decrease 

in power usage of 23.45 percent. However, the method does not 

take into consideration the existence of an AI. 

It is advise that demanding real-time applications use a 

precompute phase to partially map the application, with the 

remaining mapping being executed on the fly during runtime. 

This strategy is intended to improve performance. Because of this, 

programmes are given the freedom to adjust their mapping in 

accordance with the resources that are now available on the 

hardware. The researchers claim that this strategy can cut the 

amount of energy needed by 13 percent when compared to the 

best practises that are currently in use. The solution that has been 

proposed, on the other hand, has the potential to be expanded to 

accommodate AI-based input programmes. 

In mapping of many applications onto the NoC while 

imposing latency constraints is explored. To discover a solution 

to the issue, a method that is based on heuristics is applied, and 

this method increases performance all around while 

simultaneously decreasing the maximum average packet delay by 

10.42%. The method that has been proposed, on the other hand, 

does not take into account mapping AI-based applications to this 

framework. As a result, this topic is open to additional research. 

3. PROPOSED MODELLING 

The investigation of AI-based application mapping across a 

wide variety of NoC platforms while considering latency and 

energy consumption is the primary objective. This algorithm is 

carried out in steps as it is being executed. In the first part of the 

process, which is referred to as region analysis, we evaluate which 

regions are ideal for deploying the various components of an 

application.  

In the second stage, you will map the entirety of the 

programme onto the architecture of the processor by allocating 

the neurons for each individual task to the cores of the region that 

you selected in the previous step. Because, to the best of our 

knowledge, there are very few studies of the task mapping of AI 

applications on NoC architecture, we will investigate a mesh 

based NoC as a possible solution for application mapping. On the 

other hand, further research will investigate network-centric 

design patterns other than mesh networks. 

Before settling on a particular area of the programme to map, 

the model divides the application into discrete tasks, which are 

then mapped into the various layers of the neural network. In 

addition to this, the cores of the currently available processors are 

being investigated. In the second phase, we will map specific 

neurons to respective cores to optimise latency as well as power 

consumption. In the sections that follow, we will discuss the two 

stages that are required to accomplish these goals. 

3.1 REGION MAPPING 

We divide the mesh based NoC into a few different zones so 

that we can find open zones more quickly. The number of layers 

in the neural network determines which portions of the network 

are loaded onto the CPU. We divide the result by one to get the 

total number of regions in the neural network. This is 

accomplished by first dividing the number of cores by the total 

number of layers in the neural network. 

 nr=nc/n (1) 

where  

nr is the number of regions,  

nc is the number of cores, and  

n is the number of neural network layers. 

We select neighbouring cores to combine into a single area by 

making use of the region count that was provided in the prior 

algorithm. After this step has been completed, any cores or 

clusters of cores that are still present are merged with those that 

are located nearby. 

Consider a predetermined occupancy level to find out which 

areas are currently unoccupied. This is done to select regions that 

do not currently have any inhabitants. This guarantees that only 

less-crowded places are selected, with a primary focus on those 

that have a lower occupancy rate. This would modify the pattern 

of the processor energy consumption, which would be to its 

advantage. 

The method that has been offered, which takes a game-

theoretic approach to maximise the achievement of global goals. 

A layer of a neural network must be mapped into some physical 

area to properly represent the activities that need to be carried out, 

which are represented by the neurons in that layer. Using this 

approach, the work that needs to be done on one layer will be 

finished before moving on to the work that has to be done on 

another layer. At the level that has been planned, using this 

strategy will be effective in reducing the time lag in 

communication. 

3.2 CORE - NEURONS MAPPING 

Neuron Mapping at the Core 3.2 Secondly, to map neurons to 

a particular core of the processor, we make use of the NoC region 

that was assigned during the level-1 mapping process. During this 

stage, we will select a core that has the lowest possible energy 

requirements and the fastest possible network speeds that are 

possible. The overall objectives are optimised using a game-

theoretic framework with the help of the recommended algorithm. 

The number of problematic places in the NoC can be reduced, 

which will have a beneficial effect and allow for the achievement 

of a better solution.  
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We show that the neurons associated with a job are assigned 

to a particular processing unit to reduce the energy-draining 

communication overhead associated with the NoC. It is also 

crucial to distribute the neurons in an even manner overall the 

processing cores to achieve a consistent power profile.  

It is possible that neurons may be assigned to a single 

processor to cut down on the energy required for communication; 

however, doing so would result in the production of energy hot 

spots. On the other hand, if the neurons are dispersed evenly, this 

will increase the amount of energy available for communication 

while simultaneously lowering the influence of any energy hot 

spots. 

4. RESULTS 

The training dataset and the testing dataset for the model 

originate from previously published research. The proposed 

model is educated using the data from a set of 20 benchmark 

ISCA89 sequential circuits, and then 5 of those circuits are 

utilised for testing purposes which is shown in Table.1-Table.4. 

A sequential circuit number of inputs and outputs, as well as its D 

flip-flops, inverters, and total number of gates (AND gates, 

NAND gates, OR gates, and NOR gates), are used as attributes 

during instruction and evaluation. Other attributes include the 

total number of gates. 

Training and testing the newly developed model both make 

use of ten-fold cross-validation. Python, a high-level 

programming language, is used to create the actual job, and the 

application is run on a machine with a 3.4 GHz Intel Core i7-6700 

central processing unit and 16 gigabytes of random-access 

memory. 

The number of input neurons in a particular neural network is 

directly proportional to the number of input attributes that were 

employed throughout the training process. The number of 

attributes is reduced from 9 to 7 because of the removal of OR 

gates and AND gates from the input. In a few specific instances, 

like traincgf and traincgp, the output of 7 input attributes was 

superior to the output of 9 input attributes. The learning rate, the 

momentum constant, the activation function, and the training 

technique are the four primary parameters that make up a BPNN. 

Adjustments can be made to the momentum constant, which 

can range from 0.1 to 0.9, the number of epochs, which can range 

from 150 to 2700, the number of neurons in the hidden layer, 

which can range from 10 to 17, the learning rate, which can range 

from 0.3 to 0.8 across 11 unique training algorithms, and the 

activation functions, which can range from tansig to logsig. In the 

tables that follow, comparisons of the results for the ISCA89 

benchmark circuits are presented. 

Table.1. Delay (ms) 

 Benchmark circuit LSTM BPNN RF LR SVM Proposed 

Training 

S344 0.427094 0.574875 0.929611 0.712334 0.839982 0.719795 

S382 0.717444 0.952811 0.655102 1.008714 1.058588 0.814023 

S386 0.475332 0.402055 0.664198 0.613507 0.755258 0.587343 

S400 0.617799 0.991442 0.507116 0.863488 0.963337 0.696595 

S641 0.317024 0.382228 0.573444 0.807789 0.886381 0.680243 

Testing 

S344 1.131456 1.124098 1.12604 1.127981 1.131763 1.131456 

S382 0.873299 0.921231 1.014335 1.066764 1.082298 0.918471 

S386 1.064311 1.165284 1.507961 1.080152 1.09538 2.021107 

S400 0.546872 0.739315 0.543193 0.853779 0.929611 0.764865 

S641 0.510693 0.738599 0.717035 0.948314 0.980405 0.992566 

Table.2. Computational time (ms) 

 Benchmark circuit LSTM BPNN RF LR SVM Proposed 

Training 

S344 3.060379 7.03647 1.123893 1.076984 1.185418 1.8582 

S382 0.99829 1.136464 1.053989 0.918574 0.946065 3.027471 

S386 1.007385 1.108052 1.09027 1.105906 1.049287 1.080561 

S400 1.142494 1.134318 1.65145 1.100898 1.077801 3.121495 

S641 0.708859 1.14556 0.944124 0.877489 1.058894 0.865327 

Testing 

S344 1.002991 1.079232 0.984186 0.9709 0.976419 0.978258 

S382 1.442246 2.242677 1.085262 1.156291 1.092314 3.843435 

S386 0.773245 1.134624 2.021516 1.095891 1.135544 0.937889 

S400 1.070954 1.126857 1.135749 1.018832 1.1335 0.926954 

S641 0.928691 1.259308 0.992158 0.946474 1.329111 1.001049 
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Table.3. Throughput (kbps) 

 Benchmark circuit LSTM BPNN RF LR SVM Proposed 

Training 

S344 0.721532 0.971309 1.571223 1.192265 1.397483 1.216487 

S382 1.341068 1.803217 1.215669 1.920747 2.017939 1.535453 

S386 0.61739 0.535937 0.902733 0.842843 1.04336 0.792765 

S400 0.68893 1.111629 0.566188 0.971615 1.083933 0.778355 

S641 0.398069 0.479829 0.672374 1.005035 1.106519 0.852552 

Testing 

S344 1.305912 1.297531 1.299882 1.301824 1.30632 1.305912 

S382 1.02803 1.084342 1.194003 1.255731 1.274025 1.081174 

S386 1.164262 1.279544 1.682008 1.190937 1.203405 2.231333 

S400 0.612689 0.828229 0.608703 0.950971 1.03825 0.857049 

S641 0.552289 0.858991 0.842946 1.123791 1.166409 1.171416 

Table.4. Communication Delay (ms) 

 Benchmark circuit LSTM BPNN RF LR SVM Proposed 

Training 

S344 3.843538 6.486736 1.376327 1.315314 1.456043 2.318305 

S382 1.212296 1.380415 1.280157 1.113776 1.141778 3.680426 

S386 1.374488 1.514911 1.49212 1.516444 1.440407 1.475972 

S400 1.322979 1.313168 1.923404 1.272697 1.242752 3.666732 

S641 0.928896 1.556097 1.263907 1.199726 1.454919 1.179797 

Testing 

S344 1.14791 1.234883 1.111425 1.096708 1.106519 1.119499 

S382 2.117891 3.834544 1.158437 1.375816 1.188279 6.961046 

S386 0.906923 1.337185 2.388823 1.291093 1.338207 1.103147 

S400 1.232532 1.297736 1.308058 1.171621 1.305401 1.063289 

S641 1.18552 1.554462 1.243263 1.206369 1.779404 1.278522 

5. CONCLUSION 

Within the scope of this study is a method for estimating 

power consumption in CMOS VLSI circuits that makes use of 

supervised learning. The RF model that has been suggested does 

not rely on the assumption of any set of empirical equations or 

parameters, in contrast to traditional methods such as the SPICE 

circuit modelling that has been suggested. RF produces accurate 

results without requiring the user to pay attention to the circuit 

structure or the connectivity.  

A design that has been offered will offer an alternate 

interpretation that has enhanced performance, but for it to be 

properly executed, it will require a substantial amount of 

additional data. The power estimation of CMOS VLSI circuits can 

benefit from the one-of-a-kind characteristics of the suggested 

design. 
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