
GR THIPPESWAMY et al.: AI BASED MACHINE LEARNING ALGORITHM IN VLSI TECHNOLOGY APPLICATION

DOI: 10.21917/ijme.2023.0252

1462

AI BASED MACHINE LEARNING ALGORITHM IN VLSI TECHNOLOGY

APPLICATION

G.R. Thippeswamy1, R. Jayadurga2 and Suresh Kumar Sharma3
1Department of Computer Science and Engineering, Don Bosco Institute of Technology, India

2Department of Computer Science, Soundarya Institute of Management and Science, India
3Department of SMCS, Sri Karan Narendra Agriculture University, India

Abstract

Estimating power consumption in CMOS VLSI circuits using

supervised learning is the focus of this investigation. Unlike more

conventional approaches like the SPICE circuit modelling that has

been recommended, the proposed model does not assume a

predetermined set of empirical equations or parameters. Unlike other

technologies, and it doesn't require the user to pay attention to the

circuit topology or the connectivity to provide precise results. An

alternative interpretation with improved efficiency is suggested by the

proposed design, but it will require a large amount of additional data

for proper implementation. The proposed architecture has certain

qualities that can improve power estimation for CMOS VLSI circuits.

Keywords:

AI, Machine Learning, VLSI, NoC

1. INTRODUCTION

The requirements of the platform in terms of data transmission

are satisfied by the numerous communication lines that are

included in the system-on-a-chip (SoC) [1]. Globally

Asynchronous, Locally Synchronous Systems (GALS), is

becoming increasingly popular because of the difficulties that are

inherent in the design of these on-chip communication cables for

sub-micron technology. This way of designing divides a platform

up into many different synchronous areas, each of which can run

a different application task in parallel.

This sphere is synchronous just inside itself, and to

communicate with other synchronous zones, it would employ

asynchronous ways. The network-on-chip, often known as NoC,

offers a new paradigm for the communication that takes place

within a chip when applied to a particular topology design.

Because of this, the GALS-based system enables communication

to proceed without any problems. In addition to this, what

emerges as a result is a layout that is efficient and extensible.

Furthermore, the NoC is a scalable method for meeting

application communication requirements [2] in heterogeneous

CPUs with multiple cores.

It is necessary to map diverse activities of a target application

to different cores to achieve better performance from a GALS-

based SoC architecture. Fixing this issue, which is the root cause

of the difficulty in mapping applications to the NoC architecture,

may result in further quality of life enhancements. Therefore, it is

vital to select the most effective solution for the performance of

the NoC [3].

The computer industry will eventually shift its focus to

artificial intelligence to manage the vast volumes of data that are

required by cutting-edge programs. In the field of artificial

intelligence (AI), one example of a rapidly evolving application

that requires a high degree of parallelism to meet the application

processing deadline is neural networks (NNs) [4]. In the case of

NNs, it is possible to make use of this parallelism by distributing

neurons throughout the various components of the NoC design.

Throughout the years, there have been a great number of

researchers who have focused on developing various application

processes suitable for a variety of uses. It delves into the process

of mapping multiple applications onto the architecture of the

NoC. The mapping of AI algorithms onto a NoC infrastructure is

not taken into consideration by this, though. In [5], a multi-

objective algorithm is constructed by considering the various

temporal limits of the intended applications. This was done to

optimise the algorithm performance. Due to the difficulty of

reconfiguring, the way that was suggested did not demonstrate

any evidence of progress, which is unfortunate.

The article in [6] outlines the procedure that has been

suggested as a means of locating this optimal zone for a certain

application. The events took place in a sequential order, which

may have contributed to the lack of noticeable results. Another

paper [2] focused on developing a fault-tolerant method for

application mapping and advocated giving healthy cores higher

priority when constructing programmes. The concept was called

application mapping.

Mapping algorithms on heterogeneous multi-core processors

with distinct features are discussed in both [5] and [6], while

discusses a NoC application mapping to balance packet latency

with other performance aspects. It also discusses mapping

algorithms on heterogeneous multi-core processors. A technique

that is based on rectangle analysis is presented by the authors of

[4] as a means of selecting NoC zones for use in multi-application

mapping. With the use of this design space exploration (DSE)

method, we can zero in on the sweet spot for the efficient

operation of an application about both its latency and its power

consumption.

2. RELATED WORKS

This article will explore the various mapping strategies

currently in use for NoC architectures. Mapping is a key stage in

the process of developing a NoC since different parts of the

programme need to be distributed over different processor cores.

Several different objectives might be decided upon, depending on

the use case. Latency in application processing, energy

consumption, meeting of real-time deadlines, and throughput are

all examples. The implementation of these algorithms has

involved the use of a variety of different optimization approaches

[7].

For NoC-based real-time application mapping, the branch-

and-bound (BB)-based exact mapping (BEMAP) technique is

explained in full in reference [8]. The method reduces the amount

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2023, VOLUME: 08, ISSUE: 04

1463

of power consumed and the amount of latency while

simultaneously boosting the throughput for a given NOC

bandwidth. The solution is associated with the multi-goal

optimization of the NoC application mapping. The approach

offers a reduction in network latency of up to 61.10% and an

overall reduction in energy consumption of up to 19.93% for mesh

and torus topologies, respectively. Although the article discusses

certain applications that may be developed with AI, it does not go

into detail regarding how these applications could be

implemented.

In reference [4], it is shown how to map several applications

onto the NoC by first doing an analysis of the various regions that

make up the NoC. A genetic algorithm is used to evaluate the

effectiveness of the application tasks after they have been mapped

into the prospective zones. In the second step of the process, you

will derive a new task mapping by employing a simulated

annealing strategy that is based on a B* tree. Based on the results

of the experiments, the authors claim that the selected apps

experienced a reduction in latency of 24.42 percent and a decrease

in power usage of 23.45 percent. However, the method does not

take into consideration the existence of an AI.

It is advise that demanding real-time applications use a

precompute phase to partially map the application, with the

remaining mapping being executed on the fly during runtime.

This strategy is intended to improve performance. Because of this,

programmes are given the freedom to adjust their mapping in

accordance with the resources that are now available on the

hardware. The researchers claim that this strategy can cut the

amount of energy needed by 13 percent when compared to the

best practises that are currently in use. The solution that has been

proposed, on the other hand, has the potential to be expanded to

accommodate AI-based input programmes.

In mapping of many applications onto the NoC while

imposing latency constraints is explored. To discover a solution

to the issue, a method that is based on heuristics is applied, and

this method increases performance all around while

simultaneously decreasing the maximum average packet delay by

10.42%. The method that has been proposed, on the other hand,

does not take into account mapping AI-based applications to this

framework. As a result, this topic is open to additional research.

3. PROPOSED MODELLING

The investigation of AI-based application mapping across a

wide variety of NoC platforms while considering latency and

energy consumption is the primary objective. This algorithm is

carried out in steps as it is being executed. In the first part of the

process, which is referred to as region analysis, we evaluate which

regions are ideal for deploying the various components of an

application.

In the second stage, you will map the entirety of the

programme onto the architecture of the processor by allocating

the neurons for each individual task to the cores of the region that

you selected in the previous step. Because, to the best of our

knowledge, there are very few studies of the task mapping of AI

applications on NoC architecture, we will investigate a mesh

based NoC as a possible solution for application mapping. On the

other hand, further research will investigate network-centric

design patterns other than mesh networks.

Before settling on a particular area of the programme to map,

the model divides the application into discrete tasks, which are

then mapped into the various layers of the neural network. In

addition to this, the cores of the currently available processors are

being investigated. In the second phase, we will map specific

neurons to respective cores to optimise latency as well as power

consumption. In the sections that follow, we will discuss the two

stages that are required to accomplish these goals.

3.1 REGION MAPPING

We divide the mesh based NoC into a few different zones so

that we can find open zones more quickly. The number of layers

in the neural network determines which portions of the network

are loaded onto the CPU. We divide the result by one to get the

total number of regions in the neural network. This is

accomplished by first dividing the number of cores by the total

number of layers in the neural network.

 nr=nc/n (1)

where

nr is the number of regions,

nc is the number of cores, and

n is the number of neural network layers.

We select neighbouring cores to combine into a single area by

making use of the region count that was provided in the prior

algorithm. After this step has been completed, any cores or

clusters of cores that are still present are merged with those that

are located nearby.

Consider a predetermined occupancy level to find out which

areas are currently unoccupied. This is done to select regions that

do not currently have any inhabitants. This guarantees that only

less-crowded places are selected, with a primary focus on those

that have a lower occupancy rate. This would modify the pattern

of the processor energy consumption, which would be to its

advantage.

The method that has been offered, which takes a game-

theoretic approach to maximise the achievement of global goals.

A layer of a neural network must be mapped into some physical

area to properly represent the activities that need to be carried out,

which are represented by the neurons in that layer. Using this

approach, the work that needs to be done on one layer will be

finished before moving on to the work that has to be done on

another layer. At the level that has been planned, using this

strategy will be effective in reducing the time lag in

communication.

3.2 CORE - NEURONS MAPPING

Neuron Mapping at the Core 3.2 Secondly, to map neurons to

a particular core of the processor, we make use of the NoC region

that was assigned during the level-1 mapping process. During this

stage, we will select a core that has the lowest possible energy

requirements and the fastest possible network speeds that are

possible. The overall objectives are optimised using a game-

theoretic framework with the help of the recommended algorithm.

The number of problematic places in the NoC can be reduced,

which will have a beneficial effect and allow for the achievement

of a better solution.

GR THIPPESWAMY et al.: AI BASED MACHINE LEARNING ALGORITHM IN VLSI TECHNOLOGY APPLICATION

1464

We show that the neurons associated with a job are assigned

to a particular processing unit to reduce the energy-draining

communication overhead associated with the NoC. It is also

crucial to distribute the neurons in an even manner overall the

processing cores to achieve a consistent power profile.

It is possible that neurons may be assigned to a single

processor to cut down on the energy required for communication;

however, doing so would result in the production of energy hot

spots. On the other hand, if the neurons are dispersed evenly, this

will increase the amount of energy available for communication

while simultaneously lowering the influence of any energy hot

spots.

4. RESULTS

The training dataset and the testing dataset for the model

originate from previously published research. The proposed

model is educated using the data from a set of 20 benchmark

ISCA89 sequential circuits, and then 5 of those circuits are

utilised for testing purposes which is shown in Table.1-Table.4.

A sequential circuit number of inputs and outputs, as well as its D

flip-flops, inverters, and total number of gates (AND gates,

NAND gates, OR gates, and NOR gates), are used as attributes

during instruction and evaluation. Other attributes include the

total number of gates.

Training and testing the newly developed model both make

use of ten-fold cross-validation. Python, a high-level

programming language, is used to create the actual job, and the

application is run on a machine with a 3.4 GHz Intel Core i7-6700

central processing unit and 16 gigabytes of random-access

memory.

The number of input neurons in a particular neural network is

directly proportional to the number of input attributes that were

employed throughout the training process. The number of

attributes is reduced from 9 to 7 because of the removal of OR

gates and AND gates from the input. In a few specific instances,

like traincgf and traincgp, the output of 7 input attributes was

superior to the output of 9 input attributes. The learning rate, the

momentum constant, the activation function, and the training

technique are the four primary parameters that make up a BPNN.

Adjustments can be made to the momentum constant, which

can range from 0.1 to 0.9, the number of epochs, which can range

from 150 to 2700, the number of neurons in the hidden layer,

which can range from 10 to 17, the learning rate, which can range

from 0.3 to 0.8 across 11 unique training algorithms, and the

activation functions, which can range from tansig to logsig. In the

tables that follow, comparisons of the results for the ISCA89

benchmark circuits are presented.

Table.1. Delay (ms)

 Benchmark circuit LSTM BPNN RF LR SVM Proposed

Training

S344 0.427094 0.574875 0.929611 0.712334 0.839982 0.719795

S382 0.717444 0.952811 0.655102 1.008714 1.058588 0.814023

S386 0.475332 0.402055 0.664198 0.613507 0.755258 0.587343

S400 0.617799 0.991442 0.507116 0.863488 0.963337 0.696595

S641 0.317024 0.382228 0.573444 0.807789 0.886381 0.680243

Testing

S344 1.131456 1.124098 1.12604 1.127981 1.131763 1.131456

S382 0.873299 0.921231 1.014335 1.066764 1.082298 0.918471

S386 1.064311 1.165284 1.507961 1.080152 1.09538 2.021107

S400 0.546872 0.739315 0.543193 0.853779 0.929611 0.764865

S641 0.510693 0.738599 0.717035 0.948314 0.980405 0.992566

Table.2. Computational time (ms)

 Benchmark circuit LSTM BPNN RF LR SVM Proposed

Training

S344 3.060379 7.03647 1.123893 1.076984 1.185418 1.8582

S382 0.99829 1.136464 1.053989 0.918574 0.946065 3.027471

S386 1.007385 1.108052 1.09027 1.105906 1.049287 1.080561

S400 1.142494 1.134318 1.65145 1.100898 1.077801 3.121495

S641 0.708859 1.14556 0.944124 0.877489 1.058894 0.865327

Testing

S344 1.002991 1.079232 0.984186 0.9709 0.976419 0.978258

S382 1.442246 2.242677 1.085262 1.156291 1.092314 3.843435

S386 0.773245 1.134624 2.021516 1.095891 1.135544 0.937889

S400 1.070954 1.126857 1.135749 1.018832 1.1335 0.926954

S641 0.928691 1.259308 0.992158 0.946474 1.329111 1.001049

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2023, VOLUME: 08, ISSUE: 04

1465

Table.3. Throughput (kbps)

 Benchmark circuit LSTM BPNN RF LR SVM Proposed

Training

S344 0.721532 0.971309 1.571223 1.192265 1.397483 1.216487

S382 1.341068 1.803217 1.215669 1.920747 2.017939 1.535453

S386 0.61739 0.535937 0.902733 0.842843 1.04336 0.792765

S400 0.68893 1.111629 0.566188 0.971615 1.083933 0.778355

S641 0.398069 0.479829 0.672374 1.005035 1.106519 0.852552

Testing

S344 1.305912 1.297531 1.299882 1.301824 1.30632 1.305912

S382 1.02803 1.084342 1.194003 1.255731 1.274025 1.081174

S386 1.164262 1.279544 1.682008 1.190937 1.203405 2.231333

S400 0.612689 0.828229 0.608703 0.950971 1.03825 0.857049

S641 0.552289 0.858991 0.842946 1.123791 1.166409 1.171416

Table.4. Communication Delay (ms)

 Benchmark circuit LSTM BPNN RF LR SVM Proposed

Training

S344 3.843538 6.486736 1.376327 1.315314 1.456043 2.318305

S382 1.212296 1.380415 1.280157 1.113776 1.141778 3.680426

S386 1.374488 1.514911 1.49212 1.516444 1.440407 1.475972

S400 1.322979 1.313168 1.923404 1.272697 1.242752 3.666732

S641 0.928896 1.556097 1.263907 1.199726 1.454919 1.179797

Testing

S344 1.14791 1.234883 1.111425 1.096708 1.106519 1.119499

S382 2.117891 3.834544 1.158437 1.375816 1.188279 6.961046

S386 0.906923 1.337185 2.388823 1.291093 1.338207 1.103147

S400 1.232532 1.297736 1.308058 1.171621 1.305401 1.063289

S641 1.18552 1.554462 1.243263 1.206369 1.779404 1.278522

5. CONCLUSION

Within the scope of this study is a method for estimating

power consumption in CMOS VLSI circuits that makes use of

supervised learning. The RF model that has been suggested does

not rely on the assumption of any set of empirical equations or

parameters, in contrast to traditional methods such as the SPICE

circuit modelling that has been suggested. RF produces accurate

results without requiring the user to pay attention to the circuit

structure or the connectivity.

A design that has been offered will offer an alternate

interpretation that has enhanced performance, but for it to be

properly executed, it will require a substantial amount of

additional data. The power estimation of CMOS VLSI circuits can

benefit from the one-of-a-kind characteristics of the suggested

design.

REFERENCES

[1] V. Govindaraj and B. Arunadevi, “Machine Learning Based

Power Estimation for CMOS VLSI Circuits”, Applied

Artificial Intelligence, Vol. 35, No. 13, pp. 1043-1055, 2021.

[2] M. Bansal, “Machine Learning Perspective in VLSI

Computer-Aided Design at Different Abstraction Levels”,

Proceedings of International Conference on Mobile

Computing and Sustainable Informatics, pp. 95-112, 2021.

[3] K.G. Devi, “Artificial Intelligence Trends for Data Analytics

using Machine Learning and Deep Learning Approaches”,

CRC Press, 2020.

[4] S. Bavikadi and S.M. Pudukotai Dinakarrao, “A Review of

In-Memory Computing Architectures for Machine Learning

Applications”, Proceedings of International Symposium on

Great Lakes on VLSI, pp. 89-94, 2020.

[5] F.M. Aswad and S.A. Mostafa, “Tree-Based Machine

Learning Algorithms in the Internet of Things Environment

for Multivariate Flood Status Prediction”, Journal of

Intelligent Systems, Vol. 31, No. 1, pp. 1-14, 2021.

[6] A. Sebastian, “Computational Memory-based Inference and

Training of Deep Neural Networks”, Proceedings of

International Symposium on VLSI Technology, pp. 168-169,

2019.

[7] A. Site and E.S. Lohan, “Systematic Review on Machine-

Learning Algorithms used in Wearable-Based eHealth Data

Analysis”, IEEE Access, Vol. 9, pp. 112221-112235, 2021.

[8] C. Venkatesan and R. Kumar, “ECG Signal Preprocessing

and SVM Classifier-Based Abnormality Detection in

Remote Healthcare Applications”, IEEE Access, Vol. 6, pp.

9767-9773, 2018.

