
ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2019, VOLUME: 05, ISSUE: 02

DOI: 10.21917/ijme.2019.0131

751

VLSI ARCHITECTURE FOR ERROR DETECTION AND CORRECTION BASED ON

XOR AGAINST MULTIPLE CELL UPSETS WITH REDUCED REDUNDANT BITS

V. Bhanumathi and M. Sunandini
Department of Electronics and Communication Engineering, Anna University Regional Campus, Coimbatore, India

Abstract

Memories are in general protected with error correction codes per word

in order to improve its reliability. The errors introduced by the radiation

particles on memories will affect more than one cell leading to what is

called as Multiple Cell Upsets (MCUs). As technology is scaled down,

MCUs become a more problematic one in SRAM memory, because

MCUs flip the logical state in memory thereby affecting its reliability

by introducing errors. The existing Error Correction Codes (ECC) such

as Matrix Code (MC), Punctured Difference Set code (PDS) and

Decimal Matrix Code (DMC) are lagging in the number of bits that it

can correct and also it utilizes more redundant bits for detection. Hence

for detecting and correcting the consecutive errors as well as for

reducing the redundant bits, we propose here VLSI architecture based

on a simple XOR operation over the least significant bits. It is

understood from the simulation analysis that the proposed architecture

achieves low area, power, and delay with an improved capability of

error correction and detection. The proposed design results in twice the

number of corrected errors as that of DMC.

Keywords:

Multiple Cell Upsets, Static Random Access Memory, Exclusive-OR,

Error Detection and Correction

1. INTRODUCTION

Multiple Cell Upsets (MCUs) are like a single event that

induces several bits in an integrated circuit to fail at the same time.

It affects mostly Static Random Access Memory (SRAM). The

MCUs occur due to radiation particle striking the memory and the

neutrons penetrate into the SRAM memory. Due to this, electron

hole pair generation will take place resulting in an accumulation

of the charges in the memory. When the charges exceed the

critical charge limit, then it can flip the logical state in the memory

[1]. It is stated that neutron irradiation reduced the single event

latch-up and the sensitivity of CMOS SRAM [2].

Some error corrections codes like hamming [3], Triple error

correction [4], Bose Chaudhuri Hocquenghem [5], Reed Solomon

[6] and other codes [7], [8] are proposed to deal with the problems

in memories. But these codes had a correction capability of up to

2 bits only. These codes also consumed more area, power and

delay overheads. Some interleaving techniques are also used to

restrain the MCUs but it is not possible in the case of Content

Addressable Memory (CAM). The technique in [9] rearranged the

cells to separate the bits present in the logical word. The new mix

codes [10] are presented for fault - secure memories to overcome

multiple bit upsets mitigation. The tight coupling of hardware

structures in interleaving technique was not possible for CAM

[11]. Built in Current Sensor (BICS) [12], [13] improved

reliability of SRAM memory by coupling BICS with H-Tree

architecture, but it can correct only two errors in word. Column-

Line-Code (CLC) presented in [14] was for the detection and

correction of MCU in memory devices. It utilized Hamming and

parity bits.

Matrix Code (MC) [15] combined hamming and parity code

to protect SRAM memory. It performed better than Hamming.

MC corrects MCUs per word with lower decoding delay. In MC

two bit errors can be detected by hamming, but these errors can

be corrected only when two vertical syndrome bits were activated.

Hamming code combined with decimal algorithm [16] to

detect and correct soft errors provided low delay overhead by the

introduction of integer values. Hamming code did error detection

and correction by generating parity codes [17]. The error

correction for TCAM and for 130nm-180nm RAMs are also

presented in [18] [19]. An enhancement of memory reliability of

Decimal Matrix Code (DMC) than hamming based single error

correction with double error detection [3] and matrix code is

presented in [20]. A survey on DMC is given in [21].

DMC uses three methods to improve reliability and

performance. First method is divide symbol to improve the

reliability. If the information bits are 32-bit, the divide symbol

method divides it into two rows and four columns. The second is

decimal algorithm to detect errors. In decimal algorithm, both the

decimal integer addition and subtraction was done to maximize

error detection capability thereby enhancing the reliability of

memory. The third method was Encoder Reuse Technique (ERT)

in which the encoder circuit is used in decoder for minimizing the

area overhead without disturbing the entire encoding and

decoding process. DMC provided the memory reliability by

detecting and correcting up to 7 bits. It is better than hamming and

matrix. These two codes can correct up to two errors only and also

a reduction in the area overhead is achieved with the help of ERT.

The decoding delay complexity was also reduced than PDS

codes but it utilized more redundant bits. For a 32-bit information,

a total of 36 redundant bits are needed in which 20 bits for

horizontal redundancy and 16 bits for vertical redundancy.

Another drawback was that it cannot detect consecutive MCUs in

Symbol 0 and Symbol 2 resulting in an erroneous data. The

drawback of DMC is overcome by the proposed bit manipulation

based architecture. The main aim is to reduce the redundant bits

and to detect the consecutive MCUs in symbol 0 and 2. It proves

without the usage of decimal algorithm concept, the detection of

MCUs can be processed and also the number of redundant bits

can be reduced.

This paper is organized as follows. The overview of error

detection and correction is discussed in section 2. The proposed

system encoder and decoder are presented in section 3. The

overhead analysis of the proposed code is analyzed in section 4.

The result analysis for 32-bit and 64-bit data are described in

section 5. Finally, conclusion of this paper is shared in section 6.

V BHANUMATHI AND M SUNANDINI: VLSI ARCHITECTURE FOR ERROR DETECTION AND CORRECTION BASED ON XOR AGAINST MULTIPLE CELL UPSETS WITH

REDUCED REDUNDANT BITS

752

2. OVERVIEW OF ERROR DETECTION AND

CORRECTION

The general idea of achieving error detection and correction is

to add some redundancy to a message, by which receivers can use

to check consistency of the delivered message, and to recover data

determined to be corrupted. Error-detection and correction

schemes can be either systematic or non-systematic. In a

systematic scheme, the transmitter sends the original data, and

attaches a fixed number of check bits (or parity data), which are

derived from the data bits by some deterministic algorithm. If only

error detection is required, a receiver can simply apply the same

algorithm to the received data bits and compare its output with the

received check bits; if the values do not match, then it is

understood that there is an error in transmission. If the code is

non-systematic one, then the original message is transformed into

an encoded message that has at least as many bits as that of the

original message.

Error detection is most commonly realized using a suitable

hash function (or checksum algorithm). A hash function adds a

fixed-length tag to a message, which enables receivers to verify

the delivered message by re-computing the tag and comparing it

with the one given. A code with minimum Hamming distance, ‘d’

can detect upto (d-1) errors in a code word. Codes with minimum

Hamming distance of d = 2 can detect only single bit errors. The

parity bit is an example of a single-error-detecting code. The next

section describes the proposed VLSI architecture for consecutive

error detection with minimum number of redundant bits.

3. PROPOSED ARCHITECTURAL DESIGN

The main goal of the proposed system is to reduce redundant

bits in DMC and to assure reliability in the presence of

consecutive MCUs with reduced performance overheads. The

encoder and decoder for 32-bit and 64-bit word are designed as

an example.

3.1 THE SCHEMATIC OF FAULT TOLERANT

MEMORY

The proposed schematic of Fault tolerant memory is shown in

Fig.1. The data bits of 32 and 64 are given as input to encoder part

which does two main processes. One is the generation of parity

bits based on bit manipulation method and another one is

generation of vertical redundant bits by Exclusive-OR (XOR)

operation. The outputs of the encoder are 12 parity bits, 16 vertical

redundant bits and 32-bit data. The outputs of encoder are stored

in two SRAM memories. One SRAM memory is for 32-bit

information and another is for storing 28-bit redundant bits.

Fig.1. Proposed Schematic of Fault-Tolerant Memory

The stored information and redundant bits are given as input

to the decoder and the parity bits and vertical redundant bits are

calculated for MCU bits. Then the syndrome bits are calculated

for vertical redundant bits. By comparing the parity and vertical

redundant bits of the original and MCU data bits, the MCU bits

are detected and corrected. The concept of parity bits, encoder and

decoder of proposed system are detailed in the following sections.

3.2 ARCHITECTURAL DESIGN OF 64-BIT WORD

ENCODER

In the proposed, first, the N-bit word is divided into k symbols

of m information bits and the k symbols are divided into k1 × k2

i.e., k1 rows and k2 columns. For a 32-bit word, it is divided into

two 16 bits. So there are 2 rows and 4 columns. Two 16 bits are

arranged in two rows i.e., four symbols in each row resulting in a

total of 8 symbols of 4 bits; hence it is arranged as 2×4. When k =

4×4, m = 2 are chosen and only 3 bit errors can be corrected.

The logical organization for 32-bit word is shown in the above

Fig.2. The structure of 64-bit word has two rows of each 32-bit

and 8 columns of 8 symbols. The bit manipulation method is

shown in Fig.3 and it is applied for each symbol containing four

bits. For each four bits, three parity bits are generated. Here, the

method is applied for 16 bit data, so 12 parity bits will be

generated.

Fig.2. Logical organization of 32-bit word (k = 2×4, m = 4)

Fig.3. Bit manipulation based Parity bit generation

The parity are generated using XOR operation of data bits. For

generating 3 parity bits of each symbol three XOR gates are

needed. In Fig.2, P1, P2 and P3 are the parity bits for the data bits

D0 to D3. The Parity bit P1 is generated by performing XOR

operation for the data bits D0 D3 D1. Likewise the parity bits P2

and P3 will be generated based on the Eq.(1) to Eq.(3).

 P1 = D0 ⊕ D3 ⊕ D1 (1)

 P2 = D0 ⊕ D3 ⊕ D2 (2)

 P3 = D1 ⊕ D3 ⊕ D2 (3)

It is same for other three symbols, so for each symbol three

parity bits are generated. Totally 12 parity bits are generated. The

concept of parity bit generation is same for 64-bit word but the

total parity bit is varied from 12 to 24. The vertical redundant bits

are calculated by using first and second row data bits. It is

calculated by XOR function as in Eq.(4) and Eq.(5).

 V0 = D0 ⊕ D16, (4)

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2019, VOLUME: 05, ISSUE: 02

753

 V1 = D1 ⊕ D17 (5)

The vertical redundant bits for 64-bit word are 32. The parity

bits used to detect the consecutive errors in first row of data bits,

but the vertical redundant bits are used to detect and correct

consecutive errors in second row data bits.

The encoder and decoder are designed for both 32-bit and 64-

bit. With the help of the input bit information, the encoder will

calculate its parity bits and vertical redundant bits. The whole

operation is controlled by an enable signal. When enable signal is

0, the encoder will not compute parity and redundant bits. When

enable signal is 1, the encoder will compute parity and vertical

redundant bits. The encoder operation for 64-bit word is shown in

Fig.4.

Fig.4. Proposed 64-bit Encoder Design

3.3 ARCHITECTURAL DESIGN OF 64-BIT WORD

DECODER

The structure of 64-bit word decoder is shown in Fig.5.

Fig.5. Proposed 64-bit Decoder Design

For example, first the MCU parity bits and vertical redundant

bits are generated from the received MCU bits. The MCU bits are

D0’ to D31. Second, vertical syndrome bits are calculated and

parity bits for MCU bits and then the original bits are compared.

 P1 P2 P3 = P1 P2 P3 (6)

 V0 = V0’ (7)

 S0 = V0 ⊕ V0’ (8)

The decoder receives 32-bit or 64-bit information with parity

bits and vertical redundant bits which is stored in SRAM memory.

When the information bits stored in SRAM memory it may be hit

by radiation particle, so it will be received as MCU bits in the

decoder. The parity bits and vertical redundant bits for received

MCU bits are calculated as given in the Eq.(1) to Eq.(5).

After calculating parity bits and vertical redundant bits for

MCU bits, the MCU parity bits are compared with original parity

bits as in the Eq.(6). By comparing this, the MCU bits in the first

row (D0 to D15) are detected. Then comparison of the vertical

redundant bits of original with that of the MCU bits is done as

shown in the Eq.(7). By comparing vertical redundant bits of both,

the MCU bits in second row will be detected. Next, the syndrome

is calculated by performing XOR function of original and MCU

vertical redundant bits as in the Eq.(8).

 Dcorrect = D3 D2 D1 D0 ⊕ S3 S2 S1 S0 (9)

After the detection of MCU bits, it is corrected by syndrome

bits. The correction of MCU bits is performed based on the Eq.(9).

The procedure of correcting MCU bits are as follows.

• First the parity bits of original and MCU bits are compared

if it is found to be equal, then it is understood that the

received bits are not MCU bits. If it is not equal, then the

corresponding MCU bits are XOR with syndrome bits and

stored as corrected bits in SRAM memory.

• Second the vertical redundant bits of original and MCU bits

are compared if it is equal then it is clear that the received

bits are not MCUs. If it is not equal, then the corresponding

MCU bits are XOR with syndrome bits and stored as

corrected bits in SRAM memory.

Finally, the whole corrected bits are stored in memory. The

decoder has an enable signal to control the operation. When

enable signal is 0, the decoder will not detect and correct the MCU

bits. When it goes 1, the decoder will detect the MCU bits and

correct it.

3.4 LIMITATIONS OF DECIMAL MATRIX CODE

Decimal Matrix Code proposed in [20] requires more

redundant bits for error detection and correction. The consecutive

error information bits cannot be detected and corrected by DMC.

The limitation of DMC is shown in Fig.6 with an example. In

DMC, horizontal redundant bits are calculated for both original

and MCU bits. Based on that decimal difference the MCU bits are

detected. When decimal difference between horizontal redundant

bits results in logic ‘1’, then the corresponding symbol are in

error.

∆H4H3H2H1H0 = H4H3H2H1H0 - H4H3H2H1H0

= 01111 - 01111 = 00000

The above result shows that there is no error in received bits.

But actually there are four consecutive errors in two symbols.

Based on this result, it can be concluded that the errors are not

detected and corrected in DMC.

Fig.6. An example showing error type that cannot be corrected

by DMC

V BHANUMATHI AND M SUNANDINI: VLSI ARCHITECTURE FOR ERROR DETECTION AND CORRECTION BASED ON XOR AGAINST MULTIPLE CELL UPSETS WITH

REDUCED REDUNDANT BITS

754

The error bits will occur as an output. The redundant bits

needed for 32-bit DMC is 36. If there is a reduction in the number

of redundant bits, it is understood that more number of errors can

be detected and corrected.

3.5 FEATURES OF VLSI ARCHITECTURE FOR

CONSECUTIVE ERROR DETECTION AND

CORRECTION

From the previous discussion, it is clear that the DMC [20]

cannot detect and correct the consecutive errors. Also it requires

more redundant bits to detect the MCU bits. Hence, it is decided

to propose architecture based on bit manipulation method to

overcome the drawback of DMC. The operation of consecutive

error detection and correction is shown in Fig.7.

Fig.7. Consecutive error detection and correction

The proposed method concentrates on generating parity bits

for both original and MCU bits. It is seen that the parity bits for

symbol 0 of original and MCU bits are 110 and 001, and parity

bits are not matched so it can be clearly identified that there are

error bits in the symbol. At the same time the parity bits for

symbol 2 of original and MCU bits are 001 and 110, and it shows

that the parity bits are different so the bits are in error. Here the

eight consecutive errors are detected using bit manipulation by

generating parity bits. With DMC, it is impossible to detect four

consecutive errors. When the parity bits of original and MCU bits

are different then the corresponding symbols are in errors. Then

the corresponding symbol performs XOR operation with

syndrome bits. When vertical redundant bits of original and MCU

bits are different then the corresponding symbols are in error.

Here the correct bits will be obtained by performing XOR

operation with error bits. The detection and correction of MCU

bits are explained below.

Fig.8. Detection of symbol 0 and 2 MCU bits

As seen from the Fig.7, if the actual parity bits of symbol 0

and MCU bits are different as in the Eq.(10); XOR operation is

done for the corresponding MCU bit in symbol 0 and syndrome

bits to correct the MCU bits.

 P1 P2 P3 ≠ P1 P2 P3 (10)

 S3S2S1S0 = 1111

Dcorrect(3 to 0) = D3D2D1D0 ⊕ S3S2S1S0 = 1001 ⊕ 1111 =

0110

Finally the original bits are obtained from the error corrector

part. Then the corrected bits are stored in same bit location in the

memory. Otherwise, when parity bits of original and MCU bits

are same and vertical redundant bits are different as in the Eq.(11)

and Eq.(12); the corresponding MCU bit in symbol 0 is XOR with

syndrome bits to correct the MCU bits.

 P9 P8 P7 = P9 P8 P7 (11)

 V11 V10 V9 V8 ≠ V11 V10 V9 V8 (12)

 S3S2S1S0 = 1111

 Dcorrect(27 to 24) = D27 D26 D25 D24 ⊕ S27 S26 S25 S24

= 1010 ⊕ 1111 = 0101

Then the corrected bits are stored in same bit location in the

memory. The same procedure is repeated for 64-bit word with

eight symbols. The bit manipulation method overcomes the

consecutive error bits in symbol 0 and 2 which is shown in Fig.8.

If the radiation strikes symbol 0 and 2 bits in memory, DMC

cannot detect the MCU bits which results in error data. It is due to

calculation of horizontal redundant bits. But it is detected by using

bit manipulation method. The parity bits of original and MCU bits

of symbol 0 are different. Likewise the parity bits of original and

MCU bits of symbol 0 are different. This show the bits in symbol

0 and 2 are in error. Finally the bit that cannot be detected by

DMC is detected by bit manipulation method.

4. RESULTS AND DISCUSSION

The proposed design is tested for its functionality by varying

the inputs. The area, power and delay of the new architecture are

obtained and the results are compared and are shown in Table.1.

Table.1. Performance Analysis

Parameters
DMC Bit Manipulation

32-bit 64-bit 32-bit 64-bit

Area (ALUTs) 245 489 160 228

Power (mW) 327.2 330.8 327.3 330.7

Time (ns) 7.595 8.492 6.065 5.699

It can be visualized from the Table.1 that the area overhead

is much reduced in the proposed system. Power reduction cannot

be taken in a positive sense but there is a significant reduction

in time from 7.595ns of DMC to 6.065ns in bit manipulation

method for a 32-bit word and 8.492ns to 5.699ns for a 64-bit

word correspondingly.

The proposed design of encoder and decoder is implemented

in VHDL and simulated with ModelSim. The Table.2 shows the

reduction in the number of redundant bits for the proposed 32-bit

and 64-bit word compared with 32 and 64-bit DMC.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2019, VOLUME: 05, ISSUE: 02

755

Table.2. Comparison of Redundant bits

Technique DMC
Bit

Manipulation

Redundant

Bits

Horizontal

Bits

Vertical

Bits

Parity

Bits

Vertical

Bits

20 16 12 16

Total no. of

Redundant Bits
36 28

4.1 ENCODER OUTPUT FOR 32-BIT WORD

The encoder has two inputs such as 32-bit input and enable

signal as shown in Fig.9.

Fig.9. 32-bit Encoder Output

• Input Data: 11110101101011111111100110100110

When enable signal is high, the parity bits and vertical

redundant bits are calculated.

• P1P2P3 = 110, P4P5P6 = 010, P7P8P9 = 001, P10P11P12 = 111

• V15 to V0 = 0000110000001001

4.2 DECODER OUTPUT FOR 32-BIT WORD

The decoder inputs are MCU bits, vertical redundant bit and

parity bits and it is shown in Fig.10. The decoder enable signal is

kept high to detect and correct the MCU bits.

Fig.10. 32-bit Decoder Output

• MCU input 00001010101011111111100101011001

• P1P2P3 = 110, P4P5P6 = 010, P7P8P9 = 001, P10P11P12 = 111

• V15 to V0 = 0000110000001001

• The output of decoder is the corrected one and it is as

follows, 11110101101011111111100110100110

4.3 COMBINED OUTPUT OF 32-BIT WORD

If the RAM enable signal is ‘0’ and decoder enable is ‘1’, only

then, the decoder will detect the MCU bits and correct it and it is

shown in Fig.11.

Fig.11. 32-bit Combined Output

• Input Data: 11110101101011111111100110100110.

• Fault injected MCU data: 000010101010111111111001010

1100.

The resultant output of decoder is, 1111010110101111111110

0110100110

4.4 ENCODER OUTPUT FOR 64-BIT

The reliability for 64-bit data is analyzed with ModelSim. The

encoder has two inputs 64-bit input and enable signal. It is shown

in Fig.12.

Fig.12. 64-bit Encoder Output

• Data input given: 000000000000000000000000000000100

0000000000000000000000000000000

When enable signal is high, the parity bits and vertical

redundant bits are calculated.

• P1P2P3 = 000, P4P5P6 = 000, P7P8P9 = 000, P10P11P12 = 000,

P13P14P15 = 000, P16P17P18 = 000, P19P20P21 = 000, P22P23P24

= 000

• V31 to V0: 00000000000000000000000000000010

4.5 DECODER OUTPUT FOR 64-BIT

The decoder output is shown in Fig.13.

• MCU bit: 111111111111111100000000000000100000000

0000000001111111111111111

• P1P2P3 = 000, P4P5P6 = 000, P7P8P9 = 000, P10P11P12 = 000,

P13P14P15 = 000, P16P17P18 = 000, P19P20P21 = 000, P22P23P24

= 000

• V31 to V0: 00000000000000000000000000000010

Here the decoder enable signal will enable the MCU bits to

detect and correct.

V BHANUMATHI AND M SUNANDINI: VLSI ARCHITECTURE FOR ERROR DETECTION AND CORRECTION BASED ON XOR AGAINST MULTIPLE CELL UPSETS WITH

REDUCED REDUNDANT BITS

756

Fig.13. 64-bit Decoder Output

• The output of decoder is the corrected bit: 00000000000000

00000000000000001000000000000000000000000000000

000

4.6 COMBINED OUTPUT OF 64-BIT WORD

The whole process of proposed system is shown in Fig.14.

Fig.14. 64-bit Combined Output

• Data input: 00000000000000000000000000000010000000

0000000000000000000000000.

• Fault injected MCU data: 111111111111111100000000000

0001000000000000000001111111111111111.

If the RAM enable signal is ‘0’and decoder enable is ‘1’, then

only the decoder will detect the MCU bits and correct it, otherwise

it will not detect and correct the MCU bits.

• The output of decoder is the corrected bit: 00000000000000

00000000000000001000000000000000000000000000000

000.

4.7 DETECTION OF SYMBOL 0 AND 2 MCU IN

DMC

The detection of MCU bits in symbol 0 and 2 in DMC method

is shown in Fig.15. It is done by bit manipulation method based

on XOR operation.

Fig.15. Detection of symbol 0 and 2 MCU bits

• Data input:

11110101101011111111100110100110

• Fault injected MCU data:

11110101101011111111011010101001

If the RAM enable signal is ‘0’and decoder enable is ‘1’, then

only the decoder will detect the MCU bits and correct it, otherwise

it will not detect and correct the MCU bits.

• The output of decoder is the corrected bit:

11110101101011111111100110100110

5. CONCLUSIONS

It is very clear from the analysis that the reliability of memory

is improved very much compared with the existing Decimal

Matrix Code. Here, the design utilizes bit manipulation method to

detect and correct 16 bit errors, hence it is possible to correct and

detect a maximum of 16 bit errors. It is also seen that for a 32-bit

word, the proposed system can correct and detect up to eight

consecutive errors in each row. And for a 64-bit word, it can

correct and detect 16 consecutive errors in each row. And also, it

is noted that the proposed architecture achieves a reduction in the

number of redundant bits i.e., 28 bits compared to DMC’s 36 bits.

The power of proposed system is same as that of the DMC, but

the delay overhead is reduced to a significant level compared to

DMC. Hence, it can be concluded that the proposed VLSI

architecture outperforms DMC in memory reliability. The

limitation of the proposed is that it cannot detect and correct two

parallel MCU symbols in logical organization. Therefore, it is

decided to recover the parallel MCU symbols in near future.

REFERENCES

[1] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo and T. Toba,

“Impact of Scaling on Neutron Induced Soft Error in

SRAMs from an 250nm to a 22nm Design Rule”, IEEE

Transactions on Electron Devices, Vol. 57, No. 7, pp. 1527-

1538, 2010.

[2] X. Pan, H. Guo, Y. Luo, F. Zhang and L. Ding, “Analysis of

Multiple Cell Upset Sensitivity in Bulk CMOS SRAM after

Neutron Irradiation”, Chinese Physics B, Vol. 27, No. 3, pp.

1-7, 2018.

[3] A. Sanchez-Macian, P. Reviriego and J.A. Maestro,

“Hamming SEC-DAED and Extended Hamming SEC-

DED-TAED codes through Selective Shortening and Bit

Placement”, IEEE Transactions on Devices and Materials

Reliability, Vol. 14, No. 1, pp. 574-576, 2014.

[4] P. Reviriego, M. Flanagan and J.A. Maestro, “A (64, 45)

Triple Error Correction Code for Memory Applications”,

IEEE Transactions on Devices and Materials Reliability,

Vol. 12, No. 1, pp. 101-106, 2012.

[5] R. Naseer and J. Draper, “Parallel Double Error Correcting

Code Design to Mitigate Multi-bit Upsets in SRAMs”,

Proceedings of 34th European Conference on Solid State

Circuits, pp. 222-225, 2008.

[6] G. Neuberger, D.L. Kastensmidt and R. Reis, “An

Automatic Technique for Optimizing Reed-Solomon Codes

to improve Fault Tolerance in Memories”, IEEE Design and

Test of Computers, Vol. 22, No. 1, pp. 50-58, 2005.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2019, VOLUME: 05, ISSUE: 02

757

[7] C. Argyrides and D.K. Pradhan, “Improved Decoding

Algorithm for High Reliable Reed Muller Coding”,

Proceedings of IEEE International Conference on System

On Chip, pp. 95-98, 2007.

[8] S. Liu, P. Reviriego and J.A. Maestro, “Efficient Majority

Logic Fault Detection with Difference-Set Codes for

Memory Applications”, IEEE Transactions on Very Large

Scale Integration Systems, Vol. 20, No. 1, pp. 148-156,

2012.

[9] S. Baeg, S. Wen and R. Wong. “Interleaving Distance

Selection with a Soft Error Failure Model”, IEEE

Transactions on Nuclear Science, Vol. 56, No. 4, pp. 2111-

2118, 2009.

[10] M. Zhu, L.Y. Xiao, L.L. Song, Y.J. Zhang and H.W. Luo,

“New Mix Codes for Multiple Bit Upsets Mitigation in

Fault-Secure Memories”, Micro Electronics Journal, Vol.

42, No. 3, pp. 553-561, 2011.

[11] K. Pagiamtzis and A. Sheikholeslami, “Content Addressable

Memory (CAM) Circuits and Architectures: A Tutorial and

Survey”, IEEE Journal on Solid State Circuits, Vol. 41, No.

3, pp. 712-727, 2003.

[12] P. Reviriego and J.A. Maestro, “Efficient Error Detection

Codes for Multiple-bit Upset Correction in SRAMs with

BICS”, ACM Transactions on Design Automation of

Electronic Systems, Vol. 14, No. 1, pp. 1-18, 2009.

[13] C. Argyrides, R. Chipana, F. Vargas and D.K. Pradhan,

“Reliability Analysis of H-tree Random Access Memories

implemented with Built in Current Sensors and Parity Codes

for Multiple Bit Upset Correction”, IEEE Transactions on

Reliability, Vol. 60, No. 3, pp. 528-537, 2011.

[14] F. Silva and J. Silveira, “An Extensible Code for Correcting

Multiple Cell Upset in Memory Arrays”, Journal of

Electronic Testing, Vol. 34, No. 4, pp. 417-433, 2018.

[15] C. Argyrides, D.K. Pradhan and T. Kocak. “Matrix Codes

for Reliable and Cost Efficient Memory Chips”, IEEE

Transactions on Very Large Scale Integration Systems, Vol.

19, No. 3, pp. 420-428, 2011.

[16] C.A. Argyrides, C.A. Lisboa, D.K. Pradhan and L. Carro,

“Single Element Correction in Sorting Algorithms with

Minimum Delay Overhead”, Proceedings of IEEE Latin-

American Test Workshop, pp. 652-657, 2009.

[17] U.K. Kumar and B.S. Umashankar, “Improved Hamming

Code for Error Detection and Correction”, Proceedings of

IEEE International Symposium on Wireless Pervasive

Computing, pp. 1-5, 2007.

[18] S. Baeg, S. Wen and R. Wong, “Minimizing Soft Errors in

TCAM Devices: A Probabilistic Approach to Determining

Scrubbing Intervals”, IEEE Transactions on Circuits and

Systems, Vol. 57, No. 4, pp. 814-822, 2010.

[19] Y. Yahagi, H. Yamaguchi, E. Ibe, H. Kameyama, M. Sato,

T. Akioka and S. Yamamoto, “A Novel Feature of Neutron-

induced Multi-cell Upsets in 130 and 180nm SRAMs”,

IEEE Transactions on Nuclear Science, Vol. 54, No. 4, pp.

1030-1036, 2007.

[20] J. Guo, L. Xiao, Z. Mao and Q. Zhao, “Enhanced Memory

Reliability Against Multiple Cell Upsets Using Decimal

Matrix Code”, IEEE Transactions on Very Large Scale

Integration Systems, Vol. 22, No. 1, pp. 127-135, 2014.

[21] T. Evangeline Santhia, R. Helen Ramya Bharathi and M.

Revathy, “Error Detection and Correction using Decimal

Matrix Code: Survey”, Proceedings of IEEE International

Conference on Electrical, Instrumentation and

Communication Engineering, pp. 12-17, 2017.

