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Abstract 

Memories are in general protected with error correction codes per word 

in order to improve its reliability. The errors introduced by the radiation 

particles on memories will affect more than one cell leading to what is 

called as Multiple Cell Upsets (MCUs). As technology is scaled down, 

MCUs become a more problematic one in SRAM memory, because 

MCUs flip the logical state in memory thereby affecting its reliability 

by introducing errors. The existing Error Correction Codes (ECC) such 

as Matrix Code (MC), Punctured Difference Set code (PDS) and 

Decimal Matrix Code (DMC) are lagging in the number of bits that it 

can correct and also it utilizes more redundant bits for detection. Hence 

for detecting and correcting the consecutive errors as well as for 

reducing the redundant bits, we propose here VLSI architecture based 

on a simple XOR operation over the least significant bits. It is 

understood from the simulation analysis that the proposed architecture 

achieves low area, power, and delay with an improved capability of 

error correction and detection. The proposed design results in twice the 

number of corrected errors as that of DMC. 
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1. INTRODUCTION 

Multiple Cell Upsets (MCUs) are like a single event that 

induces several bits in an integrated circuit to fail at the same time. 

It affects mostly Static Random Access Memory (SRAM). The 

MCUs occur due to radiation particle striking the memory and the 

neutrons penetrate into the SRAM memory. Due to this, electron 

hole pair generation will take place resulting in an accumulation 

of the charges in the memory. When the charges exceed the 

critical charge limit, then it can flip the logical state in the memory 

[1]. It is stated that neutron irradiation reduced the single event 

latch-up and the sensitivity of CMOS SRAM [2]. 

Some error corrections codes like hamming [3], Triple error 

correction [4], Bose Chaudhuri Hocquenghem [5], Reed Solomon 

[6] and other codes [7], [8] are proposed to deal with the problems 

in memories. But these codes had a correction capability of up to 

2 bits only. These codes also consumed more area, power and 

delay overheads. Some interleaving techniques are also used to 

restrain the MCUs but it is not possible in the case of Content 

Addressable Memory (CAM). The technique in [9] rearranged the 

cells to separate the bits present in the logical word. The new mix 

codes [10] are presented for fault - secure memories to overcome 

multiple bit upsets mitigation. The tight coupling of hardware 

structures in interleaving technique was not possible for CAM 

[11]. Built in Current Sensor (BICS) [12], [13] improved 

reliability of SRAM memory by coupling BICS with H-Tree 

architecture, but it can correct only two errors in word. Column-

Line-Code (CLC) presented in [14] was for the detection and 

correction of MCU in memory devices. It utilized Hamming and 

parity bits. 

Matrix Code (MC) [15] combined hamming and parity code 

to protect SRAM memory. It performed better than Hamming. 

MC corrects MCUs per word with lower decoding delay. In MC 

two bit errors can be detected by hamming, but these errors can 

be corrected only when two vertical syndrome bits were activated. 

Hamming code combined with decimal algorithm [16] to 

detect and correct soft errors provided low delay overhead by the 

introduction of integer values. Hamming code did error detection 

and correction by generating parity codes [17]. The error 

correction for TCAM and for 130nm-180nm RAMs are also 

presented in [18] [19]. An enhancement of memory reliability of 

Decimal Matrix Code (DMC) than hamming based single error 

correction with double error detection [3] and matrix code is 

presented in [20]. A survey on DMC is given in [21]. 

DMC uses three methods to improve reliability and 

performance. First method is divide symbol to improve the 

reliability. If the information bits are 32-bit, the divide symbol 

method divides it into two rows and four columns. The second is 

decimal algorithm to detect errors. In decimal algorithm, both the 

decimal integer addition and subtraction was done to maximize 

error detection capability thereby enhancing the reliability of 

memory. The third method was Encoder Reuse Technique (ERT) 

in which the encoder circuit is used in decoder for minimizing the 

area overhead without disturbing the entire encoding and 

decoding process. DMC provided the memory reliability by 

detecting and correcting up to 7 bits. It is better than hamming and 

matrix. These two codes can correct up to two errors only and also 

a reduction in the area overhead is achieved with the help of ERT. 

The decoding delay complexity was also reduced than PDS 

codes but it utilized more redundant bits. For a 32-bit information, 

a total of 36 redundant bits are needed in which 20 bits for 

horizontal redundancy and 16 bits for vertical redundancy. 

Another drawback was that it cannot detect consecutive MCUs in 

Symbol 0 and Symbol 2 resulting in an erroneous data. The 

drawback of DMC is overcome by the proposed bit manipulation 

based architecture. The main aim is to reduce the redundant bits 

and to detect the consecutive MCUs in symbol 0 and 2. It proves 

without the usage of decimal algorithm concept, the detection of 

MCUs can be processed and also the number of redundant bits 

can be reduced. 

This paper is organized as follows. The overview of error 

detection and correction is discussed in section 2. The proposed 

system encoder and decoder are presented in section 3. The 

overhead analysis of the proposed code is analyzed in section 4. 

The result analysis for 32-bit and 64-bit data are described in 

section 5. Finally, conclusion of this paper is shared in section 6. 
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2. OVERVIEW OF ERROR DETECTION AND 

CORRECTION 

The general idea of achieving error detection and correction is 

to add some redundancy to a message, by which receivers can use 

to check consistency of the delivered message, and to recover data 

determined to be corrupted. Error-detection and correction 

schemes can be either systematic or non-systematic. In a 

systematic scheme, the transmitter sends the original data, and 

attaches a fixed number of check bits (or parity data), which are 

derived from the data bits by some deterministic algorithm. If only 

error detection is required, a receiver can simply apply the same 

algorithm to the received data bits and compare its output with the 

received check bits; if the values do not match, then it is 

understood that there is an error in transmission. If the code is 

non-systematic one, then the original message is transformed into 

an encoded message that has at least as many bits as that of the 

original message. 

Error detection is most commonly realized using a suitable 

hash function (or checksum algorithm). A hash function adds a 

fixed-length tag to a message, which enables receivers to verify 

the delivered message by re-computing the tag and comparing it 

with the one given. A code with minimum Hamming distance, ‘d’ 

can detect upto (d-1) errors in a code word. Codes with minimum 

Hamming distance of d = 2 can detect only single bit errors. The 

parity bit is an example of a single-error-detecting code. The next 

section describes the proposed VLSI architecture for consecutive 

error detection with minimum number of redundant bits. 

3. PROPOSED ARCHITECTURAL DESIGN 

The main goal of the proposed system is to reduce redundant 

bits in DMC and to assure reliability in the presence of 

consecutive MCUs with reduced performance overheads. The 

encoder and decoder for 32-bit and 64-bit word are designed as 

an example. 

3.1 THE SCHEMATIC OF FAULT TOLERANT 

MEMORY 

The proposed schematic of Fault tolerant memory is shown in 

Fig.1. The data bits of 32 and 64 are given as input to encoder part 

which does two main processes. One is the generation of parity 

bits based on bit manipulation method and another one is 

generation of vertical redundant bits by Exclusive-OR (XOR) 

operation. The outputs of the encoder are 12 parity bits, 16 vertical 

redundant bits and 32-bit data. The outputs of encoder are stored 

in two SRAM memories. One SRAM memory is for 32-bit 

information and another is for storing 28-bit redundant bits. 

 

Fig.1. Proposed Schematic of Fault-Tolerant Memory 

The stored information and redundant bits are given as input 

to the decoder and the parity bits and vertical redundant bits are 

calculated for MCU bits. Then the syndrome bits are calculated 

for vertical redundant bits. By comparing the parity and vertical 

redundant bits of the original and MCU data bits, the MCU bits 

are detected and corrected. The concept of parity bits, encoder and 

decoder of proposed system are detailed in the following sections. 

3.2 ARCHITECTURAL DESIGN OF 64-BIT WORD 

ENCODER 

In the proposed, first, the N-bit word is divided into k symbols 

of m information bits and the k symbols are divided into k1 × k2 

i.e., k1 rows and k2 columns. For a 32-bit word, it is divided into 

two 16 bits. So there are 2 rows and 4 columns. Two 16 bits are 

arranged in two rows i.e., four symbols in each row resulting in a 

total of 8 symbols of 4 bits; hence it is arranged as 2×4. When k = 

4×4, m = 2 are chosen and only 3 bit errors can be corrected. 

The logical organization for 32-bit word is shown in the above 

Fig.2. The structure of 64-bit word has two rows of each 32-bit 

and 8 columns of 8 symbols. The bit manipulation method is 

shown in Fig.3 and it is applied for each symbol containing four 

bits. For each four bits, three parity bits are generated. Here, the 

method is applied for 16 bit data, so 12 parity bits will be 

generated. 

 

Fig.2. Logical organization of 32-bit word (k = 2×4, m = 4) 

 

Fig.3. Bit manipulation based Parity bit generation 

The parity are generated using XOR operation of data bits. For 

generating 3 parity bits of each symbol three XOR gates are 

needed. In Fig.2, P1, P2 and P3 are the parity bits for the data bits 

D0 to D3. The Parity bit P1 is generated by performing XOR 

operation for the data bits D0 D3 D1. Likewise the parity bits P2 

and P3 will be generated based on the Eq.(1) to Eq.(3). 

 P1 = D0 ⊕ D3 ⊕ D1  (1) 

 P2 = D0 ⊕ D3 ⊕ D2  (2) 

 P3 = D1 ⊕ D3 ⊕ D2  (3) 

It is same for other three symbols, so for each symbol three 

parity bits are generated. Totally 12 parity bits are generated. The 

concept of parity bit generation is same for 64-bit word but the 

total parity bit is varied from 12 to 24. The vertical redundant bits 

are calculated by using first and second row data bits. It is 

calculated by XOR function as in Eq.(4) and Eq.(5). 

 V0 = D0 ⊕ D16,  (4) 
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 V1 = D1 ⊕ D17  (5) 

The vertical redundant bits for 64-bit word are 32. The parity 

bits used to detect the consecutive errors in first row of data bits, 

but the vertical redundant bits are used to detect and correct 

consecutive errors in second row data bits. 

The encoder and decoder are designed for both 32-bit and 64-

bit. With the help of the input bit information, the encoder will 

calculate its parity bits and vertical redundant bits. The whole 

operation is controlled by an enable signal. When enable signal is 

0, the encoder will not compute parity and redundant bits. When 

enable signal is 1, the encoder will compute parity and vertical 

redundant bits. The encoder operation for 64-bit word is shown in 

Fig.4. 

 

Fig.4. Proposed 64-bit Encoder Design 

3.3 ARCHITECTURAL DESIGN OF 64-BIT WORD 

DECODER 

The structure of 64-bit word decoder is shown in Fig.5.  

 

Fig.5. Proposed 64-bit Decoder Design 

For example, first the MCU parity bits and vertical redundant 

bits are generated from the received MCU bits. The MCU bits are 

D0’ to D31. Second, vertical syndrome bits are calculated and 

parity bits for MCU bits and then the original bits are compared. 

 P1 P2 P3 = P1 P2 P3 (6) 

 V0 = V0’ (7) 

 S0 = V0 ⊕ V0’ (8) 

The decoder receives 32-bit or 64-bit information with parity 

bits and vertical redundant bits which is stored in SRAM memory. 

When the information bits stored in SRAM memory it may be hit 

by radiation particle, so it will be received as MCU bits in the 

decoder. The parity bits and vertical redundant bits for received 

MCU bits are calculated as given in the Eq.(1) to Eq.(5). 

After calculating parity bits and vertical redundant bits for 

MCU bits, the MCU parity bits are compared with original parity 

bits as in the Eq.(6). By comparing this, the MCU bits in the first 

row (D0 to D15) are detected. Then comparison of the vertical 

redundant bits of original with that of the MCU bits is done as 

shown in the Eq.(7). By comparing vertical redundant bits of both, 

the MCU bits in second row will be detected. Next, the syndrome 

is calculated by performing XOR function of original and MCU 

vertical redundant bits as in the Eq.(8). 

 Dcorrect = D3 D2 D1 D0 ⊕ S3 S2 S1 S0  (9) 

After the detection of MCU bits, it is corrected by syndrome 

bits. The correction of MCU bits is performed based on the Eq.(9). 

The procedure of correcting MCU bits are as follows. 

• First the parity bits of original and MCU bits are compared 

if it is found to be equal, then it is understood that the 

received bits are not MCU bits. If it is not equal, then the 

corresponding MCU bits are XOR with syndrome bits and 

stored as corrected bits in SRAM memory. 

• Second the vertical redundant bits of original and MCU bits 

are compared if it is equal then it is clear that the received 

bits are not MCUs. If it is not equal, then the corresponding 

MCU bits are XOR with syndrome bits and stored as 

corrected bits in SRAM memory. 

Finally, the whole corrected bits are stored in memory. The 

decoder has an enable signal to control the operation. When 

enable signal is 0, the decoder will not detect and correct the MCU 

bits. When it goes 1, the decoder will detect the MCU bits and 

correct it. 

3.4 LIMITATIONS OF DECIMAL MATRIX CODE 

Decimal Matrix Code proposed in [20] requires more 

redundant bits for error detection and correction. The consecutive 

error information bits cannot be detected and corrected by DMC. 

The limitation of DMC is shown in Fig.6 with an example. In 

DMC, horizontal redundant bits are calculated for both original 

and MCU bits. Based on that decimal difference the MCU bits are 

detected. When decimal difference between horizontal redundant 

bits results in logic ‘1’, then the corresponding symbol are in 

error. 

∆H4H3H2H1H0 = H4H3H2H1H0 - H4H3H2H1H0  

= 01111 - 01111 = 00000 

The above result shows that there is no error in received bits. 

But actually there are four consecutive errors in two symbols. 

Based on this result, it can be concluded that the errors are not 

detected and corrected in DMC. 

 

Fig.6. An example showing error type that cannot be corrected 

by DMC 
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The error bits will occur as an output. The redundant bits 

needed for 32-bit DMC is 36. If there is a reduction in the number 

of redundant bits, it is understood that more number of errors can 

be detected and corrected. 

3.5 FEATURES OF VLSI ARCHITECTURE FOR 

CONSECUTIVE ERROR DETECTION AND 

CORRECTION 

From the previous discussion, it is clear that the DMC [20] 

cannot detect and correct the consecutive errors. Also it requires 

more redundant bits to detect the MCU bits. Hence, it is decided 

to propose architecture based on bit manipulation method to 

overcome the drawback of DMC. The operation of consecutive 

error detection and correction is shown in Fig.7. 

 

Fig.7. Consecutive error detection and correction 

The proposed method concentrates on generating parity bits 

for both original and MCU bits. It is seen that the parity bits for 

symbol 0 of original and MCU bits are 110 and 001, and parity 

bits are not matched so it can be clearly identified that there are 

error bits in the symbol. At the same time the parity bits for 

symbol 2 of original and MCU bits are 001 and 110, and it shows 

that the parity bits are different so the bits are in error. Here the 

eight consecutive errors are detected using bit manipulation by 

generating parity bits. With DMC, it is impossible to detect four 

consecutive errors. When the parity bits of original and MCU bits 

are different then the corresponding symbols are in errors. Then 

the corresponding symbol performs XOR operation with 

syndrome bits. When vertical redundant bits of original and MCU 

bits are different then the corresponding symbols are in error. 

Here the correct bits will be obtained by performing XOR 

operation with error bits. The detection and correction of MCU 

bits are explained below. 

 

Fig.8. Detection of symbol 0 and 2 MCU bits 

As seen from the Fig.7, if the actual parity bits of symbol 0 

and MCU bits are different as in the Eq.(10); XOR operation is 

done for the corresponding MCU bit in symbol 0 and syndrome 

bits to correct the MCU bits. 

 P1 P2 P3 ≠ P1 P2 P3  (10) 

 S3S2S1S0 = 1111 

Dcorrect(3 to 0) = D3D2D1D0 ⊕ S3S2S1S0 = 1001 ⊕ 1111 = 

0110 

Finally the original bits are obtained from the error corrector 

part. Then the corrected bits are stored in same bit location in the 

memory. Otherwise, when parity bits of original and MCU bits 

are same and vertical redundant bits are different as in the Eq.(11) 

and Eq.(12); the corresponding MCU bit in symbol 0 is XOR with 

syndrome bits to correct the MCU bits. 

 P9 P8 P7 = P9 P8 P7  (11) 

 V11 V10 V9 V8 ≠ V11 V10 V9 V8  (12) 

 S3S2S1S0 = 1111 

 Dcorrect(27 to 24) = D27 D26 D25 D24 ⊕ S27 S26 S25 S24 

= 1010 ⊕ 1111 = 0101 

Then the corrected bits are stored in same bit location in the 

memory. The same procedure is repeated for 64-bit word with 

eight symbols. The bit manipulation method overcomes the 

consecutive error bits in symbol 0 and 2 which is shown in Fig.8. 

If the radiation strikes symbol 0 and 2 bits in memory, DMC 

cannot detect the MCU bits which results in error data. It is due to 

calculation of horizontal redundant bits. But it is detected by using 

bit manipulation method. The parity bits of original and MCU bits 

of symbol 0 are different. Likewise the parity bits of original and 

MCU bits of symbol 0 are different. This show the bits in symbol 

0 and 2 are in error. Finally the bit that cannot be detected by 

DMC is detected by bit manipulation method. 

4. RESULTS AND DISCUSSION 

The proposed design is tested for its functionality by varying 

the inputs. The area, power and delay of the new architecture are 

obtained and the results are compared and are shown in Table.1. 

Table.1. Performance Analysis 

Parameters 
DMC Bit Manipulation  

32-bit 64-bit 32-bit 64-bit 

Area (ALUTs) 245 489 160 228 

Power (mW) 327.2 330.8 327.3 330.7 

Time (ns) 7.595 8.492 6.065 5.699 

It can be visualized from the Table.1 that the area overhead 

is much reduced in the proposed system. Power reduction cannot 

be taken in a positive sense but there is a significant reduction 

in time from 7.595ns of DMC to 6.065ns in bit manipulation 

method for a 32-bit word and 8.492ns to 5.699ns for a 64-bit 

word correspondingly. 

The proposed design of encoder and decoder is implemented 

in VHDL and simulated with ModelSim. The Table.2 shows the 

reduction in the number of redundant bits for the proposed 32-bit 

and 64-bit word compared with 32 and 64-bit DMC. 
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Table.2. Comparison of Redundant bits 

Technique DMC 
Bit 

Manipulation  

Redundant 

Bits 

Horizontal 

Bits 

Vertical 

Bits 

Parity  

Bits 

Vertical 

Bits 

20 16 12 16 

Total no. of 

Redundant Bits 
36 28 

4.1 ENCODER OUTPUT FOR 32-BIT WORD 

The encoder has two inputs such as 32-bit input and enable 

signal as shown in Fig.9. 

 

Fig.9. 32-bit Encoder Output 

• Input Data: 11110101101011111111100110100110 

When enable signal is high, the parity bits and vertical 

redundant bits are calculated. 

• P1P2P3 = 110, P4P5P6 = 010, P7P8P9 = 001, P10P11P12 = 111 

• V15 to V0 = 0000110000001001 

4.2 DECODER OUTPUT FOR 32-BIT WORD 

The decoder inputs are MCU bits, vertical redundant bit and 

parity bits and it is shown in Fig.10. The decoder enable signal is 

kept high to detect and correct the MCU bits. 

 

Fig.10. 32-bit Decoder Output 

• MCU input 00001010101011111111100101011001 

• P1P2P3 = 110, P4P5P6 = 010, P7P8P9 = 001, P10P11P12 = 111 

• V15 to V0 = 0000110000001001 

• The output of decoder is the corrected one and it is as 

follows, 11110101101011111111100110100110 

4.3 COMBINED OUTPUT OF 32-BIT WORD 

If the RAM enable signal is ‘0’ and decoder enable is ‘1’, only 

then, the decoder will detect the MCU bits and correct it and it is 

shown in Fig.11. 

 

Fig.11. 32-bit Combined Output 

• Input Data: 11110101101011111111100110100110. 

• Fault injected MCU data: 000010101010111111111001010 

1100. 

The resultant output of decoder is, 1111010110101111111110 

0110100110 

4.4 ENCODER OUTPUT FOR 64-BIT 

The reliability for 64-bit data is analyzed with ModelSim. The 

encoder has two inputs 64-bit input and enable signal. It is shown 

in Fig.12. 

 

Fig.12. 64-bit Encoder Output 

• Data input given: 000000000000000000000000000000100 

0000000000000000000000000000000 

When enable signal is high, the parity bits and vertical 

redundant bits are calculated. 

• P1P2P3 = 000, P4P5P6 = 000, P7P8P9 = 000, P10P11P12 = 000, 

P13P14P15 = 000, P16P17P18 = 000, P19P20P21 = 000, P22P23P24 

= 000 

• V31 to V0: 00000000000000000000000000000010 

4.5 DECODER OUTPUT FOR 64-BIT 

The decoder output is shown in Fig.13. 

• MCU bit: 111111111111111100000000000000100000000 

0000000001111111111111111 

• P1P2P3 = 000, P4P5P6 = 000, P7P8P9 = 000, P10P11P12 = 000, 

P13P14P15 = 000, P16P17P18 = 000, P19P20P21 = 000, P22P23P24 

= 000 

• V31 to V0: 00000000000000000000000000000010 

Here the decoder enable signal will enable the MCU bits to 

detect and correct. 
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Fig.13. 64-bit Decoder Output 

• The output of decoder is the corrected bit: 00000000000000 

00000000000000001000000000000000000000000000000

000 

4.6 COMBINED OUTPUT OF 64-BIT WORD 

The whole process of proposed system is shown in Fig.14. 

 

Fig.14. 64-bit Combined Output 

• Data input: 00000000000000000000000000000010000000 

0000000000000000000000000. 

• Fault injected MCU data: 111111111111111100000000000 

0001000000000000000001111111111111111. 

If the RAM enable signal is ‘0’and decoder enable is ‘1’, then 

only the decoder will detect the MCU bits and correct it, otherwise 

it will not detect and correct the MCU bits. 

• The output of decoder is the corrected bit: 00000000000000 

00000000000000001000000000000000000000000000000

000. 

4.7 DETECTION OF SYMBOL 0 AND 2 MCU IN 

DMC 

The detection of MCU bits in symbol 0 and 2 in DMC method 

is shown in Fig.15. It is done by bit manipulation method based 

on XOR operation. 

 

Fig.15. Detection of symbol 0 and 2 MCU bits 

• Data input: 

11110101101011111111100110100110 

• Fault injected MCU data: 

11110101101011111111011010101001 

If the RAM enable signal is ‘0’and decoder enable is ‘1’, then 

only the decoder will detect the MCU bits and correct it, otherwise 

it will not detect and correct the MCU bits. 

• The output of decoder is the corrected bit: 

11110101101011111111100110100110 

5. CONCLUSIONS 

It is very clear from the analysis that the reliability of memory 

is improved very much compared with the existing Decimal 

Matrix Code. Here, the design utilizes bit manipulation method to 

detect and correct 16 bit errors, hence it is possible to correct and 

detect a maximum of 16 bit errors. It is also seen that for a 32-bit 

word, the proposed system can correct and detect up to eight 

consecutive errors in each row. And for a 64-bit word, it can 

correct and detect 16 consecutive errors in each row. And also, it 

is noted that the proposed architecture achieves a reduction in the 

number of redundant bits i.e., 28 bits compared to DMC’s 36 bits. 

The power of proposed system is same as that of the DMC, but 

the delay overhead is reduced to a significant level compared to 

DMC. Hence, it can be concluded that the proposed VLSI 

architecture outperforms DMC in memory reliability. The 

limitation of the proposed is that it cannot detect and correct two 

parallel MCU symbols in logical organization. Therefore, it is 

decided to recover the parallel MCU symbols in near future. 
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