
SARDI IRFANSYAH: DESIGN AND IMPLEMENTATION OF UART WITH FIFO BUFFER USING VHDL ON FPGA

DOI: 10.21917/ijme.2019.0127

724

DESIGN AND IMPLEMENTATION OF UART WITH FIFO BUFFER USING VHDL

ON FPGA

Sardi Irfansyah
Department of Electrical Engineering, Gunadarma University, Indonesia

Abstract

Universal Asynchronous Receiver Transmitter (UART) is a

communication protocol commonly used for serial data

communication. This paper presents the design and implementation

method of a Universal Asynchronous Receiver Transmitter (UART)

using VHSIC Hardware Description Language (VHDL). UART will be

implemented to picoblaze processor which can be implemented in large

system and have high flexibility in FPGA based design. UART

controller has been designed using FIFO (First In First Out) buffer to

avoid loss of data. Simulated and synthesized using Xilinx ISE 13.1.

The design is successfully downloaded and verified on Spartan-3E

FPGA board. The data that is sent will generate output LEDs on

Spartan-3E. The total number of slice required is less than 10%. The

number of slice Flip Flops are 1%, the total number of 4 input LUTs

are 3% and the number of occupied slices are 3%. This design has a

small resource.

Keywords:

UART, VHDL, FIFO Buffer, FPGA, Xilinx ISE 13.1, Spartan-3E

1. INTRODUCTION

The development of technology and digital communication at

this time is very fast. To communicate with less transmission line

and long transmission distance that it needed a serial

communication such as Asynchronous serial. Types of serial

communications are typically using UART (Universal

Asynchronous Receiver-Transmitter) as an interface for serial

communication. A UART is a circuit that sends parallel data

through serial lines [1]. Universal Asynchronous Receiver

Transmitter (UART) is a microchip with programming that

controls a computer’s interface to its attached serial devices [2].

The UART is basically used in between the slow and the fast

peripheral devices for example: computer and printer or in

between the controller and LCD [3]. UART allows full-duplex

communication in serial link, thus has been widely used in the

data communications and control system.

Chip interface will cause the waste of resources and increased

cost. By using FPGA (Field Programmable Gate Array) will

reduce the waste of resources, because the FPGA is composed

thousands of logic circuits which can be configured to perform the

desired functions. Therefore, UART module will be implemented

into the FPGA. Implementation will be using VHDL to design it.

To be able to generate a high flexibility in the implementation of

UART needed a processor that can perform the process

automatically. The processor soft core is picoblaze (KCPSM3),

which can be implemented on Spartan 3E FPGA family. By

applying the program using the processor picoblaze can generate

high flexibility so that if we modify the program does not need to

be changed entirely.

Basic UART communication needs only two signal lines

(RXD, TXD) to complete full-duplex data communication [4].

TXD is the transmit side and RXD is the receiver. In the UART,

the speed of data transmission (Baud rate) and the phase of the

clock on the transmitter and the receiver must be synchronized. It

is necessary for the synchronization between transmitter and

receiver. It will be done by bits “Start” and a bit “Stop”. When the

transmitter is idle, the data line is in the high logic “1”. When the

transmitter wants to transmit data, UART will be set first to logic

“0” for one bit. This signal at the receiver will be recognized as a

signal “Start” that is used to synchronize the phase of clock with

the transmitter clock phase and then the data will be sent serially

from the lowest bit “0” to the highest bit.

When the receiver has received all of the data bits, it may

check for the Parity Bits (both sender and receiver must agree on

whether a Parity Bit is to be used), and then the receiver looks for

a Stop Bit. If the Stop Bit does not appear, the UART will report

a framing error to the host processor when the data is read. The

usual cause of a framing error is that the sender and receiver

clocks were not running at the same speed, or that the signal was

interrupted.

Fig.1. UART Frame Format

If the baud rate used too fast will lead to the received data

didn’t match the data sent and the error value will be high. To

calculate the bit period for one bit of data can be calculated by the

formula as shown in Fig.2.

Bit Period = 1/Baud Rate

Example: 9600 baud = bit period of 104 s

Fig.2. Bit Period

2. LITERATURE REVIEW

2.1 SERIAL COMMUNICATION

There are two kinds of serial communications such as

asynchronous serial communication and synchronous serial

communication. Synchronous serial communication is requires

that the clocks in the transmitting and receiving devices are

synchronize and running at the same rate, so the receiver can

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2019, VOLUME: 05, ISSUE: 01

725

sample the signal at the same time intervals used by the

transmitter. Asynchronous serial communication is serial

communication in which the transmitter and receiver are not

continuously synchronized by a common clock signal. In order

for the received data same as the data sent then the clock

frequency must be the same and there should be synchronization.

After the synchronization, the transmitter will transmit the data

according to the clock frequency of the transmitter and then the

receiver will read the data according to the receiver clock

frequency [2].

Asynchronous serial communication has advantages of less

transmission line, high reliability, and long transmission distance,

therefore is widely used in data exchange between computer and

peripheral [3]. Asynchronous serial communication is usually

implemented by Universal Asynchronous Receiver- Transmitter

(UART).

Universal Asynchronous Receiver-Transmitter (UART) is a

computer hardware that translates data between parallel and serial

forms. UART is a kind serial communication protocol, mostly

used for short-distance and low-speed between computers and

peripherals. UART is usually in the form of an integrated circuit

used for serial communications on a computer or peripheral

device serial port. UART allows full-duplex communication in

serial link, thus has been widely used in the data communications

and control system.

In serial communication, the data is sent can be either 8-bit

data size. From this data format, each data readable can be

translated into bits that represent specific data. The baud rate is

used to determine the time of the serial communication. Standard

baud rates include 110, 300, 600, 1200, 2400, 4800, 9600, 14400,

19200, 38400, 57600, 115200, 128000 and 256000 bits per

second.

2.2 FPGA

Field Programmable is a digital integrated circuit that can be

designed and programmed according with the wishes and needs

of the user or consumer without going through the stage of “burn”

in laboratory or “hardwired” by the manufacturer of the device.

Gate Array means that FPGA consists of digital gates where each

gate interconnection can be configured between each other.

Each FPGA vendors typically provide software to design and

program the FPGA. Software used on any FPGA vendor using

HDL (hardware description language) or a schematic design.

HDL commonly used is VHDL and Verilog.

The HDL will be more useful when working on large

structures, because it would be easier to implement numerically

rather than having to draw every piece of the circuit by hand.

However, schematic entry can allow for easier visualisation of a

design. Then, using an electronic design automation tool, a netlist

is generated. The netlist can then be fitted to the FPGA

architecture using a process called place-and-route, usually

performed by the FPGA company proprietary place-and-route

software.

The user will validate the map, place and route results via

timing analysis, simulation, and other verification methodologies.

Once the design and validation process is complete, the binary file

generated is used to reconfigure the FPGA. This file is transferred

to the FPGA/CPLD via a serial interface (JTAG) or to an external

memory device like an EEPROM. To simplify the design of

complex systems in FPGAs, there exist libraries of predefined

complex functions and circuits that have been tested and

optimized to speed up the design process. These predefined

circuits are commonly called IP (intellectual property) cores, and

are available from FPGA vendors and third-party IP suppliers

(rarely free and typically released under proprietary licenses).

FPGA contain an array of programmable logic blocks and a

hardwired connection. Components programmed into the FPGA

gate includes ordinary logic gates (AND, OR, XOR, NOT) as well

as the type of mathematical functions and more complex

combinations (decoder, adder, subtractor, multiplier, etc.). The

blocks in the FPGA component may also contain a memory

element (register) ranging from flip-flop to the RAM (Random

Access Memory). FPGA programming can used Verilog or

VHDL (VHSIC Hardware Description Language). VHSIC is an

abbreviation for Very High Speed Integrated Circuit. VHDL

intended for synthesis and simulation circuit.

2.3 PICOBLAZE

Picoblaze is a soft-core processor from Xilinx for use in their

FPGA and CPLD products. Picoblaze has 8-bit RISC (Reduced

Instruction Set Computing) architecture and has a speed of up to

100 MIPS (Million Instructions per Second) on Virtex 4 FPGA

family. Picoblaze design originally named KCPSM which stands

for “Constant (K) Programmable State Machine Code” [4].

The basic of design for use picoblaze is:

• Picoblaze written using assembler programming language

with extensions file .psm

• KCPSM3 assembler can only be run on the file extension

.psm and the file extension .vhd will execute the instructions

located in Block Memory as its output.

Picoblaze program memory to be implemented on a single

block RAM in the FPGA, which will then be configured to

function as 1K × 18 instruction PROM. Program to be executed

will be initialized in block RAM. Below is a component

picoblaze.

Picoblaze development kit provided by Xilinx included a

VHDL description of a basic UART. Likewise, Spartan-3 board

provides all the facilities to enable serial communication: a DB-9

port and a voltage-level shifter circuit. In order to enable

Picoblaze to handle a UART as a peripheral, both the transmitter

(Tx) and receiver (Rx) modules have been encapsulated along

with an interface module. This interface allows picoblaze to

operate UART by access to a set of registers.

Fig.3. Components of Picoblaze

SARDI IRFANSYAH: DESIGN AND IMPLEMENTATION OF UART WITH FIFO BUFFER USING VHDL ON FPGA

726

2.4 VHSI HARDWARE DESCRIPTION

LANGUAGE (VHDL)

VHDL (VHSIC Hardware Description Language) is a

hardware description language used in electronic design

automation to describe digital and mixed-signal systems such as

field-programmable gate arrays (FPGA) and integrated circuits.

VHSIC is an abbreviation for Very High Speed Integrated Circuit.

The advantages of using VHDL compared to Verilog is a

VHDL does not depend on technology or vendor, so it can be

moved (portable) and can be used again (reusable). Another

benefit is that VHDL allows the description of a concurrent

system. VHDL is a dataflow language, unlike procedural

computing languages such as BASIC, C, and assembly code,

which all run sequentially, one instruction at a time.

VHDL is commonly used to write text models that describe a

logic circuit. Such a model is processed by a synthesis program,

only if it is part of the logic design. A simulation program is used

to test the logic design using simulation models to represent the

logic circuits that interface to the design. A test bench is used to

simulate of the design.

VHDL is frequently used for two different goals: simulation

of electronic designs and Synthesis of such designs. Synthesis is

a process where a VHDL is compiled and mapped into an

implementation technology such as an FPGA or an ASIC.

Simulation is a very important process because it can be applied

to any abstract level, both at the level schematic or VHDL code.

Implementation of a logic design with the software usually

consists of several steps:

Step 1: Describe a logic circuit of the system designed using a

hardware description language (HDL) such as VHDL or

Verilog or to describe it using schematic editor.

Step 2: Perform the synthesis process which generates netlists

for each source file. Netlist is a description of various

logic gates of a design and how logic gates are

connected.

Step 3: In the stage of implement design have three steps:

translate, map, place and route. Translate is the process

of merges multiple files into a single netlist. After

translate, the design is mapped to slices and I / O blocks.

The design is mapped to slices and I/O blocks. Place and

route is process placing the design on the chip and

components connected.

Step 4: Once the implementation phase is complete, the

application creates a bitstream file that contains the value

of a logic ‘1’ and ‘0’ which is a representation of a digital

circuit configuration to be implemented into the FPGA

to show the open or the closed switch on FPGA.

Step 5: Bitstream file to be uploaded into FPGA or memory are

available via the JTAG cable according to type of

development board is used.

3. DESIGN METHODOLOGY

Design and implementation will be discussed in this section.

UART transmitter logic receive parallel signal and converted into

serial data, the UART receiver logic receive serial signal and

converted into parallel signal and FIFO are used to avoid the loss

of data. FPGAs have programmable logic components called

‘logic blocks’ and a hierarchy or reconfigurable interconnects

which facilitate the wiring of the blocks together [5]. The design

that has been created will be implemented to Spartan 3E FPGA.

3.1 DESIGN OF SYSTEM USING SOFTWARE

In the process of design system using VHDL code will be

implemented using Xilinx ISE 13.1 software.

Fig.4. Flowchart Design of System using VHDL

In Fig.4, after making a VHDL code, then the synthesize

process using the Xilinx Synthesis Technology (XST) synthesis

tool. Synthesize is the process of generating a netlist for each

source file. After conducting the synthesis process then

implement design. In this section there are three steps: translate,

map, place and route. Translate is the process of combining

multiple files into a netlist. Map is a process to map a slice and

I/O Blocks. Place and route is process placing the design on the

chip and components connected. After implement design is

completed, it can be seen a summary of the design and report. If

there is an error then corrected VDHL code. If no error found,

then do simulation. If there is an error in the simulation then fix

the VHDL code. If no error found, then do simulation. If there is

an error in the simulation then fix the VHDL code.

3.2 DESCRIPTION OF THE SYSTEM

Spartan 3E FPGA board is used as a system controller and

Xilinx 13.1 as a tool to create the program. In Fig.5, input ports

are switches, push button, clk_50MHz, and rs232_dce_rxd,

Start

VHDL Coding

Synthesize - XST

Implement Design

Design

Summary/Report

Error?

Simulation

Error?

End

Yes

Yes

No

No

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2019, VOLUME: 05, ISSUE: 01

727

whereas output ports are LEDs and rs232_dce_txd. User will

upload the program into the spartan 3E. User will transmit data to

rs232_dce_rxd (Spartan 3E) in the form of ASCII characters and

then Spartan 3E will transmit the data to the PC. UART_RX and

UART_TX will process the data and then it will connect to

picoblaze. It will change lowercase character to uppercase when

sw(0) ON and the LEDs will light up, then rs232_dce_txd will be

sent the data to the PC.

Fig.5. Block Diagram of System

On the program ‘Spartan3e.vhd’ include UART_RX,

UART_TX, Pb1_rom and picoblaze1 (KCPSM3). UART UART

TX and RX are modules to process data transmission from the PC

to the spartan 3E. The pb1_rom derived from assembly file

(skripsi.psm) were generated in block ROM of KCPSM3.

3.3 BLOCK DIAGRAM OF UART

In Fig.6, UART_TX module and UART_RX module are

connected with baud rate generator. Baud rate generator is

actually a frequency divider.

Fig.6. Block Diagram of UART

Consider the baud rate at the transmitter is 9600bps. This

means that the time period for one data bit is 1/9600 which comes

out to be 104µs. The clock frequency available on the Spartan 3E

FPGA board is 50MHz. Data sent from PC to Spartan 3E are

ASCII characters and then it will be accepted by rs232_dce_rxd

as serial_in (UART_RX module). UART_RX module will

convert the data into data parallel. UART TX module will convert

bytes into serial bits, then it will send bits of data through a signal

tx (rs232_dce_txd) as serial_out.

3.3.1 UART_RX:

UART_RX is a combination FIFO buffer ‘bbfifo_16×8’ and

the constant (k) compact UART reciever ‘kcuart_rx’ modules.

The data will be captured by the FIFO buffer. The input side of

the FIFO is under the control of the ‘kcuart_rx’ receiver. As

shown in Fig.7, In the UART_RX module has several input ports

and output ports.

Fig.7. Block of UART_RX

Ports on UART_RX will be connected to ports on the Spartan

3E. Port Serial_in will be connected to the port rs232_dce_rxd

through rx signal, so the value of serial_in = rs232_dce_rxd. Port

btn_south will connect with reset_buffer.

3.3.2 UART_TX:

UART_TX is a combination FIFO buffer ‘bbfifo_16×8’ and

the constant (k) compact UART transmitter ‘kcuart_tx’ modules.

The FIFO buffer is used to accept byte data for transmission. The

output side of the FIFO is under the control of the ‘kcuart_tx’

transmitter. The buffer is automatically read by the ‘kcuart_tx’

circuit to pass the data to the serial line. As shown in Fig.8, In the

UART_TX module has several input ports and output ports.

Fig.8. Block of UART_TX

Baud

Rate

generator

UART_RX

(Receiver)

UART_TX

(Transmitter)

Clock

(50 MHz)

rs
2

3
2
_

d
ce

_
rx

d

rs
2

3
2
_

d
ce

_
tx

d

Output

rs232_dce_txd

LEDs

Picoblaze

(KCPSM3)

rs232_dce_rxd

Switches (sw)

Push Button

Clk_50MHz

UART

(UART_RX

and

UART_TX)

Output Output

User

Spartan 3E

SARDI IRFANSYAH: DESIGN AND IMPLEMENTATION OF UART WITH FIFO BUFFER USING VHDL ON FPGA

728

Ports on UART_TX will be connected to ports on the Spartan

3E. Port Serial_out will be connected to the port rs232_dce_txd

through tx signal, so the value of serial_out = rs232_dce_txd. Port

btn_south will connect with reset_buffer.

3.4 RTL SCHEMATIC OF SYSTEM

The RTL scheme refers to the system logic that will be

implemented. The whole system on the spartan 3E block diagram

as shown in Fig.3 will produce a schematic as shown in Fig.9.

Fig.9. RTL Schematic of System

3.5 DATA TRANSMISSION PROCESS

In this section explains the process of sending data that will be

implemented to Spartan 3E FPGA Board (see Fig.10).

When the device is activated, the device will begin to

initialize. The initial condition of LEDs is “00001111”. When the

PC give input data (ASCII character) to the Spartan 3E, then

LEDs = input data and output data = input data. When sw (0) = 1

(active high) then the LEDs = data input that has changed from

lowercase letter to uppercase and then output data = input data

(lowercase letter to uppercase). When reset = 1 (active high) then

the LEDs will return to “00001111”.

Example: Data input is the letter ‘u’ or 75 in hexadecimal, then

the LEDs will light according to the data input, LEDs =

“01110101”. If if the switch on the letter ‘u’ will be changed to

‘U’, LEDs = “01010101”.

4. TESTING AND ANALYSIS

Testing and analysis of data transmission will be discussed in

this section. The data will be sent as ASCII characters and then

converted into Binary. It will be implemented into Spartan 3E

FPGA Board.

Fig.10. Flowchart of Data Transmission Process

Fig.11. 232 Analyzer Window with Baud Rate of 9.600 bps

4.1 SYSTEM TESTING AND ANALYSIS

The process of sending data from the PC to the Spartan 3E and

then retransmits data from Spartan 3E to PC will be displayed on

232Analyzer. 232Analyzer is an advanced serial port protocol

analyzer software that allows programmers, engineers, and others

Start

Initialization

LEDs = 00001111

Input Data (ASCII)

Output data = Input

data

sw(0) = 1

LEDs = input data (lower

case to upper case)

reset=1

End

Yes

Yes

No

No

Output data = input data

(lower case to upper case)

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2019, VOLUME: 05, ISSUE: 01

729

to control, monitor and analyze serial port

(RS232/RS485/RS422/TTL, etc.) activities. As shown in Fig.11,

232Analyzer will be set with baud rate of 9.600bps, 8 data bits, 1

stop bit and none parity.

By using this software data will be sent from PC to Spartan 3E

and then generate output on the LEDs (see Fig.12).

Fig.12. LEDs output on spartan 3E FPGA Board

The initial conditions of LEDs are “00001111”. Example, data

is sent in the form of the character ‘u’ (in ASCII), then the LEDs

will light up according to the binary of the received data

“01110101” (conversion from ASCII to binary). When btn_south

ON then the LEDs will return to initial condition is “00001111”

(this port functions as a reset). If sw (0) ON then received data

will change from lowercase letters to uppercase.

Table.1. Test Result with Baud Rate of 9.600bps

No. Data sent (PC)
Output LED

(Spartan 3E)

Data Received

(PC)

1 u (75 ‘Hex’) 01110101 (75 ‘Hex’) u (75 ‘Hex’)

2 r (72 ‘Hex’) 01110010 (72 ‘Hex’) r (72 ‘Hex’)

sw(0) ON

3 u (75 ‘Hex’) 01010101 (55 ‘Hex’) U (55 ‘Hex’)

4 r (72 ‘Hex’) 01010010 (52 ‘Hex’) R (52 ‘Hex’)

In Table.1 shows that that the received data is the same as the

data sent. When sw (0) ON, the data received on the Spartan 3E

will change from lowercase letters to uppercase, then the Spartan

3E will send the data that has been received to the PC, so it will

produce output on a PC. The output will be displayed on

232Analyzer.

5. RESULTS

In the Fig.13, functional simulation was performed using

ISim. In this simulation using baud rate of 9600bps, the system

clock frequency is set to 50MHz.

The value of rs232_dce_rxd = serial_in on UART_RX (1 start

bit, 8 data bits, and 1 stop bit), rx_data = data_out (The parallel

Byte (8-bit) data which has been received), rx_read = read_buffer

(An active HIGH or logic ‘1’ input indicates that the data provided

at the ‘data_out’ port has been read). The value of rs232_dce_txd

= serial out on UART TX, tx_data = data_in (The parallel Byte

(8-bit) data to be transmitted serially). Tx_write = write_buffer

(An active HIGH or logic ‘1’ indicates that the data is currently

being applied to the ‘data_in’ port to be written to the internal

buffer). tx_complete will be active high if ‘data_in’ port has been

written to the internal buffer. Signal en_16_x_baud value will

change to 1 when 6.51s as shown in Fig.14.

Fig.13. UART Waveforms

Fig.14: Baud Rate Waveforms

5.1 DESIGN SUMMARY RESULTS

In the Fig.15, it can be seen that the number of slice flip flops

are 1%, the total number of 4 input LUTs are 3% and the number

of occupied slices are 3%. This design has small resource

requirements and also still to be developed.

Fig.15. Design Summary

6. CONCLUSION

The conclusions of the research can be concluded as follows:

1. Implementation of UART with picoblaze successfully

performed on a Xilinx Spartan 3E FPGA board. If the

switch (0) ON then the lowercase letters will change to

SARDI IRFANSYAH: DESIGN AND IMPLEMENTATION OF UART WITH FIFO BUFFER USING VHDL ON FPGA

730

uppercase. Output LED will change according to the data

received on Spartan 3E.

2. The design has great flexibility and high integration as

FIFO buffer is used to avoid data loss.

3. In the design has been created, the total number of slice

required is less than 10%. The number of slice Flip Flops

are 1%, the total number of 4 input LUTs are 3% and the

number of occupied slices are 3%. This design has a small

resource.

Here are some suggestions that can be done for future

development:

1. ASCII characters to be sent can be changed to other

characters to find out the results of that received when

using other characters.

2. LED output on Spartan 3E can be changed using the LCD

as a sign that the data has been received.

3. The Baud rate can be changed to get high speed data

transmission.

REFERENCES

[1] Liu Weifeng, Zhuang Yiqi, Liu Feng and He Wei, “Design

of a High Performance Embedded UART”, Chinese Journal

of Electron Devices, Vol. 30, No. 4, pp. 1275-1278, 2007.

[2] S. Saha, M.A. Rahman and A. Thakur, “Design and

Implementation of a BIST Embedded High Speed RS- 422

Utilized UART over FPGA,” Proceedings of 4th

International Conference on Computing, Communications

and Networking Technologies, pp. 1-5, 2013

[3] Garima Bandhawarkar Wakhle, Iti Aggarwal and Shweta

Gaba, “Synthesis and Implementation of UART using

VHDL Codes”, Proceedings of International Symposium on

Computer, Consumer and Control, pp. 145-149, 2012.

[4] V. Naresh and V. Patel, “VHDL Implementation of UART

with Status Register”, Proceedings of International

Conference on Communication Systems and Network

Technologies, pp. 11-14, 2012.

[5] N.R. Laddha and A.P. Thakare, “Implementation of Serial

Communication using UART with Configurable Baud

Rate”, International Journal on Recent and Innovation

Trends in Computing and Communication, Vol. 1, No. 4, pp.

263-268, 2016.

[6] L. Ruchika, M. Mithilesh and D. Vidya, “Design and

Implementation of UART”, International Journal of

Advanced Research in Computer and Communication

Engineering, Vol. 4, No. 5, pp. 18-24, 2015.

[7] Fang Yi-Yuan and Chen Xue Jun, “Design and Simulation

of UART Serial Communication Module Based on VHDL”,

Proceedings of 3rd International Workshop on Intelligent

Systems and Applications, pp. 1-4, 2011.

[8] Y. Wang and K. Song, “A New Approach to Realize

UART”, Proceedings of International Conference on

Electronic and Mechanical Engineering and Information

Technology, Vol. 5, pp. 2749-2752, 2011.

[9] Ken Chapman, “Ultra-Compact UART Macros for Spartan-

6, Virtex-6 and 7-Series”, Available at:

http://ohm.bu.edu/~dean/Xilinx/KCPSM6_Release7_30Sep

t13/UART_and_PicoTerm/UART6_User_Guide_and_Refe

rence_Designs_29March13.pdf.

[10] D.V.R.K Raju, B. Narsingarao, K. Vikash, D.A. Kumar and

S.R. Krishna, “UART Serial Communication Module

Design and Simulation Based on VHDL”, Proceedings of 3rd

International Workshop on Intelligent Systems and

Applications, pp. 28-32, 2011.

[11] PicoBlaze 8-bit Microcontroller, Available at:

https://www.xilinx.com/products/intellectual-

property/picoblaze.html.

[12] Summerville Douglas, “Embedded Systems Interfacing for

Engineers using the Freescale HCS08 Microcontroller I:

Machine Language Programming”, Morgan and Claypool,

2009.

[13] G.A. Kumar and M.A. Sufhan, “FPGA Implementation of

Picoblaze based Embedded System for Monitoring

Applications”, International Journal of Science and

Research, Vol. 2, No. 3, pp. 1-8, 2013.

[14] J. Norhuzaimin and H.H Maimun, “The Design of High

Speed UART”, Proceedings of Asia-Pacific Conference on

Applied Electromagnetics, pp. 121-128, 2005.

[15] B. Suresh, P. Teja Reddy, V.S.V. Srihari and S.

Sivanantham, “ASIC Implementation of Low Power

Universal Asynchronous Receiver Transmitter”, World

Applied Sciences Journal, Vol. 32, No. 3, pp. 472-477, 2014.

