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Abstract 

Edge AI accelerators have emerged as a critical component for real-

time inference under strict power and latency constraints. 

Conventional accelerator architectures have focused on exact 

computation, which has limited the achievable energy efficiency when 

deployed in resource-constrained edge environments. Approximate 

computing has gained attention as a promising paradigm that has 

traded controlled accuracy loss for significant gains in power and 

performance. However, most existing approximate designs have 

remained static and application-specific, which has reduced their 

adaptability across diverse AI workloads. The primary challenge has 

involved designing an architecture that has supported dynamic 

accuracy–energy trade-offs while maintaining acceptable inference 

quality. Fixed approximation levels have failed to respond to varying 

workload sensitivities, data distributions, and quality-of-service 

requirements. As a result, edge AI systems have suffered from either 

unnecessary energy consumption or unacceptable accuracy 

degradation. This work has proposed a reconfigurable approximate 

computing architecture that has enabled runtime adaptation of 

approximation levels within an edge AI accelerator. The architecture 

has integrated configurable approximate arithmetic units, adaptive 

precision control, and a lightweight reconfiguration controller that has 

monitored workload characteristics. Approximation modes that have 

targeted multipliers, adders, and accumulation paths have been 

selectively activated based on layer-wise sensitivity analysis. A design 

framework that has supported rapid switching between accuracy modes 

has been implemented and evaluated using representative 

convolutional and transformer-based inference workloads. 

Experimental evaluation demonstrates that the proposed architecture 

reduces energy consumption from 3.3 mJ to 3.05 mJ across thresholds 

(θ_1=0.1 to θ_3=0.3) while maintaining inference accuracy within 

1.9% deviation of the exact baseline. Compared with the exact baseline 

accelerator, energy savings reach up to 36%, and latency decreases 

from 16.2 ms to 15.4 ms. Energy–accuracy efficiency (η) achieves 0.75, 

outperforming static and learning-based approximate accelerators. 

These results indicate that sensitivity-aware reconfigurable 

approximation effectively balances energy efficiency and output 

quality, providing a practical solution for diverse edge AI workloads. 
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1. INTRODUCTION 

Edge artificial intelligence has become an essential enabler for 

real-time analytics in applications such as autonomous sensing, 

smart healthcare, and industrial monitoring. Recent advances in 

deep neural networks have improved inference accuracy, but 

these models have demanded substantial computational and 

energy resources, which have limited their direct deployment on 

edge devices with constrained power budgets [1–3]. To address 

this gap, specialized edge AI accelerators have been designed that 

have optimized dataflow, memory access, and parallel 

computation. Despite these efforts, the growing model 

complexity has continued to stress energy efficiency and thermal 

limits at the edge. 

Several challenges have emerged in the design of efficient 

edge AI accelerators. First, exact arithmetic operations have 

consumed significant power, even in scenarios where full 

numerical precision has not been strictly required [4]. Second, 

workload diversity across convolutional, attention-based, and 

hybrid models has reduced the effectiveness of fixed-function or 

statically optimized accelerators [5]. These challenges have 

indicated that a one-size-fits-all architecture has not adequately 

balanced accuracy, energy, and performance under dynamic 

operating conditions. 

Approximate computing has been explored as a 

complementary paradigm that has intentionally relaxed 

computational accuracy to achieve energy and performance 

benefits. Prior studies have shown that many neural network 

layers have tolerated small numerical errors without notable 

degradation in inference quality [6]. However, most approximate 

computing approaches have relied on static approximation 

schemes that have been tightly coupled to specific models or 

datasets. Such rigidity has limited their applicability in real-world 

edge deployments, where workload characteristics and quality-of-

service requirements have varied over time. 

The problem addressed in this work has focused on the lack of 

adaptability in existing approximate computing architectures for 

edge AI accelerators. Fixed approximation levels have either 

wasted energy during low-sensitivity operations or have caused 

unacceptable accuracy loss during critical computations [6]. 

Therefore, a need has existed for an architecture that has 

dynamically reconfigured approximation behavior in response to 

workload demands. 

The objective of this research has been to design and evaluate 

a reconfigurable approximate computing architecture that has 

supported runtime control over accuracy–energy trade-offs in 

edge AI accelerators. The architecture has aimed to preserve 

inference accuracy within acceptable limits while significantly 

reducing energy consumption across diverse AI workloads. 

The novelty of this work has resided in the integration of fine-

grained reconfigurability with approximate arithmetic units under 

a unified control framework. Unlike prior static designs, the 

proposed approach has enabled layer-wise and mode-wise 

approximation control that has adapted to workload sensitivity. 

The main contributions of this study have been twofold. First, 

a reconfigurable approximate accelerator architecture has been 

proposed that has combined configurable arithmetic units with 

adaptive precision control. Second, a comprehensive evaluation 

has been conducted that has demonstrated notable energy savings 

with minimal accuracy degradation across representative edge AI 

models. 
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2. RELATED WORKS 

Early research on edge AI accelerators has primarily focused 

on exact computation with architectural optimizations for 

throughput and memory efficiency. Several studies have proposed 

systolic arrays and dataflow-aware accelerators that have reduced 

memory access energy while maintaining numerical precision [7]. 

Although these designs have improved performance per watt, they 

have not fundamentally addressed the inefficiency of exact 

arithmetic for error-tolerant neural workloads. 

Approximate computing has been introduced as a viable 

solution to reduce energy consumption by relaxing arithmetic 

accuracy. Initial works have explored approximate adders and 

multipliers that have reduced switching activity and critical path 

delay [8]. These components have been integrated into neural 

accelerators, where inference accuracy has shown resilience to 

small computational errors. However, such designs have often 

applied uniform approximation across all layers, which has 

limited fine-grained control. 

Subsequent studies have investigated precision scaling and 

quantization techniques that have reduced bit-widths for weights 

and activations [9]. These methods have achieved substantial 

energy savings and memory reduction. Nevertheless, precision 

levels have typically been fixed at design time or selected offline, 

which has constrained adaptability during runtime. Moreover, 

aggressive quantization has sometimes required retraining, which 

has increased deployment complexity. 

Reconfigurable approximate architectures have been proposed 

to improve flexibility. Some works have introduced configurable 

arithmetic units that have switched between exact and 

approximate modes [10]. While these designs have offered 

adaptability, the reconfiguration overhead and coarse-grained 

control have limited their effectiveness for highly dynamic 

workloads. In addition, control mechanisms have often relied on 

simplistic heuristics without systematic workload sensitivity 

analysis. 

At the system level, approximation-aware scheduling and 

dynamic voltage and frequency scaling have been combined with 

approximate computation to further improve energy efficiency 

[11]. These approaches have coordinated architectural and 

system-level knobs, but they have added control complexity and 

have not always guaranteed predictable accuracy behavior. 

More recent research has explored learning-based controllers 

that have selected approximation modes based on runtime 

feedback [12]. These methods have demonstrated promising 

adaptability, yet they have introduced additional computation 

overhead and design complexity, which have raised concerns for 

ultra-low-power edge devices. 

3. PROPOSED METHOD 

The proposed method has introduced a reconfigurable 

approximate computing architecture for edge AI accelerators, 

which has allowed dynamic adjustment of arithmetic precision at 

runtime. The design integrates configurable approximate 

arithmetic units, adaptive precision control, and a lightweight 

controller that has monitored the sensitivity of neural network 

layers. Based on layer-wise analysis, the architecture has 

selectively activated approximate computation modes for 

multipliers, adders, and accumulation paths, balancing energy 

efficiency with acceptable inference accuracy. A reconfiguration 

framework has enabled rapid switching between approximation 

levels depending on workload characteristics, thereby improving 

the adaptability and energy efficiency of the accelerator. 

Algorithm of Proposed Method 

// Initialize input and model parameters 

InputData ← acquire_and_normalize_input() 

ModelLayers ← load_pretrained_model() 

ApproxLevels ← initialize_default_precision() 

// Layer Sensitivity Analysis 

for each Layer in ModelLayers do 

    SensitivityScore[Layer] ← evaluate_layer_sensitivity(Layer, 

InputData) 

end for 

// Assign Approximate Modes 

for each Layer in ModelLayers do 

    if SensitivityScore[Layer] < ThresholdLow then 

        ApproxLevels[Layer] ← HIGH_APPROX 

    else if SensitivityScore[Layer] < ThresholdMedium then 

        ApproxLevels[Layer] ← MEDIUM_APPROX 

    else 

        ApproxLevels[Layer] ← LOW_APPROX 

    end if 

end for 

// Runtime Reconfiguration & Forward Pass 

for each Layer in ModelLayers do 

    configure_arithmetic_units(Layer, ApproxLevels[Layer]) 

    Output[Layer] ← forward_pass_layer(Layer, InputData) 

    if evaluate_error(Output[Layer]) > ErrorLimit then 

        ApproxLevels[Layer] ← 

reduce_approximation(ApproxLevels[Layer]) 

        reconfigure_units(Layer, ApproxLevels[Layer]) 

        Output[Layer] ← forward_pass_layer(Layer, InputData) 

    end if 

    InputData ← Output[Layer] 

end for 

// Final Output 

FinalOutput ← Output[last Layer] 

return FinalOutput 

The first step involves acquiring raw data from sensors or 

input streams and normalizing it to a fixed scale suiTable.for 

neural network inference. Normalization ensures that the dynamic 

range of inputs matches the expected operating range of the 

accelerator, reducing quantization errors in approximate 

computation. In addition, preprocessing has included optional 

noise suppression using lightweight filters that have preserved 

critical signal characteristics. 
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Table.1. Input Normalization 

Raw Input Value Normalized Value 

12.3 0.123 

45.6 0.456 

78.9 0.789 

100.0 1.000 

Layer sensitivity analysis evaluates how each neural network 

layer responds to approximate computation. Layers that are highly 

sensitive to numerical errors require minimal approximation, 

while insensitive layers can tolerate aggressive approximation. 

Sensitivity scores have been computed by introducing controlled 

noise or approximation into each layer and observing the impact 

on the overall inference error. 

Table.2. Layer Sensitivity Scores 

Layer  

Name 

Sensitivity  

Score 

Approximation  

Recommendation 

Conv1 0.05 High Approximation 

Conv2 0.12 Medium Approximation 

Dense1 0.25 Low Approximation 

Output 0.30 Low Approximation 

The Sensitivity Score Computation is defined as: 

𝑆𝑙 =
∑𝑁
𝑖=1 ∣ 𝑦𝑖 − 𝑦̂𝑖 ∣

∑𝑁
𝑖=1 ∣ 𝑦𝑖 ∣

 

where 𝑆𝑙is the sensitivity score for layer 𝑙, 𝑦𝑖represents the 

original output of neuron 𝑖, 𝑦̂𝑖represents the output under 

approximation, and 𝑁is the total number of neurons in the layer. 

Lower scores indicate higher tolerance to approximation. 

3.5 Approximate Mode Assignment 

Based on the sensitivity analysis, each layer is assigned an 

approximation mode. High-approximation modes are used in low-

sensitivity layers to maximize energy savings, while low-

approximation or exact modes are applied to critical layers to 

preserve accuracy. The assignment can be dynamically adjusted 

during runtime if monitoring indicates excessive error. 

Table.3. Approximate Mode Assignment 

Layer Name Sensitivity Score Approximation Mode 

Conv1 0.05 HIGH 

Conv2 0.12 MEDIUM 

Dense1 0.25 LOW 

Output 0.30 EXACT 

The Table.3 shows the assignment of approximation modes 

for each neural network layer. 
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where Al denotes the assigned approximation mode for layer l, and 

θ1, θ2, θ3 are pre-defined thresholds derived from experimental 

tuning. 

The reconfiguration controller activates the assigned 

approximation modes at runtime. The controller monitors 

intermediate outputs and can switch modes dynamically if the 

error exceeds a predefined threshold. This mechanism allows the 

accelerator to maintain quality-of-service requirements while 

exploiting approximation for energy savings. 

Table.4. Runtime Reconfiguration 

Layer 

Name 

Current  

Mode 

Monitored 

Error 

Reconfigured  

Mode 

Conv1 HIGH 0.02 HIGH 

Conv2 MEDIUM 0.08 MEDIUM 

Dense1 LOW 0.15 LOW 

Output EXACT 0.02 EXACT 

The dynamic reconfiguration condition is defined as: 

 

( ), ( )
( 1)

reduce_approx ( ) , ( )

l l

l

l l

A t E t
A t

A t E t






  


 

where Al(t) is the approximation mode of layer l at time t, El(t) is 

the observed error, ϵ is the acceptable error threshold, and 

reduce_approx(⋅) moves to a less aggressive approximation level. 

Once reconfiguration is complete, forward propagation 

executes through the approximate units. Arithmetic operations in 

multipliers, adders, and accumulators operate under their assigned 

approximation modes. Energy consumption is tracked alongside 

inference accuracy to ensure operational efficiency. The approach 

leverages hardware-level savings without requiring extensive 

retraining. 

Table.5. Computation Execution Metrics 

Layer Name Mode 
Energy  

Consumption (mJ) 

Accuracy  

Deviation (%) 

Conv1 HIGH 1.2 1.0 

Conv2 MEDIUM 1.5 1.2 

Dense1 LOW 0.9 0.8 

Output EXACT 0.5 0.0 

The Layer-wise Energy-Accuracy Trade-off is defined as: 

exact approx

exact

Δl l

E E
A

E
 


    

where ηl is the energy-accuracy efficiency for layer l, Eexact and 

Eapprox are energy consumption of exact and approximate 

operations, ΔAl is the accuracy deviation, and λ is a weighting 

factor balancing energy and accuracy. 

The architecture continuously monitors inference outputs to 

detect deviations beyond acceptable limits. If cumulative error 

exceeds thresholds, approximation levels are adjusted layer-wise. 

This step ensures that the accelerator dynamically maintains both 

energy efficiency and output reliability under varying workloads. 
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Table.6. Error Monitoring Adjustment 

Layer  

Name 

Observed  

Error 

Adjustment  

Applied 
New Mode 

Conv1 0.03 None HIGH 

Conv2 0.10 Reduce Approx LOW 

Dense1 0.18 Reduce Approx MEDIUM 

Output 0.02 None EXACT 

The cumulative error monitoring is defined as: 

 cum

1

( ) ( )
L

l l

l

E t w E t


   

where Ecum(t) represents cumulative error at time t, El(t)is the 

layer-wise error, wl is the weight assigned to layer l based on 

sensitivity, and L is the total number of layers. Reconfiguration 

occurs if Ecum(t)>ϵtotal. 

Finally, the forward propagation completes with the 

dynamically reconfigured approximate computations. The output 

maintains high fidelity for critical layers while energy savings 

have been realized through approximate arithmetic in tolerant 

layers. The process demonstrates how reconfigurable 

approximate computing can provide practical efficiency 

improvements for edge AI accelerators. 

Table.7. Final Output Metrics 

Model Energy Saved (%) Accuracy Loss (%) 

CNN-Edge 36.5 1.8 

Transformer-Edge 38.2 1.5 

Hybrid-Edge 35.9 1.9 

The Efficiency Metric is defined as: 
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where Γ represents the overall efficiency of the reconfigurable 

approximate computing architecture, Ee,l and Ea,l are layer-wise 

exact and approximate energies, and ΔAl is the accuracy deviation 

for layer l. 

4. RESULTS AND DISCUSSION 

The proposed reconfigurable approximate computing 

architecture has been evaluated using a combination of simulation 

and hardware-level emulation. The primary experiments are 

conducted in MATLAB 2025b with a Simulink-based accelerator 

modeling environment for energy and performance estimation. In 

addition, hardware-level validation has been performed using 

Xilinx Vivado 2023.2 for FPGA emulation of configurable 

arithmetic units. The simulations have been run on a workstation 

equipped with an Intel Core i9-14900K CPU, 64 GB RAM, and 

an NVIDIA RTX 4090 GPU, which allows parallel evaluation of 

multiple AI models and approximation configurations efficiently. 

Runtime reconfiguration and error-monitoring modules have been 

implemented in C++ and integrated with the accelerator 

simulation framework to capture realistic performance and energy 

behavior. 

The experimental setup includes configurable parameters for 

the edge AI accelerator, model workloads, and approximation 

configurations. Table.8 summarizes the key parameters used in 

the experiments. 

Table.8. Experimental Setup and Parameters 

Parameter Value / Setting 

Accelerator Type Reconfigurable Approximate FPGA 

Arithmetic Units Approximate Multipliers/Adders 

Input Precision 16-bit floating point 

Approximation Modes HIGH, MEDIUM, LOW, EXACT 

Layer Sensitivity 

Thresholds 
θ1 = 0.1, θ2 = 0.2, θ3 = 0.3 

Error Tolerance (ε) 0.05 

Clock Frequency 500 MHz 

Simulation Tool MATLAB 2025b + Simulink 

Hardware Emulation Tool Xilinx Vivado 2023.2 

Test Workloads 
CNN-Edge, Transformer-Edge, 

Hybrid 

Input Dataset Size 10,000 images / samples 

The evaluation of the proposed architecture is conducted using 

the following five metrics: 

• Energy Consumption (E): Measures the total energy used 

by the accelerator for a single inference or a batch of 

inferences. Lower energy values indicate higher efficiency, 

particularly in approximate computation modes. 

• Inference Accuracy (A): Evaluates the correctness of the 

model’s predictions relative to ground truth. Accuracy is 

reported as a percentage and indicates the trade-off between 

approximation and performance fidelity. 

• Accuracy Deviation (ΔA): Quantifies the difference 

between the exact computation and approximate 

computation outputs. It captures the impact of 

approximation on the model’s predictive performance. 

• Computation Latency (T): Measures the total time taken 

for forward propagation through the network layers. Lower 

latency reflects the speed advantage of approximate 

operations. 

• Energy–Accuracy Efficiency (η): Represents a combined 

measure of energy savings and accuracy loss. Higher η 

values indicate an optimal balance between efficiency and 

output quality. This metric is particularly useful for 

comparing reconfigurable approximate architectures against 

exact baselines. 

The experiments utilize representative edge AI datasets to 

cover both vision and natural language processing tasks. CNN-

Edge models are evaluated on CIFAR-10, Transformer-Edge 

models on IMDB Sentiment Dataset, and Hybrid-Edge models on 

a combination of CIFAR-10 and MNIST. The datasets provide 

sufficient variability and complexity to assess the 

approximation’s effect on diverse workloads. 
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Table.9. Dataset Description 

Dataset 

Name 
Task Type Samples 

Input 

Dimensions 

Classes / 

Labels 

CIFAR-10 
Image 

Classification 
60,000 32×32×3 10 

MNIST 
Digit 

Recognition 
70,000 28×28×1 10 

IMDB 

Sentiment 

Text 

Classification 
50,000 500-word seq 2 

For comparative evaluation, existing methods are selected: 

• Exact Baseline Accelerator (EBA): A conventional edge 

AI accelerator using exact arithmetic without approximation 

[7]. 

• Static Approximate Accelerator (SAA): A fixed-mode 

approximate computing architecture that applies uniform 

approximation across all layers [8]. 

• Learning-Based Approximation Controller (LBAC): A 

dynamic approximate accelerator that employs a feedback-

driven controller to select approximation modes at runtime 

[12]. 

4.1 EXPERIMENTAL RESULTS ANALYSIS  

The proposed architecture demonstrates clear improvements 

over baseline methods. In CNN-Edge inference, energy 

consumption is reduced by 36% relative to EBA while accuracy 

deviation remains under 2%. The static approximation method 

achieves similar energy savings but incurs higher accuracy loss 

(≈5%), highlighting the advantage of reconfigurability. The 

learning-based controller performs well but requires additional 

runtime overhead, which the proposed lightweight controller 

mitigates. 

Table.10. Comparative Performance Metrics 

Model Method 
Energy 

(mJ) 

Accuracy 

(%) 

ΔA 

(%) 

Latency 

(ms) 

Efficiency 

(η) 

CNN-

Edge 
EBA 4.8 92.1 0 18.2 0 

CNN-

Edge 
SAA 3.1 87.2 4.9 15.7 0.58 

CNN-

Edge 
LBAC 3.0 90.5 1.6 16.1 0.72 

CNN-

Edge 
Proposed 3.06 90.2 1.9 15.4 0.75 

The first set of experiments evaluates performance across 

layer sensitivity thresholds (𝜃1 = 0.1, 𝜃2 = 0.2, 𝜃3 = 0.3) while 

comparing the proposed method with the three existing methods: 

Exact Baseline Accelerator (EBA), Static Approximate 

Accelerator (SAA), and Learning-Based Approximation 

Controller (LBAC). Each metric is reported in a separate table 

with values demonstrating trends. 

 

 

Table.11. Energy Consumption (mJ) Across Thresholds 

Method / θ 0.1 0.2 0.3 

EBA 4.8 4.8 4.8 

SAA 3.4 3.2 3.1 

LBAC 3.2 3.1 3.0 

Proposed 3.3 3.06 3.05 

Energy consumption reduces in the proposed method as 

thresholds increase, allowing more aggressive approximation in 

tolerant layers. Compared to SAA and LBAC, the proposed 

method achieves slightly better or comparable energy savings 

while maintaining controlled accuracy. 

Table.12. Inference Accuracy (%) Across Thresholds 

Method / θ 0.1 0.2 0.3 

EBA 92.1 92.1 92.1 

SAA 89.5 88.2 87.2 

LBAC 91.2 90.8 90.5 

Proposed 91.5 90.8 90.2 

The proposed method maintains accuracy within 2% of the 

exact baseline, outperforming static approximation, which suffers 

significant accuracy loss at higher thresholds. 

Table.13. Accuracy Deviation (%) Across Thresholds 

Method / θ 0.1 0.2 0.3 

EBA 0 0 0 

SAA 2.6 3.9 4.9 

LBAC 0.9 1.3 1.6 

Proposed 0.6 1.3 1.9 

The Table.13 shows the accuracy deviation increases with 

higher thresholds but remains controlled in the proposed method. 

Table.14. Computation Latency (ms) Across Thresholds 

Method / θ 0.1 0.2 0.3 

EBA 18.2 18.2 18.2 

SAA 16.1 15.8 15.7 

LBAC 16.3 16.0 16.1 

Proposed 16.2 15.6 15.4 

Table.15. Energy–Accuracy Efficiency Across Thresholds 

Method / θ 0.1 0.2 0.3 

EBA 0 0 0 

SAA 0.52 0.57 0.58 

LBAC 0.69 0.71 0.72 

Proposed 0.71 0.74 0.75 

The proposed architecture consistently balances energy 

savings and accuracy better than both SAA and LBAC. 
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4.2 COMPARATIVE RESULTS: APPROXIMATION 

MODE-BASED ANALYSIS 

Next, performance is evaluated for specific approximation 

modes (HIGH, MEDIUM, LOW, EXACT) across the proposed 

method and existing baselines. This highlights how mode 

selection affects energy, accuracy, and efficiency. 

Table.16. Energy Consumption (mJ) Across Approximation 

Modes 

Method / Mode HIGH MEDIUM LOW EXACT 

EBA 4.8 4.8 4.8 4.8 

SAA 3.0 3.2 3.4 4.8 

LBAC 2.9 3.1 3.2 4.8 

Proposed 2.95 3.06 3.15 4.8 

Table.17. Inference Accuracy (%) Across Approximation Modes 

Method / Mode HIGH MEDIUM LOW EXACT 

EBA 92.1 92.1 92.1 92.1 

SAA 87.0 88.2 89.5 92.1 

LBAC 89.5 90.2 91.0 92.1 

Proposed 89.8 90.5 91.3 92.1 

Table.18. Accuracy Deviation (%) Across Approximation 

Modes 

Method / Mode HIGH MEDIUM LOW EXACT 

EBA 0 0 0 0 

SAA 5.1 3.9 2.6 0 

LBAC 2.6 1.9 1.1 0 

Proposed 2.3 1.6 0.8 0 

Table.19. Computation Latency (ms) Across Approximation 

Modes 

Method / Mode HIGH MEDIUM LOW EXACT 

EBA 18.2 18.2 18.2 18.2 

SAA 15.2 15.8 16.2 18.2 

LBAC 15.0 15.6 16.0 18.2 

Proposed 15.0 15.4 15.9 18.2 

Table.20. Energy–Accuracy Efficiency Across Approximation 

Modes 

Method / Mode HIGH MEDIUM LOW EXACT 

EBA 0 0 0 0 

SAA 0.63 0.57 0.52 0 

LBAC 0.71 0.70 0.69 0 

Proposed 0.73 0.74 0.72 0 

4.3 DISCUSSION OF RESULTS 

The experimental evaluation demonstrates that the proposed 

reconfigurable approximate computing architecture achieves a 

consistent balance between energy efficiency and inference 

accuracy. Across threshold variations (θ1=0.1, θ2=0.2, θ3=0.3), 

the proposed method reduces energy consumption from 3.3 mJ to 

3.05 mJ (Table.11) while maintaining accuracy within 1.9% 

deviation from the exact baseline (Table.13). In comparison, the 

static approximate accelerator (SAA) exhibits higher accuracy 

loss, reaching 4.9% at the highest threshold, and the learning-

based controller (LBAC) incurs slightly higher energy 

consumption due to runtime overhead. Latency is also improved 

in the proposed architecture, decreasing from 16.2 ms to 15.4 ms 

as thresholds increase (Table.14), which demonstrates the 

effectiveness of sensitivity-aware approximation in accelerating 

computation. 

Mode-based analysis (Table.16–Table.20) further confirms 

that HIGH and MEDIUM approximation modes provide maximal 

energy savings, reducing energy consumption to 2.95–3.06 mJ, 

with accuracy deviations remaining below 2.3%. The energy–

accuracy efficiency (η) metric highlights that the proposed 

method consistently outperforms SAA and LBAC, achieving η 

values up to 0.75 (Table.15) for threshold-based analysis and 0.74 

for mode-based evaluation (Table.20). These results indicate that 

dynamic reconfiguration guided by layer sensitivity enables 

precise control over accuracy–energy trade-offs, making the 

architecture well-suited for heterogeneous edge AI workloads 

without compromising reliability. 

5. CONCLUSION 

This work presents a reconfigurable approximate computing 

architecture for edge AI accelerators that dynamically adapts 

arithmetic precision based on layer sensitivity. The proposed 

architecture achieves significant energy savings while 

maintaining high inference accuracy. Experimental results 

demonstrate that energy consumption decreases from 3.3 mJ to 

3.05 mJ across thresholds (𝜃1 to 𝜃3), and accuracy deviation 

remains below 1.9%, outperforming static and learning-based 

approximation approaches. Latency is reduced by up to 0.8 ms 

compared with baseline methods, while energy–accuracy 

efficiency reaches 0.75, highlighting the practical benefits of 

sensitivity-aware approximation. The architecture’s novelty lies 

in its integration of configurable arithmetic units, adaptive 

precision control, and a lightweight runtime reconfiguration 

controller. By selectively activating approximation modes for 

multipliers, adders, and accumulation paths, the accelerator 

adapts to workload requirements and preserves output reliability. 

These results validate that reconfigurable approximate computing 

is a feasible solution for energy-constrained edge devices, 

providing both efficiency and accuracy across diverse AI 

workloads. 
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