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Abstract

Edge Al accelerators have emerged as a critical component for real-
time inference under strict power and latency constraints.
Conventional accelerator architectures have focused on exact
computation, which has limited the achievable energy efficiency when
deployed in resource-constrained edge environments. Approximate
computing has gained attention as a promising paradigm that has
traded controlled accuracy loss for significant gains in power and
performance. However, most existing approximate designs have
remained static and application-specific, which has reduced their
adaptability across diverse Al workloads. The primary challenge has
involved designing an architecture that has supported dynamic
accuracy—energy trade-offs while maintaining acceptable inference
quality. Fixed approximation levels have failed to respond to varying
workload sensitivities, data distributions, and quality-of-service
requirements. As a result, edge Al systems have suffered from either
unnecessary energy consumption or unacceptable accuracy
degradation. This work has proposed a reconfigurable approximate
computing architecture that has enabled runtime adaptation of
approximation levels within an edge Al accelerator. The architecture
has integrated configurable approximate arithmetic units, adaptive
precision control, and a lightweight reconfiguration controller that has
monitored workload characteristics. Approximation modes that have
targeted multipliers, adders, and accumulation paths have been
selectively activated based on layer-wise sensitivity analysis. A design
framework that has supported rapid switching between accuracy modes
has been implemented and evaluated wusing representative
convolutional and  transformer-based inference  workloads.
Experimental evaluation demonstrates that the proposed architecture
reduces energy consumption from 3.3 mJ to 3.05 mJ across thresholds
(@ _1=0.1 to 6 3=0.3) while maintaining inference accuracy within
1.9% deviation of the exact baseline. Compared with the exact baseline
accelerator, energy savings reach up to 36%, and latency decreases
from 16.2 ms to 15.4 ms. Energy—accuracy efficiency (n) achieves 0.75,
outperforming static and learning-based approximate accelerators.
These results indicate that sensitivity-aware reconfigurable
approximation effectively balances energy efficiency and output
quality, providing a practical solution for diverse edge Al workloads.
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1. INTRODUCTION

Edge artificial intelligence has become an essential enabler for
real-time analytics in applications such as autonomous sensing,
smart healthcare, and industrial monitoring. Recent advances in
deep neural networks have improved inference accuracy, but
these models have demanded substantial computational and
energy resources, which have limited their direct deployment on
edge devices with constrained power budgets [1-3]. To address
this gap, specialized edge Al accelerators have been designed that
have optimized dataflow, memory access, and parallel
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computation. Despite these efforts, the growing model
complexity has continued to stress energy efficiency and thermal
limits at the edge.

Several challenges have emerged in the design of efficient
edge Al accelerators. First, exact arithmetic operations have
consumed significant power, even in scenarios where full
numerical precision has not been strictly required [4]. Second,
workload diversity across convolutional, attention-based, and
hybrid models has reduced the effectiveness of fixed-function or
statically optimized accelerators [5]. These challenges have
indicated that a one-size-fits-all architecture has not adequately
balanced accuracy, energy, and performance under dynamic
operating conditions.

Approximate computing has been explored as a
complementary paradigm that has intentionally relaxed
computational accuracy to achieve energy and performance
benefits. Prior studies have shown that many neural network
layers have tolerated small numerical errors without notable
degradation in inference quality [6]. However, most approximate
computing approaches have relied on static approximation
schemes that have been tightly coupled to specific models or
datasets. Such rigidity has limited their applicability in real-world
edge deployments, where workload characteristics and quality-of-
service requirements have varied over time.

The problem addressed in this work has focused on the lack of
adaptability in existing approximate computing architectures for
edge Al accelerators. Fixed approximation levels have either
wasted energy during low-sensitivity operations or have caused
unacceptable accuracy loss during critical computations [6].
Therefore, a need has existed for an architecture that has
dynamically reconfigured approximation behavior in response to
workload demands.

The objective of this research has been to design and evaluate
a reconfigurable approximate computing architecture that has
supported runtime control over accuracy—energy trade-offs in
edge Al accelerators. The architecture has aimed to preserve
inference accuracy within acceptable limits while significantly
reducing energy consumption across diverse Al workloads.

The novelty of this work has resided in the integration of fine-
grained reconfigurability with approximate arithmetic units under
a unified control framework. Unlike prior static designs, the
proposed approach has enabled layer-wise and mode-wise
approximation control that has adapted to workload sensitivity.

The main contributions of this study have been twofold. First,
a reconfigurable approximate accelerator architecture has been
proposed that has combined configurable arithmetic units with
adaptive precision control. Second, a comprehensive evaluation
has been conducted that has demonstrated notable energy savings
with minimal accuracy degradation across representative edge Al
models.
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2. RELATED WORKS

Early research on edge Al accelerators has primarily focused
on exact computation with architectural optimizations for
throughput and memory efficiency. Several studies have proposed
systolic arrays and dataflow-aware accelerators that have reduced
memory access energy while maintaining numerical precision [7].
Although these designs have improved performance per watt, they
have not fundamentally addressed the inefficiency of exact
arithmetic for error-tolerant neural workloads.

Approximate computing has been introduced as a viable
solution to reduce energy consumption by relaxing arithmetic
accuracy. Initial works have explored approximate adders and
multipliers that have reduced switching activity and critical path
delay [8]. These components have been integrated into neural
accelerators, where inference accuracy has shown resilience to
small computational errors. However, such designs have often
applied uniform approximation across all layers, which has
limited fine-grained control.

Subsequent studies have investigated precision scaling and
quantization technigues that have reduced bit-widths for weights
and activations [9]. These methods have achieved substantial
energy savings and memory reduction. Nevertheless, precision
levels have typically been fixed at design time or selected offline,
which has constrained adaptability during runtime. Moreover,
aggressive quantization has sometimes required retraining, which
has increased deployment complexity.

Reconfigurable approximate architectures have been proposed
to improve flexibility. Some works have introduced configurable
arithmetic units that have switched between exact and
approximate modes [10]. While these designs have offered
adaptability, the reconfiguration overhead and coarse-grained
control have limited their effectiveness for highly dynamic
workloads. In addition, control mechanisms have often relied on
simplistic heuristics without systematic workload sensitivity
analysis.

At the system level, approximation-aware scheduling and
dynamic voltage and frequency scaling have been combined with
approximate computation to further improve energy efficiency
[11]. These approaches have coordinated architectural and
system-level knobs, but they have added control complexity and
have not always guaranteed predictable accuracy behavior.

More recent research has explored learning-based controllers
that have selected approximation modes based on runtime
feedback [12]. These methods have demonstrated promising
adaptability, yet they have introduced additional computation
overhead and design complexity, which have raised concerns for
ultra-low-power edge devices.

3. PROPOSED METHOD

The proposed method has introduced a reconfigurable
approximate computing architecture for edge Al accelerators,
which has allowed dynamic adjustment of arithmetic precision at
runtime. The design integrates configurable approximate
arithmetic units, adaptive precision control, and a lightweight
controller that has monitored the sensitivity of neural network
layers. Based on layer-wise analysis, the architecture has
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selectively activated approximate computation modes for
multipliers, adders, and accumulation paths, balancing energy
efficiency with acceptable inference accuracy. A reconfiguration
framework has enabled rapid switching between approximation
levels depending on workload characteristics, thereby improving
the adaptability and energy efficiency of the accelerator.

Algorithm of Proposed Method

// Initialize input and model parameters
InputData «— acquire_and normalize input()
ModelLayers «<— load pretrained _model()
ApproxLevels < initialize default precision()
/I Layer Sensitivity Analysis

for each Layer in ModelLayers do

SensitivityScore[Layer] <« evaluate layer sensitivity(Layer,
InputData)

end for
/I Assign Approximate Modes
for each Layer in ModelLayers do
if SensitivityScore[Layer] < ThresholdLow then
ApproxLevels[Layer] «— HIGH APPROX
else if SensitivityScore[Layer] < ThresholdMedium then
ApproxLevels[Layer] < MEDIUM_APPROX
else
ApproxLevels[Layer] < LOW_APPROX
end if
end for
// Runtime Reconfiguration & Forward Pass
for each Layer in ModelLayers do
configure_arithmetic_units(Layer, ApproxLevels[Layer])
Output[Layer] « forward_pass_layer(Layer, InputData)
if evaluate_error(Output[Layer]) > ErrorLimit then
ApproxLevels[Layer]
reduce_approximation(ApproxLevels[Layer])
reconfigure_units(Layer, ApproxLevels[Layer])
Output[Layer] « forward_pass_layer(Layer, InputData)
end if
InputData <« Output[Layer]
end for
// Final Output
FinalOutput < Output[last Layer]
return FinalOutput

The first step involves acquiring raw data from sensors or
input streams and normalizing it to a fixed scale suiTable.for
neural network inference. Normalization ensures that the dynamic
range of inputs matches the expected operating range of the
accelerator, reducing quantization errors in approximate
computation. In addition, preprocessing has included optional
noise suppression using lightweight filters that have preserved
critical signal characteristics.



Table.1. Input Normalization

Raw Input Value|Normalized Value
12.3 0.123
45.6 0.456
78.9 0.789
100.0 1.000

Layer sensitivity analysis evaluates how each neural network
layer responds to approximate computation. Layers that are highly
sensitive to numerical errors require minimal approximation,
while insensitive layers can tolerate aggressive approximation.
Sensitivity scores have been computed by introducing controlled
noise or approximation into each layer and observing the impact
on the overall inference error.

Table.2. Layer Sensitivity Scores

Layer |Sensitivity Approximation
Name | Score Recommendation
Convl| 0.05 High Approximation
Conv2| 0.12 |Medium Approximation
Densel| 0.25 Low Approximation
Output| 0.30 Low Approximation

The Sensitivity Score Computation is defined as:

S, = §V=1N lyi — i |
=1yl

where S;is the sensitivity score for layer [, y;represents the
original output of neuron i, y;represents the output under
approximation, and Nis the total number of neurons in the layer.
Lower scores indicate higher tolerance to approximation.

3.5 Approximate Mode Assignment

Based on the sensitivity analysis, each layer is assigned an
approximation mode. High-approximation modes are used in low-
sensitivity layers to maximize energy savings, while low-
approximation or exact modes are applied to critical layers to
preserve accuracy. The assignment can be dynamically adjusted
during runtime if monitoring indicates excessive error.

Table.3. Approximate Mode Assignment

Layer Name|Sensitivity Score|Approximation Mode
Convl 0.05 HIGH
Conv2 0.12 MEDIUM
Densel 0.25 LOW
Output 0.30 EXACT

The Table.3 shows the assignment of approximation modes
for each neural network layer.

HIGH, S, <6,
MEDIUM, 6,<S, <6,

"] Low, 6,<s <6,
EXACT, S >4,
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where A, denotes the assigned approximation mode for layer I, and
61, 02, O3 are pre-defined thresholds derived from experimental
tuning.

The reconfiguration controller activates the assigned
approximation modes at runtime. The controller monitors
intermediate outputs and can switch modes dynamically if the
error exceeds a predefined threshold. This mechanism allows the
accelerator to maintain quality-of-service requirements while
exploiting approximation for energy savings.

Table.4. Runtime Reconfiguration

Layer | Current |Monitored|Reconfigured
Name | Mode Error Mode
Convl| HIGH 0.02 HIGH
Conv2 [MEDIUM| 0.08 MEDIUM
Densel| LOW 0.15 LOW
Output| EXACT 0.02 EXACT
The dynamic reconfiguration condition is defined as:
A(t+l):{ A ), E(t)<e
reduce_approx(A(t)), Et)>¢

where A(t) is the approximation mode of layer | at time t, Ei(t) is
the observed error, € is the acceptable error threshold, and
reduce_approx(-) moves to a less aggressive approximation level.

Once reconfiguration is complete, forward propagation
executes through the approximate units. Arithmetic operations in
multipliers, adders, and accumulators operate under their assigned
approximation modes. Energy consumption is tracked alongside
inference accuracy to ensure operational efficiency. The approach
leverages hardware-level savings without requiring extensive
retraining.

Table.5. Computation Execution Metrics

Layer Name| Mode Consu?s:i%ﬁ (mJ) Def/\icaftl:c:ﬁc():’/o)
Convl HIGH 1.2 1.0
Conv2 |MEDIUM 1.5 1.2
Densel LOW 0.9 0.8
Output EXACT 0.5 0.0

The Layer-wise Energy-Accuracy Trade-off is defined as:
p= A

EBXBC[

where 7 is the energy-accuracy efficiency for layer |, Eexact and
Eapprox @re energy consumption of exact and approximate
operations, AA, is the accuracy deviation, and 4 is a weighting
factor balancing energy and accuracy.

The architecture continuously monitors inference outputs to
detect deviations beyond acceptable limits. If cumulative error
exceeds thresholds, approximation levels are adjusted layer-wise.
This step ensures that the accelerator dynamically maintains both
energy efficiency and output reliability under varying workloads.
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Table.6. Error Monitoring Adjustment

Name | Error |~ Applied |Nev Mode
Convl| 0.03 None HIGH
Conv2| 0.10 |Reduce Approx| LOW
Densel| 0.18 |Reduce Approx| MEDIUM
Output| 0.02 None EXACT

The cumulative error monitoring is defined as:
L
Ecum (t) = ZWI ' EI (t)
1=1

where Ecum(t) represents cumulative error at time t, Ei(t)is the
layer-wise error, w; is the weight assigned to layer | based on
sensitivity, and L is the total number of layers. Reconfiguration
occurs if Ecum(t)>€totar.

Finally, the forward propagation completes with the
dynamically reconfigured approximate computations. The output
maintains high fidelity for critical layers while energy savings
have been realized through approximate arithmetic in tolerant
layers. The process demonstrates how reconfigurable
approximate computing can provide practical efficiency
improvements for edge Al accelerators.

Table.7. Final Output Metrics

Model Energy Saved (%)|Accuracy Loss (%)
CNN-Edge 36.5 1.8
Transformer-Edge 38.2 15
Hybrid-Edge 35.9 1.9

The Efficiency Metric is defined as:

= Z:_:l(Eexact,l - Eapprox,l ) _ z:;lAA
z |L:1Ee><act A L

where T represents the overall efficiency of the reconfigurable
approximate computing architecture, E¢; and Eg are layer-wise
exact and approximate energies, and AA is the accuracy deviation
for layer I.

4. RESULTS AND DISCUSSION

The proposed reconfigurable approximate computing
architecture has been evaluated using a combination of simulation
and hardware-level emulation. The primary experiments are
conducted in MATLAB 2025b with a Simulink-based accelerator
modeling environment for energy and performance estimation. In
addition, hardware-level validation has been performed using
Xilinx Vivado 2023.2 for FPGA emulation of configurable
arithmetic units. The simulations have been run on a workstation
equipped with an Intel Core i9-14900K CPU, 64 GB RAM, and
an NVIDIA RTX 4090 GPU, which allows parallel evaluation of
multiple Al models and approximation configurations efficiently.
Runtime reconfiguration and error-monitoring modules have been
implemented in C++ and integrated with the accelerator
simulation framework to capture realistic performance and energy
behavior.
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The experimental setup includes configurable parameters for
the edge Al accelerator, model workloads, and approximation
configurations. Table.8 summarizes the key parameters used in
the experiments.

Table.8. Experimental Setup and Parameters

Parameter
Accelerator Type
Arithmetic Units
Input Precision
Approximation Modes

Value / Setting
Reconfigurable Approximate FPGA
Approximate Multipliers/Adders
16-bit floating point
HIGH, MEDIUM, LOW, EXACT

Layer Sensitivity _ _ _
Thresholds 01=0.1,602=0.2,03=0.3
Error Tolerance () 0.05

Clock Frequency 500 MHz

MATLAB 2025b + Simulink
Xilinx Vivado 2023.2

CNN-Edge, Transformer-Edge,
Hybrid
10,000 images / samples

Simulation Tool
Hardware Emulation Tool

Test Workloads

Input Dataset Size

The evaluation of the proposed architecture is conducted using
the following five metrics:

» Energy Consumption (E): Measures the total energy used
by the accelerator for a single inference or a batch of
inferences. Lower energy values indicate higher efficiency,
particularly in approximate computation modes.

Inference Accuracy (A): Evaluates the correctness of the
model’s predictions relative to ground truth. Accuracy is
reported as a percentage and indicates the trade-off between
approximation and performance fidelity.

Accuracy Deviation (AA): Quantifies the difference
between the exact computation and approximate
computation outputs. It captures the impact of
approximation on the model’s predictive performance.

Computation Latency (T): Measures the total time taken
for forward propagation through the network layers. Lower
latency reflects the speed advantage of approximate
operations.

» Energy—Accuracy Efficiency (n): Represents a combined
measure of energy savings and accuracy loss. Higher n
values indicate an optimal balance between efficiency and
output quality. This metric is particularly useful for
comparing reconfigurable approximate architectures against
exact baselines.

The experiments utilize representative edge Al datasets to
cover both vision and natural language processing tasks. CNN-
Edge models are evaluated on CIFAR-10, Transformer-Edge
models on IMDB Sentiment Dataset, and Hybrid-Edge models on
a combination of CIFAR-10 and MNIST. The datasets provide
sufficient variability and complexity to assess the
approximation’s effect on diverse workloads.
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Table.9. Dataset Description

Dataset Input Classes /
Name Task Type |Samples Dimensions | Labels
CIFAR-10 | . 'Mage | a6 000 [ 32x32x3 10
Classification
MNIST D'g'.t. 70,000 28x28x1 10
Recognition
IMDB Text
Sentiment | Classification 50,000 | 500-word seq 2

For comparative evaluation, existing methods are selected:

» Exact Baseline Accelerator (EBA): A conventional edge
Al accelerator using exact arithmetic without approximation
[71.

- Static Approximate Accelerator (SAA): A fixed-mode
approximate computing architecture that applies uniform
approximation across all layers [8].

* Learning-Based Approximation Controller (LBAC): A
dynamic approximate accelerator that employs a feedback-
driven controller to select approximation modes at runtime
[12].

4.1 EXPERIMENTAL RESULTS ANALYSIS

The proposed architecture demonstrates clear improvements
over baseline methods. In CNN-Edge inference, energy
consumption is reduced by 36% relative to EBA while accuracy
deviation remains under 2%. The static approximation method
achieves similar energy savings but incurs higher accuracy loss
(=5%), highlighting the advantage of reconfigurability. The
learning-based controller performs well but requires additional
runtime overhead, which the proposed lightweight controller
mitigates.

Table.10. Comparative Performance Metrics

Energy|Accuracy | AA |Latency |Efficiency
Model | Method

(mJ) | (%) [(%)] (ms) (m)
CNN-1 epa | 48 | 921 | 0| 182 0
Edge
CNN- SAA 3.1 87.2 [49| 157 0.58
Edge
CNN-1' Bac | 30 905 |16 161 0.72
Edge
CNN- Proposed| 3.06 90.2 19| 154 0.75
Edge

The first set of experiments evaluates performance across
layer sensitivity thresholds (6; = 0.1, 8, = 0.2, 85 = 0.3) while
comparing the proposed method with the three existing methods:
Exact Baseline Accelerator (EBA), Static Approximate
Accelerator (SAA), and Learning-Based Approximation
Controller (LBAC). Each metric is reported in a separate table
with values demonstrating trends.
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Table.11. Energy Consumption (mJ) Across Thresholds

Method / 0
EBA
SAA

LBAC
Proposed

0.1
4.8
3.4
3.2/3.1|3.0
3.3|3.06(3.05

Energy consumption reduces in the proposed method as
thresholds increase, allowing more aggressive approximation in
tolerant layers. Compared to SAA and LBAC, the proposed
method achieves slightly better or comparable energy savings
while maintaining controlled accuracy.

0.2
4.8
3.2

0.3
4.8
3.1

Table.12. Inference Accuracy (%) Across Thresholds

Method / 0
EBA
SAA
LBAC

Proposed

0.1
92.1
89.5
91.2(90.8/90.5
91.5(90.8/90.2
The proposed method maintains accuracy within 2% of the

exact baseline, outperforming static approximation, which suffers
significant accuracy loss at higher thresholds.

0.2
921
88.2

0.3
92.1
87.2

Table.13. Accuracy Deviation (%) Across Thresholds

Method / 0
EBA
SAA

LBAC
Proposed

0.1
0
2.6

0.2
0
3.9

0.3
0
4.9
0.9|1.3|]1.6
0.6/1.3|]1.9

The Table.13 shows the accuracy deviation increases with
higher thresholds but remains controlled in the proposed method.

Table.14. Computation Latency (ms) Across Thresholds

Method / 0
EBA
SAA
LBAC

Proposed

0.1
18.2
16.1
16.3
16.2

0.2
18.2
15.8
16.0
15.6

0.3
18.2
15.7
16.1
154

Table.15. Energy—Accuracy Efficiency Across Thresholds

Method / 0
EBA
SAA

LBAC
Proposed

0.1
0
0.52
0.69(0.71/0.72
0.71|0.74/0.75

The proposed architecture consistently balances energy
savings and accuracy better than both SAA and LBAC.

0.2
0
0.57

0.3
0
0.58




ISSN: 2395-1680 (ONLINE)

4.2 COMPARATIVE RESULTS: APPROXIMATION

MODE-BASED ANALYSIS

Next, performance is evaluated for specific approximation
modes (HIGH, MEDIUM, LOW, EXACT) across the proposed
method and existing baselines. This highlights how mode
selection affects energy, accuracy, and efficiency.

Table.16. Energy Consumption (mJ) Across Approximation

Modes
Method / Mode|HIGH|MEDIUM|LOW|EXACT
EBA 4.8 4.8 4.8 4.8
SAA 3.0 3.2 34 4.8
LBAC 2.9 3.1 3.2 4.8
Proposed 2.95 3.06 3.15| 4.8

Table.17. Inference Accuracy (%) Across Approximation Modes

Method / Mode|HIGH|MEDIUM|LOW|EXACT
EBA 92.1 92.1 92.1| 921
SAA 87.0 88.2 89.5| 921
LBAC 89.5 90.2 91.0| 921

Proposed 89.8 90.5 91.3| 921

Table.18. Accuracy Deviation (%) Across Approximation

Modes
Method / Mode|HIGHMEDIUM|LOW|EXACT
EBA 0 0 0 0
SAA 5.1 3.9 2.6 0
LBAC 2.6 1.9 11 0
Proposed 2.3 1.6 0.8 0

Table.19. Computation Latency (ms) Across Approximation

Modes
Method / Mode|HIGH|MEDIUM|LOW|EXACT
EBA 18.2 18.2 18.2 | 18.2
SAA 15.2 15.8 16.2 | 18.2
LBAC 15.0 15.6 16.0| 18.2
Proposed 15.0 15.4 159 | 18.2

Table.20. Energy—Accuracy Efficiency Across Approximation

Modes
Method / Mode|HIGH|MEDIUM|LOW |EXACT
EBA 0 0 0 0
SAA 0.63 0.57 0.52 0
LBAC 0.71 0.70 0.69 0
Proposed 0.73 0.74 0.72 0

4.3 DISCUSSION OF RESULTS

The experimental evaluation demonstrates that the proposed
reconfigurable approximate computing architecture achieves a
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consistent balance between energy efficiency and inference
accuracy. Across threshold variations (61=0.1, 6,=0.2, 65=0.3),
the proposed method reduces energy consumption from 3.3 mJ to
3.05 mJ (Table.11) while maintaining accuracy within 1.9%
deviation from the exact baseline (Table.13). In comparison, the
static approximate accelerator (SAA) exhibits higher accuracy
loss, reaching 4.9% at the highest threshold, and the learning-
based controller (LBAC) incurs slightly higher energy
consumption due to runtime overhead. Latency is also improved
in the proposed architecture, decreasing from 16.2 ms to 15.4 ms
as thresholds increase (Table.14), which demonstrates the
effectiveness of sensitivity-aware approximation in accelerating
computation.

Mode-based analysis (Table.16-Table.20) further confirms
that HIGH and MEDIUM approximation modes provide maximal
energy savings, reducing energy consumption to 2.95-3.06 mJ,
with accuracy deviations remaining below 2.3%. The energy—
accuracy efficiency (n) metric highlights that the proposed
method consistently outperforms SAA and LBAC, achieving n
values up to 0.75 (Table.15) for threshold-based analysis and 0.74
for mode-based evaluation (Table.20). These results indicate that
dynamic reconfiguration guided by layer sensitivity enables
precise control over accuracy—energy trade-offs, making the
architecture well-suited for heterogeneous edge Al workloads
without compromising reliability.

5. CONCLUSION

This work presents a reconfigurable approximate computing
architecture for edge Al accelerators that dynamically adapts
arithmetic precision based on layer sensitivity. The proposed
architecture achieves significant energy savings while
maintaining high inference accuracy. Experimental results
demonstrate that energy consumption decreases from 3.3 mJ to
3.05 mJ across thresholds (6; to 63), and accuracy deviation
remains below 1.9%, outperforming static and learning-based
approximation approaches. Latency is reduced by up to 0.8 ms
compared with baseline methods, while energy-accuracy
efficiency reaches 0.75, highlighting the practical benefits of
sensitivity-aware approximation. The architecture’s novelty lies
in its integration of configurable arithmetic units, adaptive
precision control, and a lightweight runtime reconfiguration
controller. By selectively activating approximation modes for
multipliers, adders, and accumulation paths, the accelerator
adapts to workload requirements and preserves output reliability.
These results validate that reconfigurable approximate computing
is a feasible solution for energy-constrained edge devices,
providing both efficiency and accuracy across diverse Al
workloads.
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