ISSN: 2395-1680 (ONLINE)
DOI: 10.21917/ijme.2026.0373

ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2026, VOLUME: 11, ISSUE: 04

RECONFIGURABLE NEURAL NETWORK ON FPGA

Shyam Peraka, Venkatesh Mone, Sri Valli Gaddam and Manogna Annangi

Department of Electronics and Communication Engineering, Rajiv Gandhi University of Knowledge Technologies, India

Abstract

This paper presents a comprehensive methodology for transferring a
Sfour-layer feed-forward neural network, trained on the MNIST dataset,
to a Xilinx Zynq-7000 System on Chip (SoC). The pretrained
parameters are transformed into custom hardware modules optimized
for on-chip memory using the Zynet framework. A lightweight software
routine oversees AXI-DMA transfers and the collection of results
through interrupts. The synthesized network layers and data transfer
engines are integrated within the programmable logic fabric, while the
ARM Cortex-A9 core manages task sequencing, data validation, and
user interaction. Hardware-in-the-loop testing conducted on a Zed
board demonstrates that the hardware implementation achieves
classification accuracy comparable to software references, rapid
inference speed, and minimal processor overhead. The real-time serial
output of predictions against ground-truth labels facilitates immediate
verification and effective debugging. This paper exemplifies the
effectiveness of hardware—software co-design in creating compact and
energy-efficient neural inference systems.

Keywords:

Feed-Forward Neural Network, FPGA Deployment,
Framework, Hardware—Software Co-Design

Zynet

1. INTRODUCTION

The recent acceleration of deep learning has significantly
altered how machines learn to identify and react to intricate data.
Among its many accomplishments, automatic handwriting
character recognition stands out as a practical and educational
benchmark in pattern recognition research [1]. [2]Handwritten
digit recognition not only aids in tasks such as document
scanning, postal-code sorting, and form processing, but also
serves as a compact platform for exploring network architectures,
training techniques, and deployment strategies. However,
transferring a trained neural model from a high-level software
development environment to a resource-constrained, real-time
hardware platform such as an FPGA poses significant challenges
regarding data accuracy, memory architecture, and computational
parallelism.

The Modified National Institute of Standards and Technology
(MNIST) dataset is one of the most widely used collections for
evaluating handwritten digit classification algorithms. [3],
[4]Comprising 60,000 training images and 10,000 test images,
each represented as a 28 X 28 grayscale pixel matrix, MNIST
offers a well-established, canonical test that balances simplicity
with enough variation to challenge both accuracy and
generalization. By normalizing pixel values and providing well-
defined samples for ten digit classes (0 to 9), MNIST enables
rapid prototyping of network architectures and facilitates
comparisons among different quantization methods, activation
functions, and layer configurations, all within a unified
experimental framework.

Zynet is a framework based on Python designed for hardware
generation, aimed at bridging the gap between high-level

2221

specifications of neural networks and synthesizable designs for
FPGAs. It automates the generation of parameterized IP cores by
utilizing pretrained weight and bias files, converting arithmetic
operations into fixed-point formats, and instantiating the required
BRAMs and processing elements within a Vivado project. The
framework’s built-in support for layerwise modularization,
hardmax functions, and AXI-Lite/AXI-Stream interfaces greatly
reduces the necessity for low-level HDL coding, enabling
designers to focus on optimizing the network instead of dealing
with intricate hardware details. This makes Zynet ideally suited
for our project, as it streamlines the entire process from Python-
based training to the generation of FPGA bitstreams.

Our project aimed to demonstrate that a moderately deep
neural network, trained on a standard benchmark like MNIST, can
be effectively mapped to a mid-range Zynq-7000 FPGA without
sacrificing accuracy or resource constraints [5]. By leveraging
Zynet’s [IP-core generation alongside Vivado’s synthesis
capabilities, we aimed to implement a four-layer feed-forward
network (with neuron counts of 784, 30, 20, and 10) using fixed-
point arithmetic, ensuring functional correctness through
simulation and hardware-in-the-loop testing, and gathering real-
world performance metrics such as classification accuracy,
resource usage, operating frequency, and power consumption.
Ultimately, this initiative illustrates how reconfigurable platforms
can support compact, high-throughput neural inference engines
suitable for embedded and edge computing applications.

2. METHODOLOGY

2.1 WEIGHTS AND BIASES EXTRACTION

We employed the TensorFlow library to train a feed-forward
neural network using the MNIST dataset, thereby automatically
identifying its learned parameters [6], [7]. The procedure
commences with the loading of the standard MNIST training and
testing datasets, followed by a row-wise normalization that
rescales pixel values to a range between 0 and 1. Subsequently, a
Sequential model is established, beginning with a flatten layer,
and is succeeded by two hidden dense layers containing 30 and 20
neurons, respectively, which may utilize either ReLU or sigmoid
as the activation function [8], [9]. The model concludes with one
dense output layer, comprising 10 neurons, employing ReLU or
sigmoid activation to represent the ten digit classes [10]. After
compiling the network with the Adam optimizer and sparse
categorical cross-entropy loss, training is conducted for 20
epochs. Upon completion, the model’s performance is evaluated
on the test set, and the script iterates through each dense layer
(excluding the flatten layer) to extract weight matrices and bias
vectors. These parameters are then translated as necessary,
serialized in JSON format, and written to an external text file for
subsequent hardware mapping and analysis.

SHYAM PERAKA et al.: RECONFIGURABLE NEURAL NETWORK ON FPGA

2.2 ZYNET-DRIVEN IP CORE

The specified network parameters are integrated into the Zynet
Python platform to construct hardware systems [11]. The
framework’s model-building capability utilizes weights and
biases sourced from an external parameter file, with the pretrained
flag set to ‘yes’ by default, ensuring their utilization rather than
random initialization (if absent or set to ‘no,” the model will be
constructed without the loaded parameters). Before executing the
script, it is essential to accurately configure the path to the Xilinx
Vivado installation directory within the system environment to
ensure successful execution of project-creation commands. A
hardmax operation is performed in the final stage to derive the
ultimate class outputs in hardware, resulting in a one-hot encoding
of the neuron outputs that streamlines digital decision logic and
minimizes resource usage. When invoking the Zynet project-
creation API, an FPGA device identifier is provided to ensure
compatibility of the created hardware with the target platform’s
structure. Furthermore, a descriptive project name is submitted to
Vivado, facilitating easy identification and management within
the toolset. After the project setup, the [P-generation API is called
to produce the necessary cores. Finally, the system-generation
API assigns a user-defined name to the top-level block design,
simplifying its integration into higher-level designs and
subsequent maintenance.

Within the established Vivado project, each pre-trained
parameter is supplied as an individual Memory Initialization File
(MIF), facilitating the automatic population of on-chip memories
during the configuration process. As shown in Fig.1, files prefixed
with ‘w’ denote weight values, while those prefixed with ‘b’
indicate bias terms; the subsequent numeric identifiers correspond
to the layer index and neuron index (both starting from zero),
establishing a direct relationship between each MIF and its
respective BRAM or distributed memory instance [12]. During
synthesis and implementation, these MIFs are specified in the
memory IP configuration dialogs, ensuring that when the FPGA
bitstream is loaded, all weights and biases are positioned in their
designated memory blocks without additional run-time transfers.
This organized approach not only enhances parameter
management by categorizing all trained values into descriptive
files but also guarantees that the hardware is equipped with the
exact numeric model acquired during the training phase.

b_3_5.mif
b_3_6.mif
b_3_7.mif
b_3_8.mif
b_3_9.mif
w_1_0.mif
w_1_1.mif
w_1_10.mif
w_1_11.mif
w_1_12.mif

Fig.1. Memory Initialization Files

Executing this script also generates a Vivado project alongside
an AXI-Lite wrapper interface; this wrapper serves as a low-
latency, register-mapped connection between the neural network
IP and the processing system, facilitating efficient parameter
updates and status monitoring. Further, the implementation

2222

organizes all resulting design artifacts in a systematic folder
structure, promoting effective management of files throughout the
development and deployment processes.

2.3 VIVADO SIMULATION SETUP

A Python script is executed to generate fixed-point test vectors
for each of the 10,000 images in the MNIST test set. The script
quantizes each pixel value into two’s-complement format at
runtime and produces these integer values in a C-style header file
for direct memory initialization within the hardware
Concurrently, two distinct plain-text files are created: one
containing the visualized binary matrices for each digit, which is
human-readable, and another containing the raw test data
sequences intended for use in the Vivado project’s testbench
simulation.

We transition from project generation to functional
verification through simulation within the Vivado environment.
As a simulation folder does not exist at this stage, starting the
simulation task in Vivado will automatically create a ‘simulation’
directory at the project’s root. We place our raw test vectors—
sequences of normalized MNIST-style pixel data formatted for
the Vivado testbench—into this directory. Subsequently, we
configure the testbench to receive these inputs and appropriately
drive the neural-network IP core. After combining the stimuli, we
execute the simulation, monitoring output waveforms and log
files. The simulation log enumerates each test case by index and
provides recognition accuracy along with the detected digit and
its expected counterpart; entries such as ‘Accuracy, Detected
number, Expected’ are displayed for each pattern. Ultimately, a
summary line presents the overall accuracy across all test
sequences. These comprehensive logs confirm that the
synthesized hardware accurately reflects the trained network and
assess its performance before hardware prototyping.

We finalize the top-level block design by generating an HDL
wrapper that exposes its I/O ports for use by subsequent tools.
Utilizing Vivado’s ‘Create HDL Wrapper’ command, we
automatically produce a wrapper file around the previously
developed user-named block design. Once the wrapper is in place,
we proceed to synthesis, where the design is transformed into an
optimized gate-level netlist tailored for our target FPGA.
Following synthesis, the implementation phase executes the
placement and routing processes, applying the netlist to the
physical resources of the device. After routing is complete,
Vivado generates the configuration bitstream that encompasses
the fully routed design. The next step involves exporting the
hardware definition, which includes the bitstream and hardware
handoff files, to the Xilinx SDK. Finally, we launch the SDK,
enabling software development to commence on the newly
provisioned hardware platform, thereby facilitating embedded
application integration and system-level validation.

2.4 PROGRAMMING IN XILINX SDK

A designated header file developed during Phase 3 is initially
incorporated into the embedded application to define a standard
MNIST test vector and its corresponding ground-truth label, as
illustrated in Fig.2. This file specifies an array of 784 two’s-
complement integers, representing each pixel in the 28x28 image,
and includes the expected classification outcome. By integrating
this header directly into the C program, the system is capable of

ISSN: 2395-1680 (ONLINE)

performing an end-to-end inference on a single sample and
directly comparing the hardware output to the known label
without the necessity for external test harnesses.

char dataValues[]={

Fig.2. Header File

Inside the Xilinx SDK, an embedded C program is developed
to test and validate the hardware-mapped network. As shown in
Fig.3, the code initiates by invoking the AXI-DMA configuration
API to set up the DMA engine for large-scale data transfer.
Following this, the ARM interrupt controller is configured: its
driver is initialized, the appropriate interrupt line for the neural-
network IP is assigned a priority and trigger type, and a custom
interrupt service routine is registered. Once the DMA and
interrupts are configured, the main thread initiates a DMA transfer
that streams the test-vector array to the neural-network IP core
and awaits the ISR to signal completion. Upon transfer
completion, the software retrieves the classification index via a
memory-mapped register and outputs both the identified digit and
the expected value to the console. The on-chip program employs
interrupt-driven AXI-DMA to transfer input blocks, weight/bias
streams, and output activations in large bursts without involving
the processing system. After each transfer concludes, the interrupt
controller invokes the registered callback function, enabling the
software to queue subsequent transfers, verify results, or recover
from errors without entering blocking loops. This architecture
achieves optimal data movement throughput between
programmable logic and the processing system while maintaining

minimal processor overhead and latency.

myDmaConfig = XAxiDma_LookupConfigBaseAddr(XPAR_AXT DMA ® BASEADDR);
status = XAxiDma_CfgInitialize(&myDma, myDmaConfig);
if(status != XST_SUCCESS){

print("DMA Initialization failed \n");

return -1;

}

XScuGic_Config *IntcConfig;
IntcConfig = XScuGic_LookupConfig(XPAR_PS7_SCUGIC_B_DEVICE_ID);
status = XScuGic_CfgInitialize(&IntcInstance, IntcConfig, IntcConfig-:CpuBaseAddress);
if(status != XST_SUCCESS){
xil_printf("Interrupt Controller Initialization failed \n");
return -1;
}
XScuGic_SetPrierityTriggerType(&IntcInstance, XPAR_FABRIC_ZVNET_@_INTR_INTR, @xA@, 3);
status = XScuGic_Connect(&IntcInstance, XPAR_FABRIC_ZYNET_@_INTR_INTR, (Xil_InterruptHandler)nnISR, @);
if(status != XST_SUCCESS){
xil_printf("Interrupt Connection failed \n");
return -1;

}
Fig.3. Setup Routine for AXI-DMA and PS—PL Interrupts

2.5 VERIFICATION ON FPGA

After building the application, we upload it to the FPGA using
the debugger provided by the SDK. Under Run — Run
Configurations..., we select System Debugger on Local. As
illustrated in Fig.4, within the Target Setup tab, we select the

ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2026, VOLUME: 11, ISSUE: 04

2223

following options to ensure that the programmable logic and
processing system are correctly configured prior to executing the
code: Program FPGA (PL), Run PS7 Init, and Run PS7 Post
ConFig.Once these options are set, we navigate to the Application
tab, select the ps7_cortexa9 0 entry, and click Run. This sequence
programs the bitstream into the PL in a systematic manner,
initializes the ARM cores at the system level, applies any
necessary post-configuration register settings, and finally
downloads and starts the test application.

To observe the inference output of the network, one can
connect a serial terminal application such as Tera Term or access
the Console view within the SDK. It is essential to ensure that the
UART settings correspond with the board configuration (for
instance, baud rate, data bits, etc.). As the application operates,
the classification output is transmitted via the UART interface.
For instance, output lines may appear as ‘Detected Number: 7
Expected Number: 07, which verifies that the hardware-
accelerated neural network has accurately detected the test
pattern, thereby confirming the functionality of the end-to-end
system [13].

Summary of operations to be performed

[Reset entire system Following operations will be perfarmed before launching the debugger.
1. Program FPGA fabric (PL).

2. Runs ps7_init to initialize PS.

3. Runs ps7_post_config. Enables level shifters from PL to PS. (Recommended to use this option
only after system reset or board power ON).

[l Program FPGA
[Run ps7_init
[Run ps7_post_config

Fig.4. Xilinx SDK System Debugger Configuration Dialog

3. HARDWARE
PLATFORM

IMPLEMENTATION

3.1 TOP-LEVEL BLOCK DESIGN

Upon the completion of the Zynet-driven system using the
Vivado project hierarchy, the top-level block design, along with
its corresponding HDL wrapper, is incorporated as in Fig.5. The
processing system, interconnect fabrics such as AXI interconnect
and SMC, the DMA engine, and the custom neural-network IP are
interconnected via AXI-Lite and AXI-Stream interfaces within
the block design. Additionally, Vivado can generate an HDL
wrapper module for this block design, encapsulating the entire
hardware subsystem into a singular RTL entity. This wrapper
facilitates the external ports of the block design, including clock,
reset, and AXI control interfaces, enabling straightforward
instantiation within higher-level designs or integration into
comprehensive FPGA systems. By providing a structured, tool-
generated wrapper, the system enhances the ease of hardware
implementation, allowing for rapid integration, simulation, and
synthesis with minimal user intervention.

~ @ & myBlock2_wrapper (myBlock?

v myBlock2_i - myBlock2 (myBlock? bd) (1
~ @ myBlock2 (myBlock? v) (&

¥ axi_dma_0 : myBlockZ_axi_dma_0_0 (myBElock?

¥ axi_smc - myBlock2_axi_smc_0 (myBloc

¥ processing_system7_0 : myBlockZ2_processing_system7_0_0 (myBlock?_processing_system

> @ ps7_0_axi_periph - myBlock2_ps7_0_axi_periph_0 (myBlock? v) (4

ps7_0_axi_periph - myBlock2_ps7_0_axi_periph_0
b rst_ps7_0_100M : myBlock2_rst_ps7_0_100M_0 (myB
» % xlconcat_0 : myBlock2_xlconcat_0_0 (myBlo

b zyNet_0: myBlock2_zyNet _0_0 (myBlockZ_zyhet_0_0xc:

Fig.5. Top-Level Block Design with HDL Wrapper

SHYAM PERAKA et al.: RECONFIGURABLE NEURAL NETWORK ON FPGA

3.2 HIERARCHY

The Fig.6 depicts the source hierarchy of the Vivado project,
which consists of a single top-level HDL wrapper and five distinct
Verilog modules produced by Zynet. The AXI-Lite wrapper
module offers a streamlined, register-mapped interface for
managing the neural network and monitoring its status. Following
this, there are three layer modules, each featuring a feed-forward
stage: the first includes 30 processing elements, the second has
20, and the third, which serves as the output stage, contains 10
[14]. Additionally, a maxFinder module, designed to execute the
hardmax function, evaluates the outputs from the layers and
provides a one-hot encoded class decision. By
compartmentalizing each component of the neural network into
separate HDL files, Zynet enhances modular synthesis, simplifies
timing closure tasks, and minimizes debugging efforts. This
design approach also allows for the individual optimization of the
arithmetic and activation logic for each layer, while the
maxFinder module ensures efficient execution of the final
classification task, all under the framework of the autogenerated
top-level wrapper.

v @S zyNet (zynety) (5
@ alw : axi_lite_wrapper (axi_lite_wrappery
> @ 11 :Layer_1 (Layer_1.v) (30
» @ 12 Layer_2 (Layer_2v) (20
» @ 13 Layer_3 (Layer_3.v) (10

@ mFind : maxFinder

maxFindery
Fig.6. Hierarchy of Zynet-Produced Modules

3.3 HARDWARE VALIDATION

As demonstrated in Fig.7, the complete hardware platform
was developed and validated using a Zed board development kit,
which features the Xilinx Zyng-7000 SoC (device part number
xc7z020clg484-1) [15]. The synthesized neural network
intellectual property, comprising layer modules, AXI-DMA
engines, and control wrappers, is integrated within the
programmable logic fabric. Meanwhile, the ARM Cortex-A9
processing system runs the embedded application responsible for
transferring test data and verifying results. The on-board DDR
memory stores input vectors and intermediate activations, while
the PS—PL interconnects (AXI-Lite for control and AXI-DMA for
bulk data transfer) provide the necessary bandwidth for real-time
inference. Testing on this platform confirmed the correct
functional operation and performance characteristics within a
standard FPGA environment [16], [17].

Fig.7. Zed Board Hardware Platform Featuring Zyng-7000

2224

In real-time operation, the FPGA design transmits each
quantized test vector to the neural-network IP and relays the
classification result through a serial interface to a terminal
emulator. As demonstrated in Fig.8, Tera Term shows that the
system displays both the predicted digit and the actual ground-
truth label, such as ‘Detected Number 7 Expected Number 7°, for
each inference cycle. This immediate feedback guarantees that the
hardware accurately replicates the actions of the trained model,
while the printed output facilitates straightforward validation and
rapid identification of misclassifications.

¥ COMT - Ters Term VT - O X

File Edit Setup Control Window Help
Petected Nunher 7 Expected Number 7

Fig.8. Real-Time Classification Output via Serial Terminal
4. RESULTS

The proposed neural network, after undergoing training for 20
epochs on the MNIST dataset, achieved a testing accuracy of
96.69% in its software implementation. The architecture
comprises four layers: an input layer containing 784 neurons for
the 28x28 pixel input images, two hidden layers with 30 and 20
neurons respectively, and an output layer with 10 neurons
corresponding to digit classes 0-9. A hardmax function is
employed at the output layer to determine the class with the
highest activation. The sigmoid activation function is utilized
across all layers due to its compatibility with low-resource
hardware and its ability to facilitate smooth gradient flow.

The Fig.9 depicts a timing waveform captured during the on-
chip validation of the neural network intellectual property. After
the reset signal is released, the clk and in_valid signals initiate a
burst of 8-bit input samples (displayed on in[7:0]), which are
retrieved from the on-chip memory (in_mem). The AXI-Stream
interfaces (s_axi_awvalid, s axi wvalid, s axi_wdata)
demonstrate the handshaking process for each write operation,
while the start flag alternates to indicate the commencement of
each inference cycle. As the layerNo counter iterates from 1 to 3,
the testDataCount register increments with each completed
classification, and the right/wrong indicators briefly pulse to
signify correct or incorrect predictions. Collectively, these traces
confirm that the hardware effectively processes each test vector,
updates internal counters, and delivers classification results in real
time [18], [19].

In terms of hardware resource utilization, the design was
efficient and adhered to the limitations of the target FPGA. The
Fig.10 represents the resource utilization metrics of a neural
network comprising two hidden layers, with 30 and 20 neurons
respectively, employing the sigmoid activation function and
utilizing an 8-bit data width. The usage of slice Look-Up Tables
(LUTs) was approximately 14% of the available resources, while
the consumption of Flip-Flops (FFs) was minimal at around 4%.
The Block RAM (BRAM), which stored intermediate data and
parameters, utilized nearly 19% of its capacity. Input/Output (10)

ISSN: 2395-1680 (ONLINE)

pins were the most utilized, accounting for nearly 49% of the
available pins, indicating a significant need for data exchange
with external devices. Clocking resources such as BUFGs were
used minimally, occupying only about 3%.

[AAREREARY! VARRRE

ERS fik]

Fig.9. Simulation Waveforms

Utilization Post-Synthesis | Postdmplementation
Graph | Table
LuT 14%
FF %
BRAM 19%
10 49%
BUFG 3%
25 50 75 100

Fig.10. FPGA Resource Utilization

Table.1. Classification Performance Overview

Function [Width| (M) |(mwy ASCUTIEY (%)

8 119 | 257 99

16 112 | 389 99
Sigmoid | 24 104 | 510 99

32 119 | 257 99

8 126 183 80

16 106 | 345 87
Relu 24 101 404 87

32 80 706 88

The Table.l presents a summary of the classification
performance for all combinations of quantization schemes and
activation functions evaluated on the MNIST test set. [20]Table 2
details the FPGA resource utilization, including LUTs, flip-flops,
BRAM, IO, and BUFG, associated with each neural network
configuration under examination [21].

The trained model was successfully deployed on a Zed board
featuring an xc7z020clg484-1 SoC, utilizing the Xilinx Vivado
2019.1 design suite for synthesis, implementation, and bitstream
generation. The design achieved a maximum operating frequency
of 119 MHz. In summary, the hardware implementation not only
achieved a commendable classification accuracy of 99% on test
inputs but also operated with low power consumption, recorded
at approximately 0.257 watts [22]. These outcomes underscore

ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2026, VOLUME: 11, ISSUE: 04

(ARAARERRERRNY

2225

the design’s effectiveness in terms of performance, efficiency,
and its appropriateness for real-time embedded applications.

Table.2. Resource Usage per Network Configuration

Activation | Data Resource Utilization
Function | Width | LUT | FF | BRAM | IO | BUFG
8 7337 | 3766 27 97 1
)) 16 4691 | 4113 30 105 1
Sigmoid
24 9292 | 6667 60 113 1
32 7337 | 3766 27 97 1
8 7485 | 3929 1 97 1
16 6133 | 5120 15 105 1
Relu
24 11398 | 8101 26 113 1
32 23519 | 11849 30 121 1

S. CONCLUSION

This research has employed a comprehensive strategy to
implement a moderately deep neural network featuring a fully
connected layer on an Xilinx Zyng-7000 FPGA. It began with
training in Python using the MNIST dataset, progressed to
automated IP-core generation through Zynet [23], and concluded
with real-time hardware-in-the-loop verification and integration
of hardware and software. By utilizing fixed-point representations
for network parameters and activations, along with leveraging the
on-chip memory management and AXI interconnect features of
Zynet, the implemented four-layer feed-forward architecture
achieved impressive classification accuracy both in simulation
and during on-board inference. Interrupt-driven AXI-DMA
transfers alleviated the processor’s workload, facilitating
seamless streaming of pixel data and one-hot outputs via a serial
console. Observations regarding throughput, energy
consumption, and overall hardware performance validate that this
methodology strikes an effective balance between computational
speed, efficiency, and resource utilization, underscoring the
promise of reconfigurable logic for high-throughput neural
inference in embedded and edge applications.
REFERENCES
[1] S. Agatonovic-Kustrin and R. Beresford, “Basic Concepts of
Artificial Neural Network (ANN) Modeling and its
Application in Pharmaceutical Research”, Journal of
Pharmaceutical and Biomedical Analysis, pp. 717-727,
2000.

S. Cuomo, V.S. Di Cola, Giampaolo, “Scientific Machine
Learning through Physics-Informed Neural Networks:
Where We are and What’s Next”, Journal of Scientific
Computing, Vol. 92, No. 88, pp. 1-7, 2022.

Y. LeCun, “The MNIST Database of Handwritten Digits”,
Available at https://yann.lecun.org/exdb/mnist/index.html,
Accessed in 1998.

A. Baldominos, Y. Saez and P. Isasi, “A Survey of
Handwritten Character Recognition with MNIST and
EMNIST?”, Applied Sciences, Vol. 9, No. 15, pp. 1-7, 2019.

(4]

SHYAM PERAKA et al.: RECONFIGURABLE NEURAL NETWORK ON FPGA

(3]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

R. Kaibou and M.S. Azzaz, “FPGA Implementation of
Mixed Robust Chaos based Digital Color Image
Watermarking”, Proceedings of International Conference
on Networking and Advanced Systems, Vol. 2, pp. 1-7,2021.
R.R. Kumbhar, P. Radhika and D. Mane, “Design and
Optimization of an On-Chip Artificial Neural Network on
FPGA for Recognizing Handwritten Digits”, Proceedings of
International Conference on Recent Advances in Electrical,
Electronics, Ubiquitous Communication and Computational
Intelligence, Vol. 1, pp. 1-10, 2023.

S.S. Lingala, S. Bedekar, P. Tyagi, P. Saha and P. Shahane,
“FPGA based Implementation of Neural Network”,
Proceedings of International Conference on Advances in
Computing, Communication and Applied Informatics, pp. 1-
5, 2022.

F. Ortega-Zamorano, J.M. Jerez, D. Urda Munoz, R.M.
Luque-Baena and L. Franco, “Efficient Implementation of
the Backpropagation Algorithm in FPGAs and
Microcontrollers”, IEEE Transactions on Neural Networks
and Learning Systems, Vol. 27 No. 9, pp. 1840-1850, 2016.
Nwankpa Chigozie, W. Ijomah, Gachagan Anthony and
Marshall Stephen, “Activation Functions: Comparison of
Trends in Practice and Research for Deep Learning”,
Proceedings of International Conference on Computer
Vision and Pattern Recognition, pp. 1-20, 2020.

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-
based Learning Applied to Document Recognition”,
Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324,
1998.

R. Kaibou, M.S. Azzaz, B. Madani, A. Kadir and H. Hamil,
“Performances Analysis of DNN Accelerator in a HW/SW
Co-Design FPGA Implementation for Image
Classification”, Proceedings of International Conference on
Advanced Electrical Engineering, pp. 1-6, 2024.

P. Jokic, S. Emery and L. Benini, “Improving Memory
Utilization in Convolutional Neural Network Accelerators”,
IEEE Embedded Systems Letters, Vol. 13, No. 3, pp. 77-80,
2021.

J. Si and S.L. Harris, “Handwritten Digit Recognition
System on an FPGA”, Proceedings of International
Conference on Computing and Communication, pp. 402-
407, 2018.

K. Vipin, “ZyNet: Automating Deep Neural Network
Implementation on Low-Cost Reconfigurable Edge

2226

[16]

[17]

[18]

[19]

[20]

(23]

Computing Platforms”, Proceedings of International
Conference on Field Programmable Technology, pp. 1-8,
2019.

V.A. Sumayyabeevi, J.J. Poovely, N.Aswathy and S.
Chinnu, “A New Hardware Architecture for FPGA
Implementation of Feed Forward Neural Networks”,
Proceedings of International Conference on Advances in
Computing, Communication, Embedded and Secure
Systems, pp. 107-111, 2021.

H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou and L. Wang, “A
High Performance FPGA-based Accelerator for Large-Scale
CNNS”, Proceedings of International Conference on Field
Programmable Logic and Applications, pp. 1-9, 2016.

S.K. Venkataramanaiah, X. Du, Z. Li, S. Yin, Y. Cao and
J.S. Seo, “Efficient and Modularized Training on FPGA for
Real-Time Applications”, Proceedings of International
Conference on Artificial Intelligence, pp. 5237-5239, 2021.

R. Kaibou, M.S. Azzaz, M. Benssalah, D. Teguig, H. Hamil,
A. Merah and M.T. Akrour, ‘“Real-Time FPGA
Implementation of a Secure Chaos based Digital Crypto-
Watermarking System in the DWT Domain using Co Design
Approach”, Journal of Real-Time Image Processing, Vol.
18, No. 6, pp. 2009-2025, 2021.

S. Qiao, Z. Lin, J. Zhang and A.L. Yuille, “Neural
Rejuvenation: Improving Deep Network Training by
Enhancing Computational =~ Resource Utilization”,
Proceedings of International Conference on Computer
Vision and Pattern Recognition, pp. 61-71,2019.

K. Khalil, B. Dey, M. Abdelrehim, A. Kumar and M.
Bayoumi, “An Efficient Reconfigurable Neural Network on
Chip”, Proceedings of International Conference on
Electronics, Circuits and Systems, pp. 1-4, 2021.

K. Khalil, O. Eldash, A. Kumar and M. Bayoumi, “N20C:
Neural-Network-on-Chip Architecture”, Proceedings of
International Conference on System-on-Chip, pp. 272-277,
2019.

Y.H. Chen, T. Krishna, J.S. Emer and V. Sze, “Eyeriss: An
Energy Efficient Reconfigurable Accelerator for DNNS”,
IEEE Journal of Solid-State Circuits, Vol. 52, No. 1, pp.
127-138, 2016.

“ZyNet Git Repository”, Available
https://github.com/dsdnu/zynet, Accessed in 2024.

at

