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Abstract 

This paper presents a comprehensive methodology for transferring a 

four-layer feed-forward neural network, trained on the MNIST dataset, 

to a Xilinx Zynq-7000 System on Chip (SoC). The pretrained 

parameters are transformed into custom hardware modules optimized 

for on-chip memory using the Zynet framework. A lightweight software 

routine oversees AXI-DMA transfers and the collection of results 

through interrupts. The synthesized network layers and data transfer 

engines are integrated within the programmable logic fabric, while the 

ARM Cortex-A9 core manages task sequencing, data validation, and 

user interaction. Hardware-in-the-loop testing conducted on a Zed 

board demonstrates that the hardware implementation achieves 

classification accuracy comparable to software references, rapid 

inference speed, and minimal processor overhead. The real-time serial 

output of predictions against ground-truth labels facilitates immediate 

verification and effective debugging. This paper exemplifies the 

effectiveness of hardware–software co-design in creating compact and 

energy-efficient neural inference systems. 
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1. INTRODUCTION 

The recent acceleration of deep learning has significantly 

altered how machines learn to identify and react to intricate data. 

Among its many accomplishments, automatic handwriting 

character recognition stands out as a practical and educational 

benchmark in pattern recognition research [1]. [2]Handwritten 

digit recognition not only aids in tasks such as document 

scanning, postal-code sorting, and form processing, but also 

serves as a compact platform for exploring network architectures, 

training techniques, and deployment strategies. However, 

transferring a trained neural model from a high-level software 

development environment to a resource-constrained, real-time 

hardware platform such as an FPGA poses significant challenges 

regarding data accuracy, memory architecture, and computational 

parallelism.  

The Modified National Institute of Standards and Technology 

(MNIST) dataset is one of the most widely used collections for 

evaluating handwritten digit classification algorithms. [3], 

[4]Comprising 60,000 training images and 10,000 test images, 

each represented as a 28 × 28 grayscale pixel matrix, MNIST 

offers a well-established, canonical test that balances simplicity 

with enough variation to challenge both accuracy and 

generalization. By normalizing pixel values and providing well-

defined samples for ten digit classes (0 to 9), MNIST enables 

rapid prototyping of network architectures and facilitates 

comparisons among different quantization methods, activation 

functions, and layer configurations, all within a unified 

experimental framework. 

Zynet is a framework based on Python designed for hardware 

generation, aimed at bridging the gap between high-level 

specifications of neural networks and synthesizable designs for 

FPGAs. It automates the generation of parameterized IP cores by 

utilizing pretrained weight and bias files, converting arithmetic 

operations into fixed-point formats, and instantiating the required 

BRAMs and processing elements within a Vivado project. The 

framework’s built-in support for layerwise modularization, 

hardmax functions, and AXI-Lite/AXI-Stream interfaces greatly 

reduces the necessity for low-level HDL coding, enabling 

designers to focus on optimizing the network instead of dealing 

with intricate hardware details. This makes Zynet ideally suited 

for our project, as it streamlines the entire process from Python-

based training to the generation of FPGA bitstreams.  

Our project aimed to demonstrate that a moderately deep 

neural network, trained on a standard benchmark like MNIST, can 

be effectively mapped to a mid-range Zynq-7000 FPGA without 

sacrificing accuracy or resource constraints [5]. By leveraging 

Zynet’s IP-core generation alongside Vivado’s synthesis 

capabilities, we aimed to implement a four-layer feed-forward 

network (with neuron counts of 784, 30, 20, and 10) using fixed-

point arithmetic, ensuring functional correctness through 

simulation and hardware-in-the-loop testing, and gathering real-

world performance metrics such as classification accuracy, 

resource usage, operating frequency, and power consumption. 

Ultimately, this initiative illustrates how reconfigurable platforms 

can support compact, high-throughput neural inference engines 

suitable for embedded and edge computing applications. 

2. METHODOLOGY 

2.1 WEIGHTS AND BIASES EXTRACTION 

We employed the TensorFlow library to train a feed-forward 

neural network using the MNIST dataset, thereby automatically 

identifying its learned parameters [6], [7]. The procedure 

commences with the loading of the standard MNIST training and 

testing datasets, followed by a row-wise normalization that 

rescales pixel values to a range between 0 and 1. Subsequently, a 

Sequential model is established, beginning with a flatten layer, 

and is succeeded by two hidden dense layers containing 30 and 20 

neurons, respectively, which may utilize either ReLU or sigmoid 

as the activation function [8], [9]. The model concludes with one 

dense output layer, comprising 10 neurons, employing ReLU or 

sigmoid activation to represent the ten digit classes [10]. After 

compiling the network with the Adam optimizer and sparse 

categorical cross-entropy loss, training is conducted for 20 

epochs. Upon completion, the model’s performance is evaluated 

on the test set, and the script iterates through each dense layer 

(excluding the flatten layer) to extract weight matrices and bias 

vectors. These parameters are then translated as necessary, 

serialized in JSON format, and written to an external text file for 

subsequent hardware mapping and analysis. 



SHYAM PERAKA et al.: RECONFIGURABLE NEURAL NETWORK ON FPGA 

2222 

2.2 ZYNET-DRIVEN IP CORE 

The specified network parameters are integrated into the Zynet 

Python platform to construct hardware systems [11]. The 

framework’s model-building capability utilizes weights and 

biases sourced from an external parameter file, with the pretrained 

flag set to ‘yes’ by default, ensuring their utilization rather than 

random initialization (if absent or set to ‘no,’ the model will be 

constructed without the loaded parameters). Before executing the 

script, it is essential to accurately configure the path to the Xilinx 

Vivado installation directory within the system environment to 

ensure successful execution of project-creation commands. A 

hardmax operation is performed in the final stage to derive the 

ultimate class outputs in hardware, resulting in a one-hot encoding 

of the neuron outputs that streamlines digital decision logic and 

minimizes resource usage. When invoking the Zynet project-

creation API, an FPGA device identifier is provided to ensure 

compatibility of the created hardware with the target platform’s 

structure. Furthermore, a descriptive project name is submitted to 

Vivado, facilitating easy identification and management within 

the toolset. After the project setup, the IP-generation API is called 

to produce the necessary cores. Finally, the system-generation 

API assigns a user-defined name to the top-level block design, 

simplifying its integration into higher-level designs and 

subsequent maintenance. 

Within the established Vivado project, each pre-trained 

parameter is supplied as an individual Memory Initialization File 

(MIF), facilitating the automatic population of on-chip memories 

during the configuration process. As shown in Fig.1, files prefixed 

with ‘w’ denote weight values, while those prefixed with ‘b’ 

indicate bias terms; the subsequent numeric identifiers correspond 

to the layer index and neuron index (both starting from zero), 

establishing a direct relationship between each MIF and its 

respective BRAM or distributed memory instance [12]. During 

synthesis and implementation, these MIFs are specified in the 

memory IP configuration dialogs, ensuring that when the FPGA 

bitstream is loaded, all weights and biases are positioned in their 

designated memory blocks without additional run-time transfers. 

This organized approach not only enhances parameter 

management by categorizing all trained values into descriptive 

files but also guarantees that the hardware is equipped with the 

exact numeric model acquired during the training phase. 

 

Fig.1. Memory Initialization Files 

Executing this script also generates a Vivado project alongside 

an AXI-Lite wrapper interface; this wrapper serves as a low-

latency, register-mapped connection between the neural network 

IP and the processing system, facilitating efficient parameter 

updates and status monitoring. Further, the implementation 

organizes all resulting design artifacts in a systematic folder 

structure, promoting effective management of files throughout the 

development and deployment processes. 

2.3 VIVADO SIMULATION SETUP 

A Python script is executed to generate fixed-point test vectors 

for each of the 10,000 images in the MNIST test set. The script 

quantizes each pixel value into two’s-complement format at 

runtime and produces these integer values in a C-style header file 

for direct memory initialization within the hardware . 

Concurrently, two distinct plain-text files are created: one 

containing the visualized binary matrices for each digit, which is 

human-readable, and another containing the raw test data 

sequences intended for use in the Vivado project’s testbench 

simulation.  

We transition from project generation to functional 

verification through simulation within the Vivado environment. 

As a simulation folder does not exist at this stage, starting the 

simulation task in Vivado will automatically create a ‘simulation’ 

directory at the project’s root. We place our raw test vectors—

sequences of normalized MNIST-style pixel data formatted for 

the Vivado testbench—into this directory. Subsequently, we 

configure the testbench to receive these inputs and appropriately 

drive the neural-network IP core. After combining the stimuli, we 

execute the simulation, monitoring output waveforms and log 

files. The simulation log enumerates each test case by index and 

provides recognition accuracy along with the detected digit and 

its expected counterpart; entries such as ‘Accuracy, Detected 

number, Expected’ are displayed for each pattern. Ultimately, a 

summary line presents the overall accuracy across all test 

sequences. These comprehensive logs confirm that the 

synthesized hardware accurately reflects the trained network and 

assess its performance before hardware prototyping. 

We finalize the top-level block design by generating an HDL 

wrapper that exposes its I/O ports for use by subsequent tools. 

Utilizing Vivado’s ‘Create HDL Wrapper’ command, we 

automatically produce a wrapper file around the previously 

developed user-named block design. Once the wrapper is in place, 

we proceed to synthesis, where the design is transformed into an 

optimized gate-level netlist tailored for our target FPGA. 

Following synthesis, the implementation phase executes the 

placement and routing processes, applying the netlist to the 

physical resources of the device. After routing is complete, 

Vivado generates the configuration bitstream that encompasses 

the fully routed design. The next step involves exporting the 

hardware definition, which includes the bitstream and hardware 

handoff files, to the Xilinx SDK. Finally, we launch the SDK, 

enabling software development to commence on the newly 

provisioned hardware platform, thereby facilitating embedded 

application integration and system-level validation. 

2.4 PROGRAMMING IN XILINX SDK  

A designated header file developed during Phase 3 is initially 

incorporated into the embedded application to define a standard 

MNIST test vector and its corresponding ground-truth label, as 

illustrated in Fig.2. This file specifies an array of 784 two’s-

complement integers, representing each pixel in the 28×28 image, 

and includes the expected classification outcome. By integrating 

this header directly into the C program, the system is capable of 
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performing an end-to-end inference on a single sample and 

directly comparing the hardware output to the known label 

without the necessity for external test harnesses.  

 

Fig.2. Header File 

Inside the Xilinx SDK, an embedded C program is developed 

to test and validate the hardware-mapped network. As shown in 

Fig.3, the code initiates by invoking the AXI-DMA configuration 

API to set up the DMA engine for large-scale data transfer. 

Following this, the ARM interrupt controller is configured: its 

driver is initialized, the appropriate interrupt line for the neural- 

network IP is assigned a priority and trigger type, and a custom 

interrupt service routine is registered. Once the DMA and 

interrupts are configured, the main thread initiates a DMA transfer 

that streams the test-vector array to the neural-network IP core 

and awaits the ISR to signal completion. Upon transfer 

completion, the software retrieves the classification index via a 

memory-mapped register and outputs both the identified digit and 

the expected value to the console. The on-chip program employs 

interrupt-driven AXI-DMA to transfer input blocks, weight/bias 

streams, and output activations in large bursts without involving 

the processing system. After each transfer concludes, the interrupt 

controller invokes the registered callback function, enabling the 

software to queue subsequent transfers, verify results, or recover 

from errors without entering blocking loops. This architecture 

achieves optimal data movement throughput between 

programmable logic and the processing system while maintaining 

minimal processor overhead and latency. 

 

Fig.3. Setup Routine for AXI‑DMA and PS–PL Interrupts 

2.5 VERIFICATION ON FPGA 

After building the application, we upload it to the FPGA using 

the debugger provided by the SDK. Under Run → Run 

Configurations…, we select System Debugger on Local. As 

illustrated in Fig.4, within the Target Setup tab, we select the 

following options to ensure that the programmable logic and 

processing system are correctly configured prior to executing the 

code: Program FPGA (PL), Run PS7 Init, and Run PS7 Post 

ConFig.Once these options are set, we navigate to the Application 

tab, select the ps7_cortexa9_0 entry, and click Run. This sequence 

programs the bitstream into the PL in a systematic manner, 

initializes the ARM cores at the system level, applies any 

necessary post-configuration register settings, and finally 

downloads and starts the test application. 

To observe the inference output of the network, one can 

connect a serial terminal application such as Tera Term or access 

the Console view within the SDK. It is essential to ensure that the 

UART settings correspond with the board configuration (for 

instance, baud rate, data bits, etc.). As the application operates, 

the classification output is transmitted via the UART interface. 

For instance, output lines may appear as ‘Detected Number: 7 

Expected Number: 07,’ which verifies that the hardware-

accelerated neural network has accurately detected the test 

pattern, thereby confirming the functionality of the end-to-end 

system [13]. 

 

Fig.4. Xilinx SDK System Debugger Configuration Dialog 

3. HARDWARE IMPLEMENTATION 

PLATFORM 

3.1 TOP-LEVEL BLOCK DESIGN 

Upon the completion of the Zynet-driven system using the 

Vivado project hierarchy, the top-level block design, along with 

its corresponding HDL wrapper, is incorporated as in Fig.5. The 

processing system, interconnect fabrics such as AXI interconnect 

and SMC, the DMA engine, and the custom neural-network IP are 

interconnected via AXI-Lite and AXI-Stream interfaces within 

the block design. Additionally, Vivado can generate an HDL 

wrapper module for this block design, encapsulating the entire 

hardware subsystem into a singular RTL entity. This wrapper 

facilitates the external ports of the block design, including clock, 

reset, and AXI control interfaces, enabling straightforward 

instantiation within higher-level designs or integration into 

comprehensive FPGA systems. By providing a structured, tool-

generated wrapper, the system enhances the ease of hardware 

implementation, allowing for rapid integration, simulation, and 

synthesis with minimal user intervention. 

 

Fig.5. Top-Level Block Design with HDL Wrapper 
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3.2 HIERARCHY 

The Fig.6 depicts the source hierarchy of the Vivado project, 

which consists of a single top-level HDL wrapper and five distinct 

Verilog modules produced by Zynet. The AXI-Lite wrapper 

module offers a streamlined, register-mapped interface for 

managing the neural network and monitoring its status. Following 

this, there are three layer modules, each featuring a feed-forward 

stage: the first includes 30 processing elements, the second has 

20, and the third, which serves as the output stage, contains 10 

[14]. Additionally, a maxFinder module, designed to execute the 

hardmax function, evaluates the outputs from the layers and 

provides a one-hot encoded class decision. By 

compartmentalizing each component of the neural network into 

separate HDL files, Zynet enhances modular synthesis, simplifies 

timing closure tasks, and minimizes debugging efforts. This 

design approach also allows for the individual optimization of the 

arithmetic and activation logic for each layer, while the 

maxFinder module ensures efficient execution of the final 

classification task, all under the framework of the autogenerated 

top-level wrapper. 

 

Fig.6. Hierarchy of Zynet-Produced Modules 

3.3 HARDWARE VALIDATION 

As demonstrated in Fig.7, the complete hardware platform 

was developed and validated using a Zed board development kit, 

which features the Xilinx Zynq-7000 SoC (device part number 

xc7z020clg484-1) [15]. The synthesized neural network 

intellectual property, comprising layer modules, AXI-DMA 

engines, and control wrappers, is integrated within the 

programmable logic fabric. Meanwhile, the ARM Cortex-A9 

processing system runs the embedded application responsible for 

transferring test data and verifying results. The on-board DDR 

memory stores input vectors and intermediate activations, while 

the PS–PL interconnects (AXI-Lite for control and AXI-DMA for 

bulk data transfer) provide the necessary bandwidth for real-time 

inference. Testing on this platform confirmed the correct 

functional operation and performance characteristics within a 

standard FPGA environment [16],  [17]. 

 

Fig.7. Zed Board Hardware Platform Featuring Zynq-7000 

In real-time operation, the FPGA design transmits each 

quantized test vector to the neural-network IP and relays the 

classification result through a serial interface to a terminal 

emulator. As demonstrated in Fig.8, Tera Term shows that the 

system displays both the predicted digit and the actual ground-

truth label, such as ‘Detected Number 7 Expected Number 7’, for 

each inference cycle. This immediate feedback guarantees that the 

hardware accurately replicates the actions of the trained model, 

while the printed output facilitates straightforward validation and 

rapid identification of misclassifications. 

 

Fig.8. Real-Time Classification Output via Serial Terminal 

4. RESULTS 

The proposed neural network, after undergoing training for 20 

epochs on the MNIST dataset, achieved a testing accuracy of 

96.69% in its software implementation. The architecture 

comprises four layers: an input layer containing 784 neurons for 

the 28×28 pixel input images, two hidden layers with 30 and 20 

neurons respectively, and an output layer with 10 neurons 

corresponding to digit classes 0-9. A hardmax function is 

employed at the output layer to determine the class with the 

highest activation. The sigmoid activation function is utilized 

across all layers due to its compatibility with low-resource 

hardware and its ability to facilitate smooth gradient flow. 

The Fig.9 depicts a timing waveform captured during the on-

chip validation of the neural network intellectual property. After 

the reset signal is released, the clk and in_valid signals initiate a 

burst of 8-bit input samples (displayed on in[7:0]), which are 

retrieved from the on-chip memory (in_mem). The AXI-Stream 

interfaces (s_axi_awvalid, s_axi_wvalid, s_axi_wdata) 

demonstrate the handshaking process for each write operation, 

while the start flag alternates to indicate the commencement of 

each inference cycle. As the layerNo counter iterates from 1 to 3, 

the testDataCount register increments with each completed 

classification, and the right/wrong indicators briefly pulse to 

signify correct or incorrect predictions. Collectively, these traces 

confirm that the hardware effectively processes each test vector, 

updates internal counters, and delivers classification results in real 

time [18],  [19]. 

In terms of hardware resource utilization, the design was 

efficient and adhered to the limitations of the target FPGA. The 

Fig.10 represents the resource utilization metrics of a neural 

network comprising two hidden layers, with 30 and 20 neurons 

respectively, employing the sigmoid activation function and 

utilizing an 8-bit data width. The usage of slice Look-Up Tables  

(LUTs) was approximately 14% of the available resources, while 

the consumption of Flip-Flops (FFs) was minimal at around 4%. 

The Block RAM (BRAM), which stored intermediate data and 

parameters, utilized nearly 19% of its capacity. Input/Output (IO) 
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pins were the most utilized, accounting for nearly 49% of the 

available pins, indicating a significant need for data exchange 

with external devices. Clocking resources such as BUFGs were 

used minimally, occupying only about 3%. 

 

Fig.9. Simulation Waveforms 

 

Fig.10. FPGA Resource Utilization 

Table.1. Classification Performance Overview 

Activation  

Function 

Data  

Width 

Frequency 

(MHz) 

Power 

(mW) 
Accuracy (%) 

 

 

Sigmoid 

 

8 119 257 99 

16 112 389 99 

24 104 510 99 

32 119 257 99 

 

 

Relu 

 

8 126 183 80 

16 106 345 87 

24 101 404 87 

32 80 706 88 

The Table.1 presents a summary of the classification 

performance for all combinations of quantization schemes and 

activation functions evaluated on the MNIST test set. [20]Table 2 

details the FPGA resource utilization, including LUTs, flip-flops, 

BRAM, IO, and BUFG, associated with each neural network 

configuration under examination [21]. 

The trained model was successfully deployed on a Zed board 

featuring an xc7z020clg484-1 SoC, utilizing the Xilinx Vivado 

2019.1 design suite for synthesis, implementation, and bitstream 

generation. The design achieved a maximum operating frequency 

of 119 MHz. In summary, the hardware implementation not only 

achieved a commendable classification accuracy of 99% on test 

inputs but also operated with low power consumption, recorded 

at approximately 0.257 watts [22]. These outcomes underscore 

the design’s effectiveness in terms of performance, efficiency, 

and its appropriateness for real-time embedded applications. 

Table.2. Resource Usage per Network Configuration 

Activation  

Function 

Data  

Width 

Resource Utilization 

LUT FF BRAM IO BUFG 

Sigmoid 

8 7337 3766 27 97 1 

16 4691 4113 30 105 1 

24 9292 6667 60 113 1 

32 7337 3766 27 97 1 

Relu 

8 7485 3929 1 97 1 

16 6133 5120 15 105 1 

24 11398 8101 26 113 1 

32 23519 11849 30 121 1 

5. CONCLUSION 

This research has employed a comprehensive strategy to 

implement a moderately deep neural network featuring a fully 

connected layer on an Xilinx Zynq‑7000 FPGA. It began with 

training in Python using the MNIST dataset, progressed to 

automated IP-core generation through Zynet [23], and concluded 

with real-time hardware-in-the-loop verification and integration 

of hardware and software. By utilizing fixed-point representations 

for network parameters and activations, along with leveraging the 

on-chip memory management and AXI interconnect features of 

Zynet, the implemented four-layer feed-forward architecture 

achieved impressive classification accuracy both in simulation 

and during on-board inference. Interrupt-driven AXI-DMA 

transfers alleviated the processor’s workload, facilitating 

seamless streaming of pixel data and one-hot outputs via a serial 

console. Observations regarding throughput, energy 

consumption, and overall hardware performance validate that this 

methodology strikes an effective balance between computational 

speed, efficiency, and resource utilization, underscoring the 

promise of reconfigurable logic for high-throughput neural 

inference in embedded and edge applications. 
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