
ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2026, VOLUME: 11, ISSUE: 04

DOI: 10.21917/ijme.2026.0373

2221

RECONFIGURABLE NEURAL NETWORK ON FPGA

Shyam Peraka, Venkatesh Mone, Sri Valli Gaddam and Manogna Annangi
Department of Electronics and Communication Engineering, Rajiv Gandhi University of Knowledge Technologies, India

Abstract

This paper presents a comprehensive methodology for transferring a

four-layer feed-forward neural network, trained on the MNIST dataset,

to a Xilinx Zynq-7000 System on Chip (SoC). The pretrained

parameters are transformed into custom hardware modules optimized

for on-chip memory using the Zynet framework. A lightweight software

routine oversees AXI-DMA transfers and the collection of results

through interrupts. The synthesized network layers and data transfer

engines are integrated within the programmable logic fabric, while the

ARM Cortex-A9 core manages task sequencing, data validation, and

user interaction. Hardware-in-the-loop testing conducted on a Zed

board demonstrates that the hardware implementation achieves

classification accuracy comparable to software references, rapid

inference speed, and minimal processor overhead. The real-time serial

output of predictions against ground-truth labels facilitates immediate

verification and effective debugging. This paper exemplifies the

effectiveness of hardware–software co-design in creating compact and

energy-efficient neural inference systems.

Keywords:

Feed-Forward Neural Network, FPGA Deployment, Zynet

Framework, Hardware–Software Co-Design

1. INTRODUCTION

The recent acceleration of deep learning has significantly

altered how machines learn to identify and react to intricate data.

Among its many accomplishments, automatic handwriting

character recognition stands out as a practical and educational

benchmark in pattern recognition research [1]. [2]Handwritten

digit recognition not only aids in tasks such as document

scanning, postal-code sorting, and form processing, but also

serves as a compact platform for exploring network architectures,

training techniques, and deployment strategies. However,

transferring a trained neural model from a high-level software

development environment to a resource-constrained, real-time

hardware platform such as an FPGA poses significant challenges

regarding data accuracy, memory architecture, and computational

parallelism.

The Modified National Institute of Standards and Technology

(MNIST) dataset is one of the most widely used collections for

evaluating handwritten digit classification algorithms. [3],

[4]Comprising 60,000 training images and 10,000 test images,

each represented as a 28 × 28 grayscale pixel matrix, MNIST

offers a well-established, canonical test that balances simplicity

with enough variation to challenge both accuracy and

generalization. By normalizing pixel values and providing well-

defined samples for ten digit classes (0 to 9), MNIST enables

rapid prototyping of network architectures and facilitates

comparisons among different quantization methods, activation

functions, and layer configurations, all within a unified

experimental framework.

Zynet is a framework based on Python designed for hardware

generation, aimed at bridging the gap between high-level

specifications of neural networks and synthesizable designs for

FPGAs. It automates the generation of parameterized IP cores by

utilizing pretrained weight and bias files, converting arithmetic

operations into fixed-point formats, and instantiating the required

BRAMs and processing elements within a Vivado project. The

framework’s built-in support for layerwise modularization,

hardmax functions, and AXI-Lite/AXI-Stream interfaces greatly

reduces the necessity for low-level HDL coding, enabling

designers to focus on optimizing the network instead of dealing

with intricate hardware details. This makes Zynet ideally suited

for our project, as it streamlines the entire process from Python-

based training to the generation of FPGA bitstreams.

Our project aimed to demonstrate that a moderately deep

neural network, trained on a standard benchmark like MNIST, can

be effectively mapped to a mid-range Zynq-7000 FPGA without

sacrificing accuracy or resource constraints [5]. By leveraging

Zynet’s IP-core generation alongside Vivado’s synthesis

capabilities, we aimed to implement a four-layer feed-forward

network (with neuron counts of 784, 30, 20, and 10) using fixed-

point arithmetic, ensuring functional correctness through

simulation and hardware-in-the-loop testing, and gathering real-

world performance metrics such as classification accuracy,

resource usage, operating frequency, and power consumption.

Ultimately, this initiative illustrates how reconfigurable platforms

can support compact, high-throughput neural inference engines

suitable for embedded and edge computing applications.

2. METHODOLOGY

2.1 WEIGHTS AND BIASES EXTRACTION

We employed the TensorFlow library to train a feed-forward

neural network using the MNIST dataset, thereby automatically

identifying its learned parameters [6], [7]. The procedure

commences with the loading of the standard MNIST training and

testing datasets, followed by a row-wise normalization that

rescales pixel values to a range between 0 and 1. Subsequently, a

Sequential model is established, beginning with a flatten layer,

and is succeeded by two hidden dense layers containing 30 and 20

neurons, respectively, which may utilize either ReLU or sigmoid

as the activation function [8], [9]. The model concludes with one

dense output layer, comprising 10 neurons, employing ReLU or

sigmoid activation to represent the ten digit classes [10]. After

compiling the network with the Adam optimizer and sparse

categorical cross-entropy loss, training is conducted for 20

epochs. Upon completion, the model’s performance is evaluated

on the test set, and the script iterates through each dense layer

(excluding the flatten layer) to extract weight matrices and bias

vectors. These parameters are then translated as necessary,

serialized in JSON format, and written to an external text file for

subsequent hardware mapping and analysis.

SHYAM PERAKA et al.: RECONFIGURABLE NEURAL NETWORK ON FPGA

2222

2.2 ZYNET-DRIVEN IP CORE

The specified network parameters are integrated into the Zynet

Python platform to construct hardware systems [11]. The

framework’s model-building capability utilizes weights and

biases sourced from an external parameter file, with the pretrained

flag set to ‘yes’ by default, ensuring their utilization rather than

random initialization (if absent or set to ‘no,’ the model will be

constructed without the loaded parameters). Before executing the

script, it is essential to accurately configure the path to the Xilinx

Vivado installation directory within the system environment to

ensure successful execution of project-creation commands. A

hardmax operation is performed in the final stage to derive the

ultimate class outputs in hardware, resulting in a one-hot encoding

of the neuron outputs that streamlines digital decision logic and

minimizes resource usage. When invoking the Zynet project-

creation API, an FPGA device identifier is provided to ensure

compatibility of the created hardware with the target platform’s

structure. Furthermore, a descriptive project name is submitted to

Vivado, facilitating easy identification and management within

the toolset. After the project setup, the IP-generation API is called

to produce the necessary cores. Finally, the system-generation

API assigns a user-defined name to the top-level block design,

simplifying its integration into higher-level designs and

subsequent maintenance.

Within the established Vivado project, each pre-trained

parameter is supplied as an individual Memory Initialization File

(MIF), facilitating the automatic population of on-chip memories

during the configuration process. As shown in Fig.1, files prefixed

with ‘w’ denote weight values, while those prefixed with ‘b’

indicate bias terms; the subsequent numeric identifiers correspond

to the layer index and neuron index (both starting from zero),

establishing a direct relationship between each MIF and its

respective BRAM or distributed memory instance [12]. During

synthesis and implementation, these MIFs are specified in the

memory IP configuration dialogs, ensuring that when the FPGA

bitstream is loaded, all weights and biases are positioned in their

designated memory blocks without additional run-time transfers.

This organized approach not only enhances parameter

management by categorizing all trained values into descriptive

files but also guarantees that the hardware is equipped with the

exact numeric model acquired during the training phase.

Fig.1. Memory Initialization Files

Executing this script also generates a Vivado project alongside

an AXI-Lite wrapper interface; this wrapper serves as a low-

latency, register-mapped connection between the neural network

IP and the processing system, facilitating efficient parameter

updates and status monitoring. Further, the implementation

organizes all resulting design artifacts in a systematic folder

structure, promoting effective management of files throughout the

development and deployment processes.

2.3 VIVADO SIMULATION SETUP

A Python script is executed to generate fixed-point test vectors

for each of the 10,000 images in the MNIST test set. The script

quantizes each pixel value into two’s-complement format at

runtime and produces these integer values in a C-style header file

for direct memory initialization within the hardware .

Concurrently, two distinct plain-text files are created: one

containing the visualized binary matrices for each digit, which is

human-readable, and another containing the raw test data

sequences intended for use in the Vivado project’s testbench

simulation.

We transition from project generation to functional

verification through simulation within the Vivado environment.

As a simulation folder does not exist at this stage, starting the

simulation task in Vivado will automatically create a ‘simulation’

directory at the project’s root. We place our raw test vectors—

sequences of normalized MNIST-style pixel data formatted for

the Vivado testbench—into this directory. Subsequently, we

configure the testbench to receive these inputs and appropriately

drive the neural-network IP core. After combining the stimuli, we

execute the simulation, monitoring output waveforms and log

files. The simulation log enumerates each test case by index and

provides recognition accuracy along with the detected digit and

its expected counterpart; entries such as ‘Accuracy, Detected

number, Expected’ are displayed for each pattern. Ultimately, a

summary line presents the overall accuracy across all test

sequences. These comprehensive logs confirm that the

synthesized hardware accurately reflects the trained network and

assess its performance before hardware prototyping.

We finalize the top-level block design by generating an HDL

wrapper that exposes its I/O ports for use by subsequent tools.

Utilizing Vivado’s ‘Create HDL Wrapper’ command, we

automatically produce a wrapper file around the previously

developed user-named block design. Once the wrapper is in place,

we proceed to synthesis, where the design is transformed into an

optimized gate-level netlist tailored for our target FPGA.

Following synthesis, the implementation phase executes the

placement and routing processes, applying the netlist to the

physical resources of the device. After routing is complete,

Vivado generates the configuration bitstream that encompasses

the fully routed design. The next step involves exporting the

hardware definition, which includes the bitstream and hardware

handoff files, to the Xilinx SDK. Finally, we launch the SDK,

enabling software development to commence on the newly

provisioned hardware platform, thereby facilitating embedded

application integration and system-level validation.

2.4 PROGRAMMING IN XILINX SDK

A designated header file developed during Phase 3 is initially

incorporated into the embedded application to define a standard

MNIST test vector and its corresponding ground-truth label, as

illustrated in Fig.2. This file specifies an array of 784 two’s-

complement integers, representing each pixel in the 28×28 image,

and includes the expected classification outcome. By integrating

this header directly into the C program, the system is capable of

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2026, VOLUME: 11, ISSUE: 04

2223

performing an end-to-end inference on a single sample and

directly comparing the hardware output to the known label

without the necessity for external test harnesses.

Fig.2. Header File

Inside the Xilinx SDK, an embedded C program is developed

to test and validate the hardware-mapped network. As shown in

Fig.3, the code initiates by invoking the AXI-DMA configuration

API to set up the DMA engine for large-scale data transfer.

Following this, the ARM interrupt controller is configured: its

driver is initialized, the appropriate interrupt line for the neural-

network IP is assigned a priority and trigger type, and a custom

interrupt service routine is registered. Once the DMA and

interrupts are configured, the main thread initiates a DMA transfer

that streams the test-vector array to the neural-network IP core

and awaits the ISR to signal completion. Upon transfer

completion, the software retrieves the classification index via a

memory-mapped register and outputs both the identified digit and

the expected value to the console. The on-chip program employs

interrupt-driven AXI-DMA to transfer input blocks, weight/bias

streams, and output activations in large bursts without involving

the processing system. After each transfer concludes, the interrupt

controller invokes the registered callback function, enabling the

software to queue subsequent transfers, verify results, or recover

from errors without entering blocking loops. This architecture

achieves optimal data movement throughput between

programmable logic and the processing system while maintaining

minimal processor overhead and latency.

Fig.3. Setup Routine for AXI‑DMA and PS–PL Interrupts

2.5 VERIFICATION ON FPGA

After building the application, we upload it to the FPGA using

the debugger provided by the SDK. Under Run → Run

Configurations…, we select System Debugger on Local. As

illustrated in Fig.4, within the Target Setup tab, we select the

following options to ensure that the programmable logic and

processing system are correctly configured prior to executing the

code: Program FPGA (PL), Run PS7 Init, and Run PS7 Post

ConFig.Once these options are set, we navigate to the Application

tab, select the ps7_cortexa9_0 entry, and click Run. This sequence

programs the bitstream into the PL in a systematic manner,

initializes the ARM cores at the system level, applies any

necessary post-configuration register settings, and finally

downloads and starts the test application.

To observe the inference output of the network, one can

connect a serial terminal application such as Tera Term or access

the Console view within the SDK. It is essential to ensure that the

UART settings correspond with the board configuration (for

instance, baud rate, data bits, etc.). As the application operates,

the classification output is transmitted via the UART interface.

For instance, output lines may appear as ‘Detected Number: 7

Expected Number: 07,’ which verifies that the hardware-

accelerated neural network has accurately detected the test

pattern, thereby confirming the functionality of the end-to-end

system [13].

Fig.4. Xilinx SDK System Debugger Configuration Dialog

3. HARDWARE IMPLEMENTATION

PLATFORM

3.1 TOP-LEVEL BLOCK DESIGN

Upon the completion of the Zynet-driven system using the

Vivado project hierarchy, the top-level block design, along with

its corresponding HDL wrapper, is incorporated as in Fig.5. The

processing system, interconnect fabrics such as AXI interconnect

and SMC, the DMA engine, and the custom neural-network IP are

interconnected via AXI-Lite and AXI-Stream interfaces within

the block design. Additionally, Vivado can generate an HDL

wrapper module for this block design, encapsulating the entire

hardware subsystem into a singular RTL entity. This wrapper

facilitates the external ports of the block design, including clock,

reset, and AXI control interfaces, enabling straightforward

instantiation within higher-level designs or integration into

comprehensive FPGA systems. By providing a structured, tool-

generated wrapper, the system enhances the ease of hardware

implementation, allowing for rapid integration, simulation, and

synthesis with minimal user intervention.

Fig.5. Top-Level Block Design with HDL Wrapper

SHYAM PERAKA et al.: RECONFIGURABLE NEURAL NETWORK ON FPGA

2224

3.2 HIERARCHY

The Fig.6 depicts the source hierarchy of the Vivado project,

which consists of a single top-level HDL wrapper and five distinct

Verilog modules produced by Zynet. The AXI-Lite wrapper

module offers a streamlined, register-mapped interface for

managing the neural network and monitoring its status. Following

this, there are three layer modules, each featuring a feed-forward

stage: the first includes 30 processing elements, the second has

20, and the third, which serves as the output stage, contains 10

[14]. Additionally, a maxFinder module, designed to execute the

hardmax function, evaluates the outputs from the layers and

provides a one-hot encoded class decision. By

compartmentalizing each component of the neural network into

separate HDL files, Zynet enhances modular synthesis, simplifies

timing closure tasks, and minimizes debugging efforts. This

design approach also allows for the individual optimization of the

arithmetic and activation logic for each layer, while the

maxFinder module ensures efficient execution of the final

classification task, all under the framework of the autogenerated

top-level wrapper.

Fig.6. Hierarchy of Zynet-Produced Modules

3.3 HARDWARE VALIDATION

As demonstrated in Fig.7, the complete hardware platform

was developed and validated using a Zed board development kit,

which features the Xilinx Zynq-7000 SoC (device part number

xc7z020clg484-1) [15]. The synthesized neural network

intellectual property, comprising layer modules, AXI-DMA

engines, and control wrappers, is integrated within the

programmable logic fabric. Meanwhile, the ARM Cortex-A9

processing system runs the embedded application responsible for

transferring test data and verifying results. The on-board DDR

memory stores input vectors and intermediate activations, while

the PS–PL interconnects (AXI-Lite for control and AXI-DMA for

bulk data transfer) provide the necessary bandwidth for real-time

inference. Testing on this platform confirmed the correct

functional operation and performance characteristics within a

standard FPGA environment [16], [17].

Fig.7. Zed Board Hardware Platform Featuring Zynq-7000

In real-time operation, the FPGA design transmits each

quantized test vector to the neural-network IP and relays the

classification result through a serial interface to a terminal

emulator. As demonstrated in Fig.8, Tera Term shows that the

system displays both the predicted digit and the actual ground-

truth label, such as ‘Detected Number 7 Expected Number 7’, for

each inference cycle. This immediate feedback guarantees that the

hardware accurately replicates the actions of the trained model,

while the printed output facilitates straightforward validation and

rapid identification of misclassifications.

Fig.8. Real-Time Classification Output via Serial Terminal

4. RESULTS

The proposed neural network, after undergoing training for 20

epochs on the MNIST dataset, achieved a testing accuracy of

96.69% in its software implementation. The architecture

comprises four layers: an input layer containing 784 neurons for

the 28×28 pixel input images, two hidden layers with 30 and 20

neurons respectively, and an output layer with 10 neurons

corresponding to digit classes 0-9. A hardmax function is

employed at the output layer to determine the class with the

highest activation. The sigmoid activation function is utilized

across all layers due to its compatibility with low-resource

hardware and its ability to facilitate smooth gradient flow.

The Fig.9 depicts a timing waveform captured during the on-

chip validation of the neural network intellectual property. After

the reset signal is released, the clk and in_valid signals initiate a

burst of 8-bit input samples (displayed on in[7:0]), which are

retrieved from the on-chip memory (in_mem). The AXI-Stream

interfaces (s_axi_awvalid, s_axi_wvalid, s_axi_wdata)

demonstrate the handshaking process for each write operation,

while the start flag alternates to indicate the commencement of

each inference cycle. As the layerNo counter iterates from 1 to 3,

the testDataCount register increments with each completed

classification, and the right/wrong indicators briefly pulse to

signify correct or incorrect predictions. Collectively, these traces

confirm that the hardware effectively processes each test vector,

updates internal counters, and delivers classification results in real

time [18], [19].

In terms of hardware resource utilization, the design was

efficient and adhered to the limitations of the target FPGA. The

Fig.10 represents the resource utilization metrics of a neural

network comprising two hidden layers, with 30 and 20 neurons

respectively, employing the sigmoid activation function and

utilizing an 8-bit data width. The usage of slice Look-Up Tables

(LUTs) was approximately 14% of the available resources, while

the consumption of Flip-Flops (FFs) was minimal at around 4%.

The Block RAM (BRAM), which stored intermediate data and

parameters, utilized nearly 19% of its capacity. Input/Output (IO)

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2026, VOLUME: 11, ISSUE: 04

2225

pins were the most utilized, accounting for nearly 49% of the

available pins, indicating a significant need for data exchange

with external devices. Clocking resources such as BUFGs were

used minimally, occupying only about 3%.

Fig.9. Simulation Waveforms

Fig.10. FPGA Resource Utilization

Table.1. Classification Performance Overview

Activation

Function

Data

Width

Frequency

(MHz)

Power

(mW)
Accuracy (%)

Sigmoid

8 119 257 99

16 112 389 99

24 104 510 99

32 119 257 99

Relu

8 126 183 80

16 106 345 87

24 101 404 87

32 80 706 88

The Table.1 presents a summary of the classification

performance for all combinations of quantization schemes and

activation functions evaluated on the MNIST test set. [20]Table 2

details the FPGA resource utilization, including LUTs, flip-flops,

BRAM, IO, and BUFG, associated with each neural network

configuration under examination [21].

The trained model was successfully deployed on a Zed board

featuring an xc7z020clg484-1 SoC, utilizing the Xilinx Vivado

2019.1 design suite for synthesis, implementation, and bitstream

generation. The design achieved a maximum operating frequency

of 119 MHz. In summary, the hardware implementation not only

achieved a commendable classification accuracy of 99% on test

inputs but also operated with low power consumption, recorded

at approximately 0.257 watts [22]. These outcomes underscore

the design’s effectiveness in terms of performance, efficiency,

and its appropriateness for real-time embedded applications.

Table.2. Resource Usage per Network Configuration

Activation

Function

Data

Width

Resource Utilization

LUT FF BRAM IO BUFG

Sigmoid

8 7337 3766 27 97 1

16 4691 4113 30 105 1

24 9292 6667 60 113 1

32 7337 3766 27 97 1

Relu

8 7485 3929 1 97 1

16 6133 5120 15 105 1

24 11398 8101 26 113 1

32 23519 11849 30 121 1

5. CONCLUSION

This research has employed a comprehensive strategy to

implement a moderately deep neural network featuring a fully

connected layer on an Xilinx Zynq‑7000 FPGA. It began with

training in Python using the MNIST dataset, progressed to

automated IP-core generation through Zynet [23], and concluded

with real-time hardware-in-the-loop verification and integration

of hardware and software. By utilizing fixed-point representations

for network parameters and activations, along with leveraging the

on-chip memory management and AXI interconnect features of

Zynet, the implemented four-layer feed-forward architecture

achieved impressive classification accuracy both in simulation

and during on-board inference. Interrupt-driven AXI-DMA

transfers alleviated the processor’s workload, facilitating

seamless streaming of pixel data and one-hot outputs via a serial

console. Observations regarding throughput, energy

consumption, and overall hardware performance validate that this

methodology strikes an effective balance between computational

speed, efficiency, and resource utilization, underscoring the

promise of reconfigurable logic for high-throughput neural

inference in embedded and edge applications.

REFERENCES

[1] S. Agatonovic-Kustrin and R. Beresford, “Basic Concepts of

Artificial Neural Network (ANN) Modeling and its

Application in Pharmaceutical Research”, Journal of

Pharmaceutical and Biomedical Analysis, pp. 717-727,

2000.

[2] S. Cuomo, V.S. Di Cola, Giampaolo, “Scientific Machine

Learning through Physics-Informed Neural Networks:

Where We are and What’s Next”, Journal of Scientific

Computing, Vol. 92, No. 88, pp. 1-7, 2022.

[3] Y. LeCun, “The MNIST Database of Handwritten Digits”,

Available at https://yann.lecun.org/exdb/mnist/index.html,

Accessed in 1998.

[4] A. Baldominos, Y. Saez and P. Isasi, “A Survey of

Handwritten Character Recognition with MNIST and

EMNIST”, Applied Sciences, Vol. 9, No. 15, pp. 1-7, 2019.

SHYAM PERAKA et al.: RECONFIGURABLE NEURAL NETWORK ON FPGA

2226

[5] R. Kaibou and M.S. Azzaz, “FPGA Implementation of

Mixed Robust Chaos based Digital Color Image

Watermarking”, Proceedings of International Conference

on Networking and Advanced Systems, Vol. 2, pp. 1-7, 2021.

[6] R.R. Kumbhar, P. Radhika and D. Mane, “Design and

Optimization of an On-Chip Artificial Neural Network on

FPGA for Recognizing Handwritten Digits”, Proceedings of

International Conference on Recent Advances in Electrical,

Electronics, Ubiquitous Communication and Computational

Intelligence, Vol. 1, pp. 1-10, 2023.

[7] S.S. Lingala, S. Bedekar, P. Tyagi, P. Saha and P. Shahane,

“FPGA based Implementation of Neural Network”,

Proceedings of International Conference on Advances in

Computing, Communication and Applied Informatics, pp. 1-

5, 2022.

[8] F. Ortega-Zamorano, J.M. Jerez, D. Urda Munoz, R.M.

Luque-Baena and L. Franco, “Efficient Implementation of

the Backpropagation Algorithm in FPGAs and

Microcontrollers”, IEEE Transactions on Neural Networks

and Learning Systems, Vol. 27 No. 9, pp. 1840-1850, 2016.

[9] Nwankpa Chigozie, W. Ijomah, Gachagan Anthony and

Marshall Stephen, “Activation Functions: Comparison of

Trends in Practice and Research for Deep Learning”,

Proceedings of International Conference on Computer

Vision and Pattern Recognition, pp. 1-20, 2020.

[10] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-

based Learning Applied to Document Recognition”,

Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324,

1998.

[11] R. Kaibou, M.S. Azzaz, B. Madani, A. Kadir and H. Hamil,

“Performances Analysis of DNN Accelerator in a HW/SW

Co-Design FPGA Implementation for Image

Classification”, Proceedings of International Conference on

Advanced Electrical Engineering, pp. 1-6, 2024.

[12] P. Jokic, S. Emery and L. Benini, “Improving Memory

Utilization in Convolutional Neural Network Accelerators”,

IEEE Embedded Systems Letters, Vol. 13, No. 3, pp. 77-80,

2021.

[13] J. Si and S.L. Harris, “Handwritten Digit Recognition

System on an FPGA”, Proceedings of International

Conference on Computing and Communication, pp. 402-

407, 2018.

[14] K. Vipin, “ZyNet: Automating Deep Neural Network

Implementation on Low-Cost Reconfigurable Edge

Computing Platforms”, Proceedings of International

Conference on Field Programmable Technology, pp. 1-8,

2019.

[15] V.A. Sumayyabeevi, J.J. Poovely, N.Aswathy and S.

Chinnu, “A New Hardware Architecture for FPGA

Implementation of Feed Forward Neural Networks”,

Proceedings of International Conference on Advances in

Computing, Communication, Embedded and Secure

Systems, pp. 107-111, 2021.

[16] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou and L. Wang, “A

High Performance FPGA-based Accelerator for Large-Scale

CNNS”, Proceedings of International Conference on Field

Programmable Logic and Applications, pp. 1-9, 2016.

[17] S.K. Venkataramanaiah, X. Du, Z. Li, S. Yin, Y. Cao and

J.S. Seo, “Efficient and Modularized Training on FPGA for

Real-Time Applications”, Proceedings of International

Conference on Artificial Intelligence, pp. 5237-5239, 2021.

[18] R. Kaibou, M.S. Azzaz, M. Benssalah, D. Teguig, H. Hamil,

A. Merah and M.T. Akrour, “Real-Time FPGA

Implementation of a Secure Chaos based Digital Crypto-

Watermarking System in the DWT Domain using Co Design

Approach”, Journal of Real-Time Image Processing, Vol.

18, No. 6, pp. 2009-2025, 2021.

[19] S. Qiao, Z. Lin, J. Zhang and A.L. Yuille, “Neural

Rejuvenation: Improving Deep Network Training by

Enhancing Computational Resource Utilization”,

Proceedings of International Conference on Computer

Vision and Pattern Recognition, pp. 61-71, 2019.

[20] K. Khalil, B. Dey, M. Abdelrehim, A. Kumar and M.

Bayoumi, “An Efficient Reconfigurable Neural Network on

Chip”, Proceedings of International Conference on

Electronics, Circuits and Systems, pp. 1-4, 2021.

[21] K. Khalil, O. Eldash, A. Kumar and M. Bayoumi, “N2OC:

Neural-Network-on-Chip Architecture”, Proceedings of

International Conference on System-on-Chip, pp. 272-277,

2019.

[22] Y.H. Chen, T. Krishna, J.S. Emer and V. Sze, “Eyeriss: An

Energy Efficient Reconfigurable Accelerator for DNNS”,

IEEE Journal of Solid-State Circuits, Vol. 52, No. 1, pp.

127-138, 2016.

[23] “ZyNet Git Repository”, Available at

https://github.com/dsdnu/zynet, Accessed in 2024.

