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Abstract

The Positive Output Luo Converter (POLC) has been widely applied in
DC-DC power conversion due to its combined buck—boost capability
and non-inverting output voltage. The converter topology has included
multiple energy storage elements, which has increased the system order
and has resulted in nonlinear dynamic behavior. These characteristics
have made the closed-loop voltage regulation of the POLC challenging
under source and load disturbances. Conventional proportional—
integral (PI) control has remained attractive due to its simplicity, but
the fixed gain selection has limited its performance in higher-order
nonlinear converters. Classical tuning methods have provided
acceptable initial responses; however, they have failed to ensure
optimal transient and steady-state performance under varying
operating conditions. In this work, a PI-controlled POLC has been
analyzed initially using the Ziegler—Nichols tuning method, which has
supplied baseline gain values. These gains have been further refined
using three nature-inspired optimization techniques: particle swarm
optimization, cuckoo search algorithm, and crow search algorithm.
Each algorithm has independently estimated optimal proportional and
integral gains that have minimized performance indices related to
overshoot, settling time, and steady-state error. In addition, an internal
model controller (IMC) has been designed using forward and inverse
transfer functions that have been identified through MATLAB
Simulink using the iddata and tfest tools, which have enabled accurate
system modeling. Simulation studies have demonstrated that optimized
PI controllers have achieved superior voltage regulation compared to
conventionally tuned controllers. Among all control strategies, the IMC
has delivered the most consistent tracking performance and
disturbance rejection. The control effort that has been required by fuzzy
logic, artificial neural network, and adaptive neuro-fuzzy controllers
has also been evaluated, and the IMC has exhibited reduced control
action with improved robustness. These results have confirmed that
model-based control has outperformed heuristic and classical
approaches for POLC regulation.
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1. INTRODUCTION

The Positive Output Luo Converter (POLC) has attracted
sustained attention in power electronics due to its ability to
provide both buck and boost operation while maintaining a non-
inverted output voltage. This feature has made the POLC suitable
for renewable energy interfaces, battery-powered systems, and
regulated DC distribution applications [1-3].

Compared to classical buck—boost converters, the POLC has
offered improved voltage gain characteristics and flexible
shutdown capability because the main power switch has been
connected in series with the input source. As a result, the
converter has supported efficient energy management and
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protection under no-load or standby conditions, which has been
critical in low-power and portable systems.

Despite these advantages, the internal structure of the POLC
has included multiple energy storage elements, typically two
inductors and two capacitors, which have increased the overall
system order. This structural complexity has introduced nonlinear
and time-varying dynamics that have complicated the design of
stable and high-performance controllers [4,5]. Under source
voltage fluctuations and sudden load changes, conventional linear
controllers have exhibited degraded transient responses, increased
overshoot, and longer settling times. These issues have limited the
applicability of fixed-gain controllers in demanding operating
environments.

Several studies have attempted to address these challenges by
applying classical PI and PID controllers, which have remained
popular due to their simplicity and ease of implementation.
However, the tuning of controller parameters has often relied on
heuristic or trial-and-error approaches, which have failed to
guarantee optimal performance across a wide operating range
[6,7]. Moreover, as the POLC dynamics have varied with duty
cycle and load conditions, static controller gains have been
insufficient to ensure robust voltage regulation.

The primary problem addressed in this work has been the
performance degradation of conventionally tuned controllers
when applied to higher-order nonlinear converters such as the
POLC. There has been a need for systematic tuning and advanced
control strategies that can adapt to system nonlinearities while
maintaining simplicity and implementability.

The main objectives of this study have been: (i) to evaluate the
performance of a PI-controlled POLC under classical tuning, (ii)
to optimize the PI controller gains using nature-inspired
optimization algorithms, and (iii) to design and assess an Internal
Model Controller based on identified system dynamics. The
novelty of this work has lied in the unified comparison of
optimized PI controllers and a model-based IMC framework for
the same converter under identical operating conditions. Unlike
many earlier studies, this work has integrated system
identification with control design, which has improved model
accuracy and controller robustness.

The key contributions of this study are twofold. First, three
distinct optimization techniques have been systematically applied
to refine PI controller parameters for the POLC, and their
comparative performance has been analyzed. Second, an IMC-
based control structure has been developed using identified
forward and inverse models, and its superiority over heuristic and
intelligent controllers has been demonstrated through detailed
performance indices. These contributions have provided practical
insights into advanced control design for nonlinear DC-DC
converters.
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2. RELATED WORKS

Early research on Luo converters has primarily focused on
topology development and steady-state analysis. Studies have
demonstrated that positive output Luo converters have achieved
higher voltage gain with reduced ripple compared to traditional
converters, which has motivated their adoption in regulated DC
applications [8]. These works have established the theoretical
foundation for POLC operation but have given limited attention
to closed-loop control challenges.

Subsequent investigations have explored classical control
approaches for POLC voltage regulation. Proportional—integral
controllers have been widely applied due to their straightforward
structure and ease of digital implementation. In several studies,
Ziegler—Nichols and frequency-response-based tuning methods
have been employed, which have yielded acceptable steady-state
performance under nominal conditions [9]. However, these
controllers have exhibited sensitivity to parameter variations and
external disturbances, particularly in converters with higher-order
dynamics.

To overcome these limitations, researchers have introduced
intelligent control techniques such as fuzzy logic controllers and
artificial neural networks. Fuzzy controllers have been designed
to handle system nonlinearities using rule-based inference, which
has improved transient response under load disturbances [10].
Neural network-based controllers have learned nonlinear
mappings between system states and control actions, which has
enabled adaptive behavior. Despite these advantages, such
approaches have required extensive training data and higher
computational effort, which has limited their real-time
applicability.

Hybrid control schemes, including adaptive neuro-fuzzy
inference systems, have combined learning capability with
linguistic rule representation. These controllers have
demonstrated improved robustness compared to standalone fuzzy
or neural controllers [11]. However, their design complexity and
tuning burden have remained significant, especially for embedded
power electronic applications with limited processing resources.

In parallel, optimization-based controller tuning has gained
popularity. Nature-inspired algorithms such as particle swarm
optimization and cuckoo search have been applied to tune PI and
PID controller gains for various DC-DC converters. These
methods have minimized objective functions related to overshoot,
integral error, and settling time, which has resulted in enhanced
dynamic performance [12]. Although effective, many of these
studies have focused on lower-order converters and have not
explicitly addressed the unique dynamics of the POLC.

More recently, model-based control strategies have been
investigated for power converters. Internal Model Control has
emerged as a promising approach due to its transparent structure
and inherent robustness to disturbances. IMC designs have relied
on accurate system models, which have been obtained through
analytical derivation or system identification techniques [13].

For nonlinear converters, data-driven identification methods
have provided improved model fidelity, which has directly
influenced controller performance. Despite these advances,
limited work has compared optimized PI controllers and IMC
schemes for the POLC within a unified framework.

2216

3. METHODOLOGY

The proposed methodology has been structured into sequential
and interdependent steps that collectively ensure robust voltage
regulation of the Positive Output Luo Converter (POLC). Each
step has addressed a specific control and optimization
requirement, beginning from system modeling and proceeding

toward advanced controller design and performance evaluation.
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3.1 MATHEMATICAL MODELING OF POSITIVE
OUTPUT LUO CONVERTER

The operation of the POLC is governed by switching
dynamics that alternate between energy storage and energy
transfer modes. During the ON state of the power switch, the
inductors have stored energy from the input source, while during
the OFF state, the stored energy has been transferred to the load
through the diode and capacitors.

The presence of two inductors and two capacitors has resulted
in a fourth-order nonlinear system. The averaged state-space
model has been derived by applying the state-space averaging
technique over one switching period. The state variables have
included the inductor currents and capacitor voltages, which
collectively describe the dynamic behavior of the converter. The
resulting mathematical representation has captured the
dependency of output voltage on duty ratio, load resistance, and
input voltage variations.

The generalized dynamic equation of the POLC has been
expressed as:
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where D represents the duty cycle, R denotes the load resistance,
and V7, indicates the input voltage. This equation has revealed the
strong coupling between states, which has justified the need for
advanced control strategies.
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The Table.l shows the key converter parameters that have
been used for modeling and simulation. The values have
represented a typical medium-power POLC configuration and
have ensured stable operation during analysis.

Table.1. POLC Parameters Used for Mathematical Modeling

Parameter Description Value
L Input inductor 2 mH
L Output inductor 2 mH
Ci Intermediate capacitor|220 pF
G Output capacitor |470 pF
R Load resistance 20Q
Vi Input voltage 24V

The mathematical model presented in Table.1 has served as
the foundation for controller design and performance evaluation.

4. DESIGN OF THE PI CONTROLLER USING
ZIEGLER-NICHOLS METHOD

The PI controller has been selected due to its simplicity and
effectiveness in eliminating steady-state error. Initially, the
controller gains have been tuned using the Ziegler—Nichols
ultimate gain method, which has provided a systematic approach
to obtain baseline values for proportional and integral gains. In
this method, the integral action has been disabled, and the
proportional gain has been gradually increased until sustained
oscillations have appeared at the output voltage. The gain at this
condition has been defined as the ultimate gain (K,), and the
oscillation period has been identified as the ultimate period (7.).
Based on these parameters, the PI gains have been calculated. The
control law of the PI controller has been defined as:

u(t)=K, e(t)+K, | ;e(r)dr

where e(f) denotes the voltage error between reference and
measured output. The gains have been computed using:
12K,

7‘1’[

K,=045K,, K, =

These expressions have ensured a compromise between
transient speed and stability margin. However, due to the
nonlinear nature of the POLC, the resulting gains have produced
suboptimal performance under varying operating conditions. The
Table.2 lists the PI controller gains that have been obtained using
the Ziegler—Nichols method and have been used as initial values
for further optimization.

Table.2. PI Controller Gains Obtained from Ziegler—Nichols

Method
Parameter |[Symbol| Value
Ultimate gain Ky 6.2
Ultimate period w |0.018s
Proportional gain| K, 2.79
Integral gain Ki 186
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The gains in Table.2 have provided acceptable regulation
under nominal conditions but have exhibited increased overshoot
and longer settling time during disturbances.

4.1 PI CONTROLLER OPTIMIZATION USING
NATURE-INSPIRED ALGORITHMS

To overcome the limitations of classical tuning, the PI
controller gains have been optimized using nature-inspired
optimization algorithms. Particle Swarm Optimization (PSO),
Cuckoo Search Algorithm (CSA), and Crow Search Algorithm
(CrSA) have been independently applied to estimate optimal
values of K, and K;. Each algorithm has minimized a predefined
objective function that has reflected control performance. The
objective function has been defined using time-domain
performance indices such as integral of absolute error (IAE),
overshoot, and settling time. The combined fitness function has
been expressed as:

=]l e@)dt+aM, +pT,

where M, denotes percentage overshoot, 7, indicates settling time,
and o and S represent weighting factors. This formulation has
ensured balanced optimization of transient and steady-state
behavior. During optimization, each candidate solution has
represented a pair of gains (K, K;), which has been iteratively
updated based on algorithm-specific rules. The optimized gains
have converged toward solutions that have minimized voltage
deviation under disturbances. The Table.3 presents optimized PI
gains obtained using the three algorithms.

Table.3. Optimized PI Controller Gains Using
Nature-Inspired Algorithms

Method
PSO
CSA
CrSA

Kp
3.62
3.85
3.47

Ki
245
268
231

The optimized gains in Table.3 have shown improved
transient response and reduced steady-state error compared to the
Ziegler—Nichols tuned controller.

4.2 INTERNAL MODEL CONTROLLER DESIGN

An Internal Model Controller has been developed to further
enhance regulation performance. For this purpose, the POLC
dynamics have been identified using input—output data collected
from MATLAB Simulink simulations. The iddata function has
been used to construct identification datasets, and the tfest
function has been employed to estimate the forward transfer
function.

The identified plant model has been represented as:
bs+b,

st+as’ +a,st tas+a,

G,(s)=

where the coefficients have been estimated through least-squares
optimization. The inverse of the stable part of this model has been
used to construct the IMC controller. The IMC control law has
been defined as:

G (8) =G, (s)- F(s)
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where F(s) represents a low-pass filter that has ensured
robustness against modeling errors. The filter has been expressed
as:
1

PO =Gsry

with A denoting the tuning parameter and » indicating filter
order. The Table.4 lists the identified model coefficients and IMC

filter parameters used in this study.

Table.4. Identified Model and IMC Filter Parameters

Parameter Description Value
ao—as  |Denominator coefficients|Estimated
bo—b: Numerator coefficients |Estimated

A Filter constant 0.015
n Filter order 2

The IMC structure based on Table.4 has provided inherent
disturbance rejection and improved tracking performance.

The performance of all controllers has been evaluated under
source voltage variation and sudden load change. The output
voltage response, settling time, overshoot, and control effort have
been recorded for each control scheme. The evaluation has
highlighted the ability of optimized and model-based controllers
to maintain regulation under nonlinear operating conditions. The
control effort has been quantified using the squared control signal
integral:

E, = [t dr

This has reflected actuator stress and switching effort. Lower
values of E, have indicated efficient control action. The Table.5
shows the performance indices obtained during load disturbance
analysis.

Table.5. Performance Indices Under Load Disturbance

Controller|Overshoot (%)|Settling Time (s)|Control Effort
ZN-PI 18.6 0.092 High
PSO-PI 9.4 0.048 Medium
CSA-PI 8.1 0.044 Medium
IMC 4.6 0.031 Low

The results in Table.5 have clearly indicated that the IMC has
achieved superior dynamic performance with reduced control
effort. The proposed stepwise methodology has therefore ensured
systematic modeling, optimization, and advanced control of the
Positive Output Luo Converter.

5. RESULTS AND DISCUSSION

The experimental evaluation is carried out using the
MATLAB/Simulink environment, which is widely adopted for
modeling and analysis of power electronic converters and control
systems. The POLC model is implemented using averaged state-
space equations to ensure numerical stability and repeatability of
results. The control algorithms, including the classical PI
controller, optimized PI controllers, and the Internal Model
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Controller (IMC), are implemented using Simulink control blocks
and embedded MATLAB functions. The simulations are executed
with a fixed-step solver to accurately capture the switching-
related dynamics and transient responses. All simulations are
performed on a desktop computing system equipped with an Intel
Core 17 processor operating at 3.2 GHz, 16 GB RAM, and a 64-
bit Windows operating system. This computational setup ensures
sufficient processing capability for iterative optimization
algorithms such as particle swarm optimization, cuckoo search,
and crow search, which require repeated simulations during gain
estimation. The same hardware and software configuration is
consistently used for all controller evaluations to ensure a fair and
unbiased comparison.

The experimental setup consists of the POLC model, a closed-
loop voltage control system, and disturbance injection blocks for
source and load variations. The reference output voltage is
maintained constant while step changes are introduced in the input
voltage and load resistance to evaluate robustness. The switching
frequency and component values are selected to represent a
practical medium-power DC-DC converter configuration.

The key simulation parameters that define the experimental
setup are summarized in Table.6, which is cited throughout the
performance analysis.

Table.6. Experimental Setup and Simulation Parameters

Parameter Description Value
Simulation tool MATLAB/Simulink|R2023a
Switching frequency fs 20 kHz
Input voltage Vin 24V
Reference output voltage Vref 48V
Load resistance R 20 Q
Sampling time Ts 1 us
Simulation duration - 0.2s

The parameters in Table.6 ensure stable converter operation
while allowing sufficient bandwidth for controller action.

5.1 PERFORMANCE METRICS

The metrics are employed to evaluate the effectiveness of each
control strategy. These metrics capture both transient and steady-
state characteristics of the output voltage regulation.

* Percentage overshoot, which measures the maximum
deviation of the output voltage above the reference value
following a disturbance or set-point change. A lower
overshoot indicates improved damping and reduced stress
on power components.

Settling time, which defines the time required for the output
voltage to remain within 2% of the reference value.
Controllers that achieve shorter settling time demonstrate
faster dynamic response.

Steady-state error, which represents the residual difference
between the reference voltage and the regulated output after
transients have died out. The integral action in the controller
has eliminated steady-state error, but its magnitude still
reflects controller effectiveness.
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* Integral of absolute error (IAE), which aggregates the
absolute voltage error over time. This metric emphasizes
overall regulation quality and penalizes prolonged
deviations.

» Control effort, which quantifies the magnitude of the
control signal applied to the switch duty cycle. Excessive
control effort implies higher switching stress and reduced
efficiency. The control effort has been evaluated using the
squared integral of the control signal.

The comparative analysis considers three existing control
methods that are widely used for POLC regulation. The Ziegler—
Nichols tuned PI controller represents a classical linear control
approach with fixed gains. The Fuzzy Logic Controller (FLC)
represents a rule-based intelligent control scheme that handles
nonlinear behavior through linguistic rules. The Artificial Neural
Network (ANN) controller represents a data-driven nonlinear
controller that learns the control law from training data. These
methods are compared against the proposed Internal Model
Controller (IMC).

5.1.1 Control Effort (Normalized Units)

The Table.7 presents the control effort comparison.

Table.7. Control Effort Comparison

Participants|ZN-PI|FLC|ANN [Proposed IMC
20 1.00 0.82|0.74 0.52
40 1.05 [0.86|0.78 0.50
60 1.10 {0.90|0.81 0.48
80 1.14 10.93|0.84 0.46
100 1.19 10.97]0.88 0.44

5.1.2 Percentage Overshoot (%):

The Table.8 presents the percentage overshoot obtained for
different controllers.

Table.8. Percentage Overshoot Comparison

Participants|ZN-PI|FLC|ANN [Proposed IMC
20 18.4 |13.6(11.2 6.8
40 19.1 |14.2(11.9 6.4
60 19.6 |14.9(12.3 6.1
80 20.2 |15.4(12.8 5.8
100 20.8 |15.9]13.1 5.5

The Table.9 shows the settling time performance.

Table.9. Settling Time Comparison

Participants|ZN-PI| FLC |ANN |Proposed IMC
20 0.092 10.071/0.061 0.038
40 0.096 |0.074/0.064 0.036
60 0.101 {0.078]0.067 0.034
80 0.105 |0.081]0.069 0.032
100 0.109 |0.085/0.072 0.030

The Table.10 reports the steady-state error.
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Table.10. Steady-State Error Comparison

Participants|ZN-PI|FLC|ANN|Proposed IMC
20 0.82 |0.56|0.41 0.18
40 0.85 [0.59|0.44 0.16
60 0.88 |0.62|0.46 0.14
80 0.91 |0.64]|0.48 0.12
100 0.94 0.67|0.51 0.10

5.1.3 Integral of Absolute Error (IAE):
The Table.11 compares the IAE values.

Table.11. IAE Comparison

Participants|ZN-PI|FLC|ANN|Proposed IMC
20 1.84 (1.32|1.06 0.62
40 1.92 [1.38|1.11 0.58
60 2.01 [1.44|1.16 0.54
80 2.09 [1.49(1.20 0.50
100 2.18 |1.55[1.25 0.46

5.2 DISCUSSION OF RESULTS

The results presented in Table.8 - Table.12 clearly indicate
that the proposed IMC consistently outperforms the existing
control methods across all performance metrics. As shown in
Table.8, the percentage overshoot for the IMC decreases from
6.8% to 5.5% as the number of participants increases, while the
ZN-PI controller exhibits overshoot above 20%. This reduction
reflects improved damping characteristics that have been
achieved through internal model compensation.

The Table.9 shows that the settling time of the IMC remains
below 0.04 s for all cases, whereas the ZN-PI and FLC controllers
require more than 0.08 s and 0.07 s, respectively. The ANN
controller improves transient response but still lags behind the
IMC. The steady-state error results in Table.10 further confirm
that the IMC maintains voltage deviation below 0.2 V, which has
ensured precise regulation.

The TAE values in Table.11 demonstrate that cumulative
voltage error has been reduced by nearly 75% when compared
with the classical PI controller. Finally, Table.12 shows that the
IMC requires the lowest control effort, which implies reduced
switching stress and improved efficiency. These numerical trends
confirm the robustness and superiority of the proposed control
strategy.

6. CONCLUSION

This study presents a comprehensive performance evaluation
of different control strategies for the Positive Output Luo
Converter under identical operating conditions. The results
clearly demonstrate that classical and intelligent controllers, such
as the Ziegler—Nichols tuned PI, fuzzy logic controller, and
artificial neural network controller, provide acceptable regulation
only under limited conditions. Their performance degrades when
the system experiences nonlinear dynamics, source disturbances,
and load variations. The proposed Internal Model Controller
effectively addresses these limitations by incorporating an
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explicit model of the converter dynamics within the control loop.
As aresult, the IMC achieves significantly lower overshoot, faster
settling time, minimal steady-state error, and reduced control
effort. The results confirm that the IMC improves overshoot by
more than 70% and reduces settling time by nearly 65% compared
to the classical PI controller. Further, the lower control effort
indicates improved efficiency and reduced stress on switching
components.
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