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Abstract

Batteryless Internet of Things nodes have emerged as a practical
solution for long-term deployments in remote and maintenance-
constrained environments. Conventional microcontroller architectures
have relied on stable power sources, which have limited their suitability
for intermittent energy conditions. Energy harvesting technologies,
such as solar and vibration sources, have enabled sustainable
operation, yet architectural inefficiencies have reduced system
reliability —under fluctuating power  availability.  Existing
microcontroller designs have lacked adaptive mechanisms to handle
frequent power interruptions and variable harvested energy. This
limitation has resulted in state loss, excessive restart overhead, and
inefficient energy utilization. The absence of energy-awareness at the
architectural level has constrained task continuity and overall system
performance in batteryless loT nodes. This work has proposed an
energy-harvesting aware microcontroller architecture that has
integrated dynamic power monitoring, non-volatile state retention, and
adaptive task scheduling. A lightweight energy prediction module has
guided execution decisions based on harvested energy trends. The
proposed architecture has included checkpointing logic that has
preserved critical execution states during power outages. A prototype
implementation has evaluated the design under real-world intermittent
power profiles using solar and RF energy sources. Experimental
evaluation has demonstrated that the proposed architecture has
improved task completion rate by 31% compared with conventional
microcontrollers. Energy utilization efficiency has increased by 27%,
while restart overhead has reduced significantly. The system has
maintained functional correctness under frequent power interruptions,
which has validated the effectiveness of architectural energy-
awareness. These results have confirmed that integrating energy-
harvesting intelligence at the microcontroller level has enhanced
reliability and sustainability for batteryless loT nodes.

Keywords:

Energy Harvesting, Batteryless IoT, Microcontroller Architecture,
Intermittent Power, Sustainable Computing

1. INTRODUCTION

The rapid growth of the Internet of Things has driven
extensive research toward ultra-low-power and maintenance-free
sensor nodes for pervasive monitoring applications. Recent
studies have shown that batteryless IoT nodes powered by
ambient energy sources have reduced long-term operational costs
and environmental impact [1-3]. Energy harvesting techniques,
including solar, thermal, vibration, and radio-frequency sources,
have enabled continuous sensing without battery replacement,
which has made these systems attractive for large-scale and hard-
to-access deployments. However, traditional microcontroller
architectures have assumed a stable power supply, which has
limited their effectiveness under intermittent energy conditions
that characterize harvested power sources.
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Several challenges have constrained the practical adoption of
batteryless IoT systems. First, harvested energy has remained
highly variable and unpredictable, which has caused frequent
power failures during computation and communication tasks [4].
Second, conventional microcontrollers have lacked intrinsic
support for state preservation, which has resulted in repeated
restarts and loss of computational progress [5]. These challenges
have degraded task reliability and have increased energy waste,
particularly in sensing applications that require periodic and state-
dependent execution.

The core problem addressed in this work has related to the
absence of energy-awareness at the microcontroller architectural
level. Prior systems have treated energy harvesting as an external
power concern rather than an internal design parameter, which has
led to inefficient scheduling and poor resilience to power
interruptions [6]. As a result, batteryless IoT nodes have failed to
exploit harvested energy optimally, even when sufficient ambient
energy has been available over time.

The objective of this research has been to design and evaluate
an energy-harvesting aware microcontroller architecture that
adapts its operation to dynamic power availability. The proposed
work has aimed to ensure computational continuity, reduce restart
overhead, and improve energy utilization efficiency. Specific
objectives have included integrating real-time energy monitoring,
enabling non-volatile state retention, and supporting adaptive task
execution under intermittent power.

The novelty of this work has stemmed from embedding
energy-awareness directly into the microcontroller architecture
rather than relying on software-only or peripheral-level solutions.
Unlike prior designs, the proposed architecture has combined
lightweight energy prediction with architectural checkpointing
mechanisms, which have allowed proactive execution control
based on harvested energy trends.

The main contributions of this work are twofold. First, an
energy-harvesting aware microcontroller architecture has been
developed that has supported reliable execution under frequent
power interruptions. Second, an experimental evaluation has
demonstrated measurable improvements in task completion rate
and energy efficiency compared with conventional
microcontroller designs, which has validated the effectiveness of
the proposed approach.

2. RELATED WORKS

Early research on batteryless IoT systems has focused on
exploiting ambient energy sources to replace or supplement
batteries. Studies in [7] have investigated solar-powered sensor
nodes that have demonstrated long-term outdoor operation, but
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these systems have relied on energy buffers and conservative duty
cycling. Similarly, vibration-based energy harvesting approaches
have been explored in [8], where microcontrollers have operated
intermittently based on accumulated energy, which has limited
responsiveness and computational continuity.

Several works have addressed intermittent computing as a key
challenge in energy-harvesting systems. The authors in [9] have
proposed checkpointing mechanisms that have saved processor
state to non-volatile memory during power failures. While this
approach has improved forward progress, it has introduced
additional energy overhead and latency. In [10], task-based
execution models have been presented, which have decomposed
applications into idempotent tasks. These models have reduced
state corruption but have required significant software
restructuring.

Architectural enhancements for energy-harvesting systems
have also been explored. A non-volatile processor design has been
introduced in [11], which has integrated non-volatile flip-flops to
retain state across power losses. Although this design has
improved resilience, it has increased hardware complexity and
area overhead. Similarly, hybrid volatile-non-volatile
architectures have been proposed in [12], which have balanced
performance and persistence but have lacked adaptive energy
management.

Energy-aware scheduling has been studied extensively at the
operating system level. The work in [13] has presented an energy-
driven scheduler that has adjusted task execution based on
harvested energy estimates. However, the reliance on software
prediction has reduced accuracy under highly dynamic
conditions. Communication-centric approaches in [14] have
optimized radio usage based on energy availability, but they have
not addressed computation-level inefficiencies within the
microcontroller.

More recent studies have emphasized holistic system design
for batteryless IoT nodes. In [15], a co-design framework has been
proposed that has combined hardware support with lightweight
runtime management. While this approach has shown promise, it
has required tight coupling between application logic and
hardware features, which has reduced generality.

In contrast to existing works, the present study has focused on
embedding energy-awareness at the microcontroller architectural
level while maintaining application transparency. By integrating
power monitoring, adaptive execution control, and state retention
within the architecture, the proposed approach has addressed both
computational and energy challenges simultaneously. This design
philosophy has distinguished the work from prior solutions that
have treated energy harvesting as an external or secondary
concern.

ENERGY-HARVESTING
MICROCONTROLLER

3. PROPOSED
AWARE
ARCHITECTURE

The proposed architecture operates through a sequence of
tightly coupled steps that integrate energy awareness directly into
the microcontroller operation. Each step contributes to reliable
execution under intermittent power conditions while maintaining

low overhead. The working principle is explained through distinct
functional stages, supported by tables and analytical formulations.

Checkpoint Overhead o
<5% . g Recovery Tlm:} < 10us
4 + + R,

Ener Variable Power| Mcmcontolier Atomic
9y 1] Core (Volatile SRAM, |—>1 A Task
Harvester Supply 2 Checkpoint Block
Registers)
& Storage Non-

-E l Sections
I Power State Energy Prediction Rollback Recovery Task Reliable Task
Monitor Module Manager Rescheduling Completion

State Task Restart
Checkpoint Non-Volatile Validation Logic
Opportunities  |Memory Controller! l
| Flash/NVM Execution i
Storage C Detector |
N J

Fig.1. Proposed Energy-Harvesting Aware Microcontroller
Architecture

The energy harvesting and power monitoring unit
continuously observes the incoming energy from ambient sources
such as solar or RF signals. The harvested power fluctuates over
time, which necessitates real-time estimation of available energy.
The monitoring unit samples the supply voltage and current at
regular intervals, which enables the system to estimate the
instantaneous and residual energy. This information guides all
subsequent architectural decisions.

The monitoring logic computes the effective harvested energy
that supports execution and storage operations. Voltage
thresholds define safe operating regions, which prevent unstable
execution when power drops below a minimum level. The
microcontroller remains active only when sufficient energy is
available, which avoids repeated brown-out resets.

The relationship between harvested energy and execution
feasibility is modeled as:

Ep 0= [ V(O 1,(0)d7 ~(Eo (04 By () + Ey ()

The Table.1 presents a power monitoring profile used during
execution analysis. As shown in Table.1, the harvested power
varies significantly, which highlights the importance of
continuous monitoring for stable operation.

Table.1. Energy Harvesting and Monitoring Parameters

Parameter Value
Harvested Voltage Range |1.8-3.3 V
Harvested Current Range  |5—40 mA
Sampling Interval 10 ms

Minimum Operating Energy|(12 pJ

Conversion Efficiency 78%

The energy prediction module estimates short-term future
energy availability using recent harvesting trends. This module
smooths instantaneous fluctuations and provides a probabilistic
view of near-future power levels. Such estimation supports
proactive scheduling decisions rather than reactive shutdowns.

The predictor computes a weighted moving estimate of
harvested energy, which accounts for both historical samples and
recent variations. This approach reduces sensitivity to noise while
maintaining responsiveness to environmental changes. The
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The Table.4 presents checkpointing parameters and overhead.
Table.4 indicates that checkpoint energy remains a small fraction
of total execution energy.

The energy prediction model is expressed as:

. 1 &
By (k+D)=aE, (K)+(1-a)— Y E,. ()
) o e Table.4. Checkpointing Parameters and Overhead
The Table.2 summarizes prediction parameters and observed

accuracy. The values in Table.2 indicate that prediction error Parameter Value
remains within acceptable bounds for scheduling decisions. State Size 128 bytes
Table.2. Energy Prediction Configuration and Accuracy Memory Type FRAM
Energy per Write 0.12 pJ/byte
Parame.ter Value Total Checkpoint Energy| 15.36 puJ
Smoothing Factor («) 0.6 Checkpoint Latency 1.8 ms
. - ) '

W1n<.10\.iv Size (N) 8 samples Following a power outage, the recovery module restores the
Prediction Horizon S0 ms saved state and resumes execution seamlessly. The recovery
Mean Prediction Error 6.2% process validates checkpoint integrity before restoring registers
Maximum Prediction Error| 11.4% and control flow. This step ensures correctness even under

- X repeated power interruptions.
The adaptive scheduler governs task execution based on

predicted and available energy. Tasks are categorized according
to their energy demand and execution criticality. Lightweight
sensing tasks receive priority under limited energy, while
compute-intensive tasks execute only when sufficient energy
margin exists.

The architecture avoids redundant initialization routines
during recovery, which reduces wasted energy. Execution
resumes exactly from the point of interruption, which
significantly improves task completion probability in intermittent
environments.

The scheduler operates at the architectural level, which The recovery correctness condition is expressed as:

reduces software overhead and ensures timely decisions. Task S estored = Ssaved> V'S €{PC,R,SP, M}
admission depends on an energy feasibility check that compares
predicted energy against estimated task cost. If the margin is
insufficient, the task is deferred without partial execution.

The Table.5 summarizes recovery performance metrics
observed during evaluation. As shown in Table.5, recovery

latency remains minimal, which supports responsive operation.
The scheduling decision is formalized as:

1, if Ehm >E, +E,_ Table.5. Power Failure Recovery Performance
Execute(T)) = { ' €
0, otherwise Metric Value
The Table.3 illustrates a task classification and scheduling Recovery Latency 2.4 ms
outcome. As seen in Table.3, low-energy tasks consistently Recovery Energy 6.8 W

receive execution priority under constrained conditions. State Restoration Success Rate| 99.2%

Table.3. Adaptive Task Scheduling Profile Average Restart Reduction 68%
Execution Continuity Maintained
Task Type le:;flgﬁ) Priority El;(:ccil;::::ln
4. RESULTS AND DISCUSSION

Sensor Sampling 8 High | Executed
Data Encoding 15 Medium| Deferred The experimental evaluation is conducted using a mixed
Wireless Transmission 32 Low | Skipped sifrpulgtion andf pr(})ltotype-base(:1 approac};] to assess the
. . effectiveness of the proposed energy-harvesting aware
State Logging 10 High | Exccuted microcontroller architecturr)e. pThe archite(%t}lllral behavigor under
To preserve computational progress during power failures, the intermittent power is simulated using the MSP430-compatible
architecture integrates non-volatile checkpointing. Critical microcontroller model integrated within the Energy Intermittency
processor states, including registers, program counter, and stack Simulation Framework, which enables accurate emulation of
pointers, are periodically stored in non-volatile memory. This voltage fluctuations and power outages. The simulation
mechanism ensures forward progress despite intermittent power. environment operates with real harvested power traces to reflect
Checkpointing triggers when predicted energy drops below a practical deployment conditions. In addition, a small-scale
safety threshold. The process remains lightweight by storing only hardware prototype is implemented using an ultra-low-power
essential state variables. Upon power restoration, the system microcontroller and an external energy harvesting module to
resumes execution from the last consistent checkpoint rather than validate simulation outcomes. All simulations and data analyses
restarting from the beginning. are executed on a workstation equipped with an Intel Core i7

The checkpointing condition and cost are represented as: processor at 3.2 GHz, 16 GB RAM, and a 64-bit Linux operating
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system. This configuration provides sufficient computational
resources to ensure repeatable and consistent experimental
results.

The experimental setup configures the microcontroller to
operate under intermittent power supplied by harvested energy
profiles. The evaluation compares the proposed architecture with
baseline microcontroller execution without energy awareness.
Key system parameters, including voltage thresholds, checkpoint
size, and task energy profiles, are carefully selected to reflect
realistic IoT node behavior. Table.6 summarizes the experimental
parameters used throughout the evaluation.

Table.6. Experimental Setup and Parameter Configuration

Parameter Value
Microcontroller Model  [MSP430-compatible
Energy Source Solar and RF traces
Operating Voltage Range 1.8-33V
Checkpoint Memory FRAM
Checkpoint Size 128 bytes
Sampling Interval 10 ms

Task Execution Window 50 ms
Number of Tasks 20
Simulation Duration 6 hours

As indicated in Table.6, the selected parameters ensure that
the system experiences frequent power interruptions, which
stress-test the energy-awareness mechanisms.

4.1 PERFORMANCE METRICS

Five performance metrics are considered to evaluate the
proposed architecture comprehensively.

» Task Completion Rate measures the ratio of successfully
completed tasks to the total number of scheduled tasks. This
metric reflects execution reliability under intermittent
power. A higher task completion rate indicates that the
architecture effectively manages energy variability and
minimizes execution failures.

Energy Utilization Efficiency quantifies the proportion of
harvested energy that contributes to useful computation
rather than being lost due to restarts or failed execution. This
metric highlights how effectively the architecture exploits
available energy resources.

Checkpoint Overhead represents the additional energy and
time consumed during state preservation. Although
checkpointing has introduced overhead, the architecture has
minimized this cost by limiting stored state size and adaptive
triggering.

Recovery Latency evaluates the time required to restore
execution after a power failure. Lower recovery latency
ensures faster resumption of tasks, which is critical for time-
sensitive [oT applications.

System Throughput measures the number of tasks
completed per unit time under intermittent power. This
metric captures the combined impact of scheduling,
checkpointing, and recovery on overall system productivity.
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4.2 DATASET DESCRIPTION

The evaluation uses real-world energy harvesting datasets that
capture environmental variability. Solar energy traces are
collected from outdoor sensor deployments, while RF energy
traces are obtained from ambient wireless sources in indoor
environments. These datasets provide voltage and current samples
at fine temporal resolution, which enables accurate modeling of
harvested power dynamics. The Table.7 describes the datasets
used in the experiments.

Table.7. Energy Harvesting Dataset Description

DTa;:)Zet Environment|Duration Sag:tleing Vfr?:%l}i, ty
Solar Trace Outdoor 6 hours | 10 ms High
RF Trace Indoor 4 hours | 10 ms Medium
Hybrid Trace| = Mixed 5hours | 10 ms High

The diversity in datasets ensures that the proposed architecture
is evaluated under both predictable and highly fluctuating energy
conditions.

4.3 COMPARATIVE RESULTS

The comparative evaluation considers three existing methods,
namely Task-Based Intermittent Execution, Non-Volatile
Processor Design, and Energy-Aware Software Scheduler,
against the Proposed Energy-Harvesting Aware Microcontroller
Architecture. Performance is analyzed over 100 energy sources,
where energy sources represent independent experimental runs
under varying energy traces.

Table.8. Task Completion Rate Comparison

Non- Energy-
Energy Task-B.ased Volatile Aware Proposed
Intermittent .
sources . Processor Software |Architecture
Execution .
Design Scheduler
20 62.4 68.9 71.6 81.3
40 66.8 72.5 75.2 85.7
60 70.1 76.3 78.4 88.9
80 73.6 79.2 81.5 91.6
100 76.8 82.1 84.3 94.2

Table.9. Energy Utilization Efficiency Comparison

Non- Energy-
Energy Task-B.ased Volatile Aware Proposed
Intermittent .
sources . Processor Software |Architecture
Execution .
Design Scheduler
20 58.7 63.4 66.1 74.9
40 61.9 67.2 69.8 78.6
60 64.5 70.6 72.3 81.8
80 67.8 73.1 75.6 84.2
100 70.2 75.8 78.1 87.5




ISSN: 2395-1680 (ONLINE)

Table.10. Checkpoint Overhead Comparison

Non- Energy-

Energy Task-B.ased Volatile Aware Proposed
Intermittent .
sources . Processor Software |Architecture

Execution .
Design Scheduler
20 24.6 19.3 21.7 15.2
40 25.8 20.1 22.4 15.6
60 27.1 21.4 23.6 15.9
80 28.3 22.6 248 16.3
100 29.7 238 26.1 16.8
Table.11. Recovery Latency Comparison
Non- Energy-

Energy Task-B'ased Volatile Aware Proposed
Intermittent .
sources . Processor Software |Architecture

Execution .
Design Scheduler
20 6.8 4.9 5.6 2.7
40 7.2 5.3 6.1 2.9
60 7.6 5.8 6.5 3.1
80 8.1 6.2 7.0 33
100 8.6 6.7 7.4 3.6
Table.12. System Throughput Comparison
Non- Energy-

Energy Task-]?tased Volatile Aware Proposed
Intermittent .
sources . Processor Software |Architecture

Execution .
Design Scheduler
20 112 128 134 162
40 118 136 142 174
60 124 143 149 186
80 131 150 156 197
100 138 158 163 209
4.4 DISCUSSION OF RESULTS
The results in Tables 8-12 demonstrate consistent

performance gains for the proposed architecture across all
metrics. As shown in Table.8, the task completion rate increases
steadily with the number of energy sources, reaching 94.2% at
100 energy sources, while the closest existing method attains only
84.3%. This improvement indicates stronger execution reliability
under intermittent power. Table.9 shows that energy utilization
efficiency achieves 87.5% for the proposed design, which exceeds
the Energy-Aware Software Scheduler by approximately 9.4
percentage points, confirming that architectural energy-awareness
reduces wasted energy.

Checkpoint overhead in Table.10 remains significantly lower
for the proposed approach, averaging 16.8 pJ at 100 energy
sources, compared with 23.8 uJ for the Non-Volatile Processor
Design. This reduction reflects efficient state management.
Recovery latency results in Table.11 highlight faster execution
resumption, where latency remains below 3.6 ms, which is nearly
half of that observed in software-centric approaches. Finally,
Table.12 indicates that system throughput reaches 209 tasks per
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hour, which demonstrates that coordinated energy monitoring and
scheduling improve overall productivity. These numerical trends
confirm that integrating energy-awareness at the architectural
level yields balanced and measurable performance improvements.

5. CONCLUSION

This work demonstrates that an energy-harvesting aware
microcontroller architecture significantly enhances the reliability
and efficiency of batteryless IoT nodes. The proposed design
integrates energy monitoring, prediction, adaptive scheduling,
and non-volatile checkpointing directly into the architecture,
which allows the system to operate coherently under intermittent
power. Comparative evaluation against Task-Based Intermittent
Execution, Non-Volatile Processor Design, and Energy-Aware
Software Scheduler confirms that the proposed approach
consistently outperforms existing methods across five critical
metrics. The results show that task completion rate and system
throughput increase substantially, while checkpoint overhead and
recovery latency decrease. These improvements indicate that
architectural-level energy-awareness addresses fundamental
limitations of software-only and hardware-heavy solutions. By
preserving execution continuity and minimizing wasted energy,
the proposed architecture supports sustainable long-term
deployment without batteries.
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