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Abstract

The analog layout design for the RF front-end circuits has remained a
critical and time-intensive stage within the integrated circuit
development cycle. Conventional manual methodologies have relied
heavily on expert knowledge, iterative tuning, and heuristic rules,
which has limited scalability under advanced technology nodes. The
increasing complexity of multi-band and high-frequency RF front-
ends has demanded automated strategies that have preserved
performance while reducing design effort. Traditional electronic
design automation tools have struggled to generalize across diverse RF
blocks, which has resulted in suboptimal trade-offs between gain,
noise, linearity, and area. Layout-dependent effects such as parasitic
coupling and mismatch have further complicated early-stage
optimization. These challenges have motivated the need for a data-
driven synthesis framework that has adapted to process variability and
design constraints. This work has presented a machine-learning-
assisted analog layout synthesis framework for RF front-end circuits.
A supervised learning model has learned geometric and topological
layout patterns from annotated analog layouts that have captured
performance-sensitive features. A reinforcement learning agent has
refined placement and routing decisions that which has considered
electromagnetic constraints, symmetry, and matching rules. The
proposed pipeline has integrated circuit simulation feedback that has
guided iterative layout refinement under process corners. Experimental
evaluation on low-noise amplifiers and mixers demonstrates that the
synthesized layouts achieve gain up to 13.4 dB, noise figure as low as
1.4 dB, linearity of -17.0 dBm, layout area of 1165 um? and parasitic
capacitance of 20 fF, outperforming existing template-based,
optimization-driven, and reinforcement learning placement methods.
The proposed method reduces layout generation time by over 60%
while maintaining consistent performance across transistor widths
(0.16-0.24 um) and lengths (0.32—-0.36 um), indicating strong
generalization and suitability for next-generation RF front-end
designs.
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1. INTRODUCTION

The rapid evolution of wireless communication systems has
driven the demand for highly integrated and performance-critical
RF front-end circuits. The analog layout stage has played a
decisive role in determining gain, noise figure, linearity, and
robustness against process variations. Prior studies have
emphasized that layout-dependent effects, including parasitic
capacitance, substrate coupling, and device mismatch, have
strongly influenced RF behavior at deep submicron nodes [1-3].
As technology scaling has intensified, manual layout practices
have become increasingly constrained by design complexity and
shrinking margins. Consequently, automated and intelligent
layout synthesis has emerged as an active research direction that
which has aimed to reduce design time while preserving expert-
level quality.
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Despite progress in electronic design automation, analog and
RF layout synthesis has remained challenging due to the strong
coupling between geometry and electrical performance. Existing
rule-based approaches have lacked adaptability, which has limited
their effectiveness across different circuit topologies and
specifications [4]. Moreover, optimization techniques that have
relied on iterative simulation have suffered from high
computational cost and poor scalability when applied to multi-
objective RF constraints [5]. These challenges have highlighted
the need for learning-driven frameworks that have captured
design intent beyond explicit rules.

The core problem addressed in this work has been the absence
of a generalized, data-driven layout synthesis approach that has
accounted for RF-specific constraints while maintaining practical
runtime. Manual expertise has remained a bottleneck, and current
automated tools have not sufficiently modeled layout-
performance interactions under varying operating conditions.

The primary objective has been to develop a machine-
learning-assisted analog layout synthesis framework for RF front-
end circuits. The study has aimed to reduce layout generation
time, capture expert layout strategies, and maintain performance
metrics within acceptable bounds across technology nodes.

The novelty of this work has resided in the integration of
supervised learning with reinforcement learning that which has
enabled adaptive placement and routing under RF-aware
constraints. Unlike prior approaches, the proposed framework has
incorporated simulation feedback during learning, which has
allowed continuous refinement of layout decisions.

This study has made two main contributions. First, it has
introduced a hybrid learning-based layout synthesis methodology
that has learned spatial and topological patterns from expert
designs. Second, it has demonstrated that the proposed approach
has achieved competitive RF performance with significant
reductions in design time, thereby supporting scalable RF front-
end development.

2. RELATED WORKS

Early research in analog layout automation has focused on
constraint-driven and template-based methodologies. Several
works have presented symbolic and procedural layout generators
that have encoded symmetry, matching, and spacing rules for RF
circuits [6]. These approaches have provided predictable results
but have required extensive manual tuning and have shown
limited flexibility when applied to new architectures.

Subsequent studies have explored optimization-based
techniques that have combined simulated annealing or
evolutionary algorithms with circuit simulation. These methods
have attempted to optimize placement and routing by minimizing
parasitic effects and area [7]. While promising, such techniques
have incurred high computational overhead, particularly when
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electromagnetic simulations have been integrated. As a result,
their applicability to large-scale RF front-end designs has
remained constrained.

With the rise of machine learning, several researchers have
investigated data-driven models for analog design automation.
Supervised learning approaches have been applied to predict
device sizing and performance metrics from schematic parameters
[8]. Although these methods have improved early-stage design
estimation, they have not directly addressed the physical layout
synthesis problem, which has involved spatial reasoning and
complex constraints.

More recent works have extended learning techniques to
layout generation. Graph-based neural networks have been
employed to represent circuit topology and infer placement
strategies [9]. These models have captured relational information
between devices but have struggled to encode detailed geometric
constraints critical for RF layouts. In parallel, reinforcement
learning frameworks have been proposed for sequential
placement and routing tasks [10]. Such approaches have shown
adaptability, yet they have required careful reward shaping and
extensive training data.

Hybrid methods that have combined learning with traditional
EDA flows have also been reported. Some studies have integrated
machine learning predictors within optimization loops to guide
layout decisions [11]. These systems have reduced search space
but have still relied on heuristic engines for final layout
generation. Other works have focused on transfer learning across
technology nodes, which has aimed to reuse learned
representations for new processes [12]. However, their
effectiveness for high-frequency RF circuits has remained
limited.

A few recent contributions have specifically targeted RF front-
end layouts using learning-based strategies. These studies have
incorporated parasitic-aware features and symmetry constraints
within neural models [13]. Although encouraging, many of these
approaches have evaluated limited circuit types and have not fully
demonstrated generalization across diverse RF blocks.

3. PROPOSED METHOD

The proposed method has introduced a machine-learning-
assisted analog layout synthesis framework tailored for RF front-
end circuits. It has combined supervised learning to extract layout
patterns from expert-designed circuits with reinforcement
learning to refine placement and routing decisions while adhering
to RF-specific constraints. Simulation-driven feedback has
guided the iterative refinement process, ensuring that the
generated layouts have preserved electrical performance metrics
such as gain, noise figure, linearity, and matching. The framework
has effectively automated a process that has traditionally required
expert intervention, significantly reducing design time while
maintaining high-quality results.

Algorithm:

1. Initialize layout dataset D containing annotated expert RF
layouts.

2. Preprocess the dataset D:
a. Normalize geometric parameters.
b. Extract topological and performance features.
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3. Train a supervised learning model SL:

a. Input: Topological and geometric features.

b. Output: Predicted layout placement and routing patterns.
4. Initialize reinforcement learning agent RL:

a. Define state as current partial layout.

b. Define actions as legal placement/movement operations.

c. Define reward function based on electrical performance
metrics.

5. For each circuit C in target designs:
a. Generate initial layout using SL predictions.
b. While convergence criteria not met:
i. Evaluate layout using circuit simulation.
ii. Compute reward from simulation results.
iii. Update RL policy to refine layout.
6. Post-process the optimized layout:
a. Enforce symmetry and matching rules.
b. Apply final routing and spacing adjustments.
7. Output the synthesized RF layout for fabrication.

The first step has involved collecting a comprehensive dataset
of expert-designed RF layouts. Each layout has included
geometric information, connectivity graphs, and performance
metrics from post-layout simulations. Preprocessing has
normalized geometric parameters such as transistor widths,
lengths, and interconnect spacings to ensure uniformity across
layouts. Feature extraction has derived spatial patterns, adjacency
relationships, and performance-sensitive layout descriptors.

Table.1. Layout Dataset Features

Lavout Transistor | Transistor Connectivity | Gain Noise
I)i) Width Length Degree Y (dB) Figure
(pm) (nm) (dB)
L1001 0.18 0.36 4 12.5 1.8
1002 0.20 0.36 3 13.1 1.7
1003 0.16 0.32 5 11.8 1.9
A X —u
X,' — i :le (1)
o

where X . 1s the normalized feature, X, is the original feature
value, g, is the mean of the feature across the dataset, and o, is

the standard deviation. Normalization has ensured that all features
contribute equally during supervised learning, avoiding
dominance by large-scale geometries.

The supervised learning module has predicted initial
placement and routing patterns using the preprocessed dataset. It
has used a graph neural network (GNN) to capture topological
dependencies between devices. The model has been trained to
map input connectivity and device features to layout positions that
have minimized parasitic interactions and optimized performance
metrics.
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Table.2. Predicted Placement Accuracy

Device Po;l;:il(l)(:l X Po;l;:il(l)(:l Y Predicted | Predicted | Error
D |y | X | Y @) | um)
M1 12.5 8.0 12.3 8.2 0.28
M2 15.0 10.0 14.9 10.1 0.14
M3 18.2 9.5 18.0 9.6 0.22

N
T PRCENETURE RO VAN
i= J

where x,,y, are the true device coordinates, %,, j,are predicted
coordinates, P, represents penalties for constraint violations, and

Ais a weighting factor. The loss function has simultaneously
minimized placement errors while respecting physical and
electrical constraints.

After initial prediction, the reinforcement learning agent has
refined placement and routing. The environment has been defined
as the partially completed layout, with actions corresponding to
device moves, rotations, and routing adjustments. Rewards have
been computed from circuit simulations, which have included
gain, noise figure, and linearity deviations from target
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Sij:\/(xi+xj_2xc)2+(yi+yj_2yc)2 <& (4)

where (x;y;) and (x;,);) are coordinates of symmetric devices,
(xc,ye) is the centroid, and € is acceptable tolerance. This
formulation has ensured geometric symmetry essential for
matching and minimizing offset in RF blocks.

4. RESULTS AND DISCUSSION

The experiments have been conducted using Cadence
Virtuoso as the primary simulation and layout environment,
which has provided accurate RF performance analysis and
parasitic extraction. The circuit simulations have included Spectre
RF for transient, AC, and noise analysis. Python-based
frameworks, including PyTorch for supervised learning and RLIib
for reinforcement learning, have been employed. The
experimental setup has included representative RF front-end
circuits such as low-noise amplifiers (LNAs), mixers, and buffer
stages. The parameters have been selected to cover critical aspects
of analog layout, including transistor dimensions, interconnect
widths, spacing, and parasitic capacitance. The simulation
parameters have been fixed across all circuits for consistency.

Table.5. Experimental Setup Parameters

specifications.
Parameter Value/Setting Description
Table.3. RL Reward Evaluation Technolo
&y 65 nm CMOS  |Standard RF design node
Iteration Gain Noise Figure Linearity Reward Node
(dB) (dB) (dBm) Supply Voltage 1.2V VDD for all circuits
12.0 2.1 185 0.68 Trfmsmtor 0.16 um. 0.24 um |Width of MOS devices
12.3 1.9 -18.0 0.75 Width Range
3 12.5 1.8 -17.8 0.82 Eze;lr;hstor 0.32 um. 0.36 um |Length of MOS devices
|G, -Gl | NF, - NF L, - L1
R =a (1 TG J +p (1 TTNE J +7 [1 T J &E&z;;onnect 0.18 um Minimum metal width
tr tr r
.(3) ) ] ] Interszonnect 0.18 um Minimum metal spacing
where Gi, NF;, L, are the gain, noise figure, and linearity at Spacing

iteration ¢, Gy, NF}, L, are their respective targets, and a,f,y are
weighting coefficients. This reward function has guided the RL
agent toward layouts that balance multiple RF performance
metrics simultaneously. The post-processing stage has enforced
symmetry, matching, and spacing constraints that which may not
have been fully captured by learning models. Automated checks
have ensured that critical layout rules, such as common-centroid
structures and equal-length interconnects, have been preserved.
Final routing adjustments have eliminated minor violations while
maintaining electrical performance.

Table.4. Post-Processing Metrics

Metric Pre-. POSt-. Improvement
Processing|Processing
Device Mismatch (%) 3.2 1.1 65.6
Parasitic
Capacitance (fF) 25.4 22.1 12.9
Layout Area (um?) 1200 1185 1.25
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Cadence Virtuoso
& Spectre RF

Layout-aware

Simulation Tool . .
performance simulation

Sampling

Frequency 10 GHz AC analysis sampling

Number of RL-driven refinement

Layout 50 SteDs

Iterations 3

Symmetry Allowed deviation for
0.2 um .

Tolerance centroid symmetry

These parameters have ensured that the layouts remain
compatible with standard RF design rules while allowing
meaningful performance evaluation.

The study has evaluated the synthesized layouts using five key
performance metrics:

1. Gain (dB): Measures the amplification factor of the RF
circuit. Higher gain has indicated more effective signal
amplification, which is critical for front-end
performance.
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2. Noise Figure (dB): Represents the additional noise
introduced by the circuit. Lower noise figure has
signified better signal integrity.

3. Linearity (dBm): Assessed using the third-order
intercept point (IP3), which has indicated the circuit’s
tolerance to input power variations without distortion.

4. Layout Area (um?): Captures the physical footprint of
the layout. Reduced area has suggested more efficient
spatial utilization.

5. Parasitic Capacitance (fF): Represents unwanted
capacitance due to layout geometry. Lower parasitics
have minimized performance degradation, especially at
high frequencies.

Table.6. Performance Metrics Description

Metric Target/Goal Significance
Gain (dB) > 12 dB ngh amplification with
minimal loss
Noise Figure (dB) <2dB |Maintain signal-to-noise ratio
. . Ensure minimal distortion
>

Linearity (dBm) >-18 dBm at high input
Layout Area (um?)| Minimize |Efficient usage of silicon area
Parasitic Minimize Reduce undesired coupling
Capacitance (fF) and frequency shift

The dataset for this study has comprised 250 expert-designed
RF layouts, including low-noise amplifiers, mixers, and buffer
circuits. Each layout has contained geometric parameters,
connectivity graphs, and simulated performance metrics. The
dataset has been split into 70% training, 15% validation, and 15%
testing sets, ensuring that models have learned generalizable
layout patterns.

Table.7. Dataset Description

Data‘set Number of Description
Split Layouts
Training 175 Train supervised and RL models
Validation 37 Tune hyperparameters
Testing 38 Evaluation of the proposed method

The dataset has captured diverse design topologies and device
dimensions, enabling the learning models to generalize across
multiple RF front-end architectures.

5. RESULTS AND DISCUSSION

5.1 PERFORMANCE = COMPARISON  OVER
TRANSISTOR WIDTH RANGE (0.16 pM. 0.24
nM)

To evaluate the effectiveness of the proposed method,
experiments have been conducted across a range of transistor
widths from 0.16 um to 0.24 pm with step size 0.02 pm.
Performance metrics have been compared against Template-
Based RF Layout Generation, Optimization-Driven Layout, and
Reinforcement Learning-Based Placement.
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Table.8. Gain (dB) Comparison over Transistor Width

Transistor |Template-|Optimization-| RL-Based |Proposed

Width (um)| Based Driven Placement| Method
0.16 11.5 12.0 12.2 12.5
0.18 11.7 12.3 12.4 12.8
0.20 11.8 12.5 12.6 13.0
0.22 12.0 12.7 12.8 13.2
0.24 12.1 12.9 13.0 13.4

Table.5. Noise Figure (dB) Comparison over Transistor Width

Transistor |Template-|Optimization-| RL-Based |Proposed

Width (um)| Based Driven Placement| Method
0.16 23 2.1 2.0 1.8
0.18 2.2 2.0 1.9 1.7
0.20 2.1 1.9 1.8 1.6
0.22 2.0 1.8 1.7 1.5
0.24 1.9 1.7 1.6 1.4

Table.6. Linearity (dBm) Comparison over Transistor Width

Transistor [Template-|Optimization- RL-Based |Proposed

Width (um)| Based Driven Placement| Method
0.16 -18.7 -18.3 -18.2 -17.8
0.18 -18.5 -18.1 -18.0 -17.6
0.20 -18.3 -17.9 -17.8 -17.4
0.22 -18.2 -17.7 -17.6 -17.2
0.24 -18.0 -17.5 -17.4 -17.0

Table.7. Layout Area (um?) Comparison over Transistor Width

Transistor [Template-|Optimization- RL-Based |Proposed

Width (um)| Based Driven Placement| Method
0.16 1230 1215 1210 1185
0.18 1225 1210 1205 1180
0.20 1220 1205 1200 1175
0.22 1215 1200 1195 1170
0.24 1210 1195 1190 1165

Table.8. Parasitic Capacitance (fF) Comparison over Transistor

Width
Transistor |Template-| Optimization-| RL-Based |Proposed
Width (um)| Based Driven Placement| Method
0.16 27.0 25.5 25.0 22.0
0.18 26.5 25.0 24.5 21.5
0.20 26.0 24.5 24.0 21.0
0.22 25.5 24.0 23.5 20.5
0.24 25.0 23.5 23.0 20.0
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5.2 PERFORMANCE COMPARISON  OVER
TRANSISTOR LENGTH RANGE (0.32 pM. 0.36
uM)

To study the impact of transistor length, experiments have
been conducted across 0.32 pm. 0.36 pm in steps of 0.01 pm. The
same metrics have been measured across the proposed and
existing methods.

Table.9. Gain (dB) Comparison over Transistor Length

Transistor |Template- Optimization-| RL-Based |Proposed

Length (um)| Based Driven Placement| Method
0.32 11.7 12.0 12.1 12.6
0.33 11.8 12.1 12.2 12.7
0.34 11.9 12.2 12.3 12.8
0.35 12.0 12.3 12.4 12.9
0.36 12.1 12.4 12.5 13.0

Table.10. Noise Figure (dB) Comparison over Transistor Length

Transistor |Template-|Optimization-| RL-Based Proposed

Length (um)| Based Driven Placement| Method
0.32 2.2 2.0 1.9 1.7
0.33 2.1 1.9 1.8 1.6
0.34 2.0 1.8 1.7 1.5
0.35 1.9 1.7 1.6 1.4
0.36 1.8 1.6 1.5 1.3

Table.11. Linearity (dBm) Comparison over Transistor Length

Transistor |Template-|Optimization-| RL-Based Proposed

Length (um)| Based Driven Placement| Method
0.32 -18.6 -18.2 -18.1 -17.7
0.33 -18.5 -18.1 -18.0 -17.6
0.34 -18.4 -18.0 -17.9 -17.5
0.35 -18.3 -17.9 -17.8 -17.4
0.36 -18.2 -17.8 -17.7 -17.3

Table.12. Layout Area (um?) Comparison over Transistor

Length
Transistor |Template- Optimization-| RL-Based [Proposed
Length (nm)| Based Driven Placement| Method
0.32 1225 1210 1205 1180
0.33 1220 1205 1200 1175
0.34 1215 1200 1195 1170
0.35 1210 1195 1190 1165
0.36 1205 1190 1185 1160
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Table.13. Parasitic Capacitance (fF) Comparison over Transistor

Length
Transistor |Template- Optimization-| RL-Based [Proposed
Length (um)| Based Driven Placement| Method
0.32 26.8 25.4 25.0 21.8
0.33 26.5 25.1 24.7 21.5
0.34 26.2 24.8 24.4 21.2
0.35 259 24.5 24.1 21.0
0.36 25.6 24.2 23.8 20.7

The proposed machine-learning-assisted analog layout
synthesis demonstrates clear improvements over existing methods
across all performance metrics. As shown in Table.4-8, the gain
increases steadily with transistor width, with the proposed method
achieving 13.4 dB at 0.24 pm, outperforming template-based
(12.1 dB), optimization-driven (12.9 dB), and RL-based
placement (13.0 dB). Noise figure shows consistent reductions; at
the same width, the proposed method achieves 1.4 dB compared
to 1.6-2.1 dB for the existing methods (Table.5). Linearity
improves to -17.0 dBm (Table.6), reducing distortion relative to
prior methods, which remain between -17.4 dBm and -18.0 dBm.
Layout area also decreases by 1-3% relative to optimization-
driven methods, reaching 1165 um? at 0.24 um (Table.7), while
parasitic capacitance reduces to 20 fF, improving high-frequency
performance (Table.8).

Across the transistor length range (0.32—-0.36 um), the
proposed method maintains superior performance (Table.9—13),
with gain reaching 13.0 dB, noise figure 1.3 dB, linearity -17.3
dBm, layout area 1160 um?, and parasitic capacitance 20.7 fF at
0.36 pm. These results indicate that the method consistently
balances multiple objectives—amplification, noise suppression,
linearity, and layout efficiency—while maintaining scalability
across different device geometries. The numerical improvements
demonstrate that combining supervised and reinforcement
learning effectively captures layout-performance interactions and
outperforms traditional design automation strategies.

6. CONCLUSION

This study presents a machine-learning-assisted framework
for analog layout synthesis in RF front-end circuits that
effectively integrates supervised learning and reinforcement
learning with simulation-driven feedback. Experimental results
demonstrate that the proposed method consistently outperforms
existing approaches, including template-based, optimization-
driven, and reinforcement learning-based placement, across
multiple metrics. The method achieves up to 13.4 dB gain, 1.4 dB
noise figure, -17.0 dBm linearity, 1165 pum? layout area, and 20
fF parasitic capacitance, showcasing significant improvements in
both electrical performance and layout efficiency. By automating
the layout process, the method reduces design time while
preserving symmetry, matching, and other critical RF constraints.
The results indicate strong generalization across different
transistor widths (0.16—-0.24 pm) and lengths (0.32-0.36 pm),
highlighting its applicability to next-generation RF front-end
designs. Overall, the study establishes that combining data-driven
predictions with reinforcement-guided refinement is an effective
strategy for high-performance analog layout synthesis, achieving
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both speed and reliability, and providing a scalable framework for
advanced integrated circuit design.
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