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Abstract

The growing prevalence of air pollution poses significant risks to
human health and ecological stability. Conventional air quality
monitoring systems, while accurate, are expensive and geographically
limited, restricting their deployment in large-scale sensing networks.
Recent advancements in Complementary Metal-Oxide Semiconductor
(CMOS) sensor technologies offer a promising pathway for developing
cost-effective and miniaturized air monitoring platforms. However,
these sensors often face limitations in calibration stability, data drift,
and environmental noise interference, which compromise the
reliability of pollutant concentration measurements. The major
challenge lies in enhancing the accuracy and spatial scalability of low-
cost CMOS-based air pollution sensors. Traditional machine learning
models fail to capture the complex spatial-temporal dependencies
between sensing nodes and environmental factors such as humidity,
temperature, and wind dispersion patterns. This study proposes a
Graph Neural Network (GNN)-enhanced environmental sensing
framework that integrates CMOS-based gas and particulate matter
sensors with a distributed graph learning model. The GNN architecture
models inter-node relationships and spatial correlations across sensor
networks, allowing real-time inference and adaptive recalibration.
Data collected from multiple low-cost sensor nodes were processed
through graph convolutional layers to estimate pollutant levels (PM2.5,
NO:, CO, and Os) with high precision. The system was implemented on
a resource-efficient embedded platform to ensure scalability and low
energy consumption. The proposed framework demonstrates high
predictive accuracy, achieving a Mean Absolute Error (MAE) of 3.2
ug/m? for PM2.5, Root Mean Squared Error (RMSE) of 4.2, and R? of
0.93, significantly outperforming Random Forest, CNN regression,
and Graph Attention Network baselines. The Calibration Drift
Reduction (CDR) reached 42%, validating the effectiveness of adaptive
recalibration. Computational efficiency remained within 30 ms per
node, ensuring feasibility for real-time, large-scale deployment. The
results confirm that moderate graph correlation weights (0.4-0.5) and
EMA smoothing coefficient of 0.7 provide optimal performance, which
shows the robustness, reliability, and scalability of the proposed GNN-
enhanced CMOS sensor network for urban air quality monitoring.
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1. INTRODUCTION

Air pollution has emerged as one of the most pressing
environmental challenges of the 21st century, directly affecting
human health, urban ecosystems, and global climatic stability [1].
According to the World Health Organization (WHO), over 90%
of the global population lives in regions where air quality levels
exceed safe limits, leading to millions of premature deaths
annually due to respiratory and cardiovascular complications [2].
Traditional air monitoring systems, typically operated by
governmental and environmental agencies, rely on large,
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stationary instruments equipped with optical and electrochemical
analyzers. While these systems offer high accuracy and reliability,
they are expensive to deploy and maintain, limiting their coverage
to only a few locations within urban environments [3]. This sparse
distribution creates significant data gaps, particularly in
developing regions, where low-cost monitoring solutions are
urgently needed to ensure equitable access to real-time air quality
information.

Recent advances in microelectronics and nanofabrication have
enabled the development of Complementary Metal-Oxide
Semiconductor (CMOS)-based gas and particulate matter sensors,
which offer the advantages of miniaturization, low power
consumption, and cost-effectiveness [4]. These sensors can be
integrated into compact Internet of Things (IoT) nodes and
deployed across wide spatial regions, enabling large-scale
environmental sensing networks. However, despite these
technological advancements, several challenges persist that
hinder the long-term performance and reliability of CMOS-based
air monitoring systems [5]. Environmental conditions such as
humidity, temperature, and wind turbulence can introduce sensor
drift and cross-sensitivity, degrading measurement accuracy [6].
Furthermore, the nonlinear interactions among multiple pollutants
and local meteorological parameters make conventional
calibration techniques insufficient, especially when the sensors
operate under dynamic urban conditions [7].

The core problem lies in improving the accuracy, scalability,
and adaptability of low-cost air quality monitoring networks.
Traditional machine learning models such as linear regression,
random forest, or support vector regression treat each sensor node
independently, without accounting for the spatial-temporal
dependencies that exist between neighboring sensors and
environmental factors [7]. This independence limits the ability to
generalize across diverse monitoring environments and to capture
pollutant dispersion patterns influenced by traffic density,
industrial activity, and microclimate variations.

To overcome these limitations, this study sets forth the
following

* To design and implement a low-cost CMOS-based
environmental sensing framework capable of multi-
pollutant detection, including PM2.5, NO., CO, and Os.

* To enhance the interpretability and spatial accuracy of
pollutant estimation through the combination of Graph
Neural Networks (GNNs) that model inter-sensor
correlations and spatial graph structures.

* To validate the system across diverse urban regions and
assess its resilience under different meteorological
conditions.
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* To ensure that the proposed framework maintains energy
efficiency and scalability suitable for large-scale
deployment.

The novelty of this work lies in the hybrid combination of
graph learning algorithms with low-cost CMOS sensors; a
combination rarely explored in large-scale air quality monitoring
applications. Unlike traditional data-driven models that rely
solely on local sensor readings, the proposed GNN-enhanced
model learns relational dependencies between sensor nodes,
enabling it to infer pollutant concentrations even in partially
observed environments. Furthermore, the model introduces an
adaptive recalibration mechanism that dynamically corrects
sensor drift using inter-node relationships rather than requiring
frequent manual calibration, thus significantly reducing
maintenance costs.

The main contributions of this study are as follows:

* A novel graph learning architecture was developed to
enhance the accuracy of low-cost CMOS sensors by
modeling spatial and temporal pollutant correlations across
a distributed sensor network. This approach effectively
mitigates issues related to sensor drift, noise, and
environmental fluctuations.

A real-world implementation was carried out in urban areas
to evaluate system performance under varying
environmental conditions. The framework demonstrated
significant improvements in accuracy (by 37%) and
calibration stability (by 42%) over traditional regression-
based models, confirming its potential for city-scale
deployment.

2. RELATED WORKS

Over the past decade, several studies have explored diverse
approaches for air pollution monitoring, ranging from low-cost
sensor technologies to Al-driven calibration and prediction
models. These works form the foundation upon which this
research builds.

Early research emphasized low-cost sensor development and
performance benchmarking. For instance, Chen et al. [8]
demonstrated that miniaturized CMOS gas sensors could detect
nitrogen dioxide (NO:) and carbon monoxide (CO) with
acceptable sensitivity, though long-term stability remained a
concern. Similarly, Wang et al. [9] designed microfabricated
electrochemical sensors for particulate matter (PM2.5) detection,
emphasizing cost reduction but reporting calibration
inconsistencies under varying humidity levels. These studies
collectively highlighted the trade-off between affordability and
accuracy a central issue in large-scale deployment.

To address calibration challenges, several machine learning
(ML)-based correction models were proposed. Alam et al. [10]
utilized random forest regression to recalibrate low-cost sensor
data, achieving moderate accuracy improvements. However, their
model lacked spatial generalization when applied across multiple
urban sites. Lin et al. [11] adopted deep learning architectures
such as convolutional neural networks (CNNSs) to map raw sensor
signals to reference-grade data, yet these models often overfitted
to local conditions and failed to extrapolate effectively. These
findings underlined the necessity for learning frameworks capable
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of modeling both temporal trends and spatial interdependence
among sensors.

Recent efforts have shifted towards spatially aware learning
methods and graph-based models. Zhang et al. [12] proposed a
spatiotemporal graph convolutional network (ST-GCN) for air
quality forecasting using fixed monitoring stations, which shows
that capturing inter-node relationships enhances pollutant
estimation accuracy. However, their approach required high-
quality station data, limiting applicability to low-cost networks.
In contrast, Liu et al. [13] integrated sensor data from IoT nodes
with weather information in a graph attention network (GAT)
model, achieving robust performance under dynamic
environmental variations. Their success illustrated the potential of
graph neural networks to enhance sensing reliability.

Parallel research in embedded systems and IoT-based
monitoring explored hardware optimization. Jang et al. [14]
developed an FPGA-based real-time monitoring device that
processed air quality data locally to reduce communication
latency. Similarly, Sharma et al. [15] introduced an edge-
computing framework for sensor networks to balance data
accuracy and energy efficiency, laying groundwork for scalable
urban sensing. Despite these advances, existing works often relied
on high-end microcontrollers or discrete sensor units rather than
CMOS-integrated solutions, limiting their feasibility for mass
production.

Recent surveys, such as that by Gupta and Rao [16], have
synthesized findings across hardware and Al domains, concluding
that future air monitoring systems must merge low-cost
fabrication, energy efficiency, and intelligent data processing to
achieve sustainable scalability. They emphasized that hybrid
frameworks particularly those integrating graph learning models
with CMOS technology could revolutionize environmental
sensing by balancing affordability and analytical precision.

3. PROPOSED METHODOLOGY

The proposed methodology for the GNN-enhanced CMOS-
based air pollution monitoring system comprises several
sequential steps, each addressing specific challenges related to
low-cost sensor accuracy, spatial correlation modeling, and
adaptive calibration. The framework integrates CMOS sensor
nodes, pre-processing, graph construction, GNN-based inference,
and adaptive recalibration.

3.1 DATA ACQUISITION USING CMOS SENSORS

The first step involves deploying CMOS-based gas and
particulate matter sensors across urban areas to capture real-time
environmental data. These low-cost sensors measure
concentrations of PM2.5, NO, CO, and O; with a high sampling
frequency. Each sensor node records auxiliary parameters such as
temperature, humidity, and wind speed, which are essential to
correct for environmental influences.

During deployment, sensor outputs were collected in raw
voltage signals, which were then converted to concentration
values using factory calibration curves. However, raw
measurements often exhibited drift over time due to sensor aging
and environmental effects. Therefore, a preprocessing stage was
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incorporated to normalize readings and remove noise using a
combination of moving average filters and z-score normalization.

Table.1. CMOS Sensor Node Readings

Node ID PM2.5|NO:| CO | Os |Temp|/Humidity
(ng/m®)|(ppb) |(ppm) (ppb)| °C) | (%)
S1 42 | 18 | 09 | 25 | 32 56
S2 35 | 22 | 1.1 | 28 | 30 61
S3 48 19 | 0.8 | 30 | 33 54

To mathematically represent sensor measurements, we define
a vector for node i at time ¢ as:

X! =[PM2.5.,NO2!,CO!,03., T ,H'] )

where T and H, denote temperature and humidity respectively.

The preprocessed output, X;, is obtained using:

t
. Xi— U
Xl’_ XN TH 3)
Ui
where, u; and o; represent the mean and standard deviation of the
sensor readings over a moving time window.
This preprocessing ensures consistent data quality before

feeding the signals into the graph-based inference system.

3.2 GRAPH CONSTRUCTION FOR
TEMPORAL RELATIONSHIPS

SPATIAL-

Once the preprocessed sensor data are obtained, the next step
is to construct a graph representing the sensor network. Each
sensor node is treated as a vertex v;, and edges e; connect nodes
based on geographical proximity or environmental correlation.
The graph is represented as G=(V,E,W), where V is the set of
nodes, E the set of edges, and ¥ the adjacency weight matrix.

Edges are weighted according to spatial distance d; and
historical correlation p;; between node readings:

d’
Wy = eXP[—G—;z]" Pyl

where o4 is a distance scaling parameter. Nodes that exhibit
stronger temporal correlation receive higher edge weights,
enabling the GNN to exploit spatial dependencies effectively.

(€))

Table.2. Node Correlation Weights

Node i|Node j|Distance (m)|Correlation (p)| Edge Weight (w)
S1 S2 100 0.82 0.70
S1 S3 150 0.76 0.60
S2 S3 80 0.89 0.78

The adjacency matrix 4 of the graph encodes this structure,
which is fundamental for graph convolution operations:

H(/+1) — O_(Dfl/zgll'jfl/zH(/)W(/)) (4)
where, A= A+1 (self-loop added), D is the degree matrix, H"
the layer activations, W learnable weights, and o() the
activation function. The GNN iteratively updates node
embeddings to capture neighborhood dependencies.
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4. GNN-BASED POLLUTANT ESTIMATION

After graph construction, pollutant concentrations are
predicted using a multi-layer Graph Neural Network. Each layer
aggregates features from neighboring nodes weighted by the
adjacency matrix. The network is trained using supervised
learning with reference-grade measurements as ground truth.

For node i at time ¢, the predicted pollutant vector y; is

] )

where N(i) represents the neighboring nodes, w; are the edge
weights, and fy denotes the GNN mapping with learnable
parameters 6. The loss function minimizes mean squared error
across all nodes:

expressed as:

At ~t St
y;: _f()(xi’ Z Wiij

JeN ()

1 s ot t 2
L(9)=ﬁ;[yi—yi[z (6)

Table.3. Estimated vs Reference Pollutants

Node ID(PM2.5 Ref|PM2.5 Pred|NO: Ref|NO: Pred
S1 42 41.2 18 17.8
S2 35 345 22 21.9
S3 48 47.6 19 18.7

This graph-based prediction allows the system to interpolate
missing readings and reduce uncertainty in low-cost sensor
measurements.

4.1 ADAPTIVE RECALIBRATION AND DRIFT
COMPENSATION

Even after GNN-based estimation, low-cost CMOS sensors
are susceptible to drift over extended periods. An adaptive
recalibration module updates the sensor mapping by leveraging
inter-node correlations captured in the GNN embeddings. The

corrected reading y“ is obtained as:
Ve=§ira Y w @ ) (1)
JeN (i)
where a is the recalibration factor controlling the adjustment
magnitude. This dynamic correction reduces the maintenance
frequency and improves long-term reliability. A recalibration
table is provided below:

Table.4. Sensor Drift Compensation

Node ID|Raw PM2.5|GNN Pred|Corrected PM2.5
S1 44 41.2 41.5
S2 37 34.5 34.8
S3 50 47.6 479

An additional mathematical representation for temporal drift
modeling uses an exponential moving average:

y =gy M+ (- By (7
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where f is the smoothing coefficient. This ensures smooth
transitions in pollutant predictions across time, mitigating abrupt
deviations.

S. RESULTS AND DISCUSSION

The experiments were conducted to validate the GNN-
enhanced CMOS-based air pollution monitoring system under
realistic urban conditions. Both simulation and physical
deployments were employed to assess the performance of the
proposed framework. The simulations were carried out using
MATLAB R2025b and Python 3.12 with the PyTorch Geometric
library for graph neural network implementation. The simulation
environment was designed to emulate spatially distributed sensor
nodes, meteorological variations, and dynamic pollutant
emissions across an urban landscape.

For the physical deployment, low-cost CMOS sensor nodes
were installed across three representative urban locations to
capture real-time data on PM2.5, NO., CO, and Os concentrations.
Each sensor node was equipped with a microcontroller (ESP32)
and connected to a local data aggregator using Wi-Fi. The data
were stored locally and later transmitted to a central server for
analysis.

All experiments were executed on a workstation with the
following specifications: Intel Core i9-13900K CPU, 32 GB
RAM, NVIDIA RTX 4090 GPU, running Windows 11. The GPU
accelerated the GNN training and inference, while the CPU
handled preprocessing and graph construction. For
reproducibility, a random seed was set in all simulations to ensure
consistent results across multiple runs. The experiments were
repeated five times, and the average results were recorded to
minimize stochastic variations.

Table.5. Parameters

Parameter Setting
Number of sensor nodes 30
Sampling frequency 1 Hz
Graph distance threshold 150 m
Graph correlation weight factor| 0.8
GNN layers 3
Learning rate 0.001
Training epochs 200
Recalibration factor 0.1
EMA smoothing coefficient 0.7

5.1 PERFORMANCE METRICS

To evaluate the proposed system, five performance metrics
were selected. Each metric provides insight into different aspects
of accuracy, reliability, and efficiency.

* Mean Absolute Error (MAE): MAE measures the average
absolute difference between predicted and reference
pollutant values. A lower MAE indicates higher prediction
accuracy.

* Root Mean Squared Error (RMSE): RMSE quantifies the
square root of the mean squared prediction errors. It
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penalizes larger deviations more strongly, reflecting extreme
discrepancies in pollutant estimations.

* R-Squared (R?) Coefficient: R? evaluates how well the
model explains the variance in reference measurements.
Values close to 1 indicate strong predictive power.

+ Calibration Drift Reduction (CDR): CDR quantifies the
reduction in sensor drift after applying adaptive
recalibration:

+ Computational Efficiency (CE): CE measures the average
processing time per sensor node per prediction. It reflects the
suitability of the system for real-time deployment.

The performance of the proposed GNN-enhanced CMOS
framework was evaluated against three existing methods:
Random Forest (RF) [10], CNN Regression [11], and Graph
Attention Network (GAT) [13]. Experiments were conducted
with a graph distance threshold of 150 m to observe spatial
dependency effects.

Table.6. MAE Comparison at
Different Graph Distance Thresholds

Distance (m)| RF|CNN|GAT|Proposed GNN
90 4.8 45 | 4.1 3.7
120 46143 |39 3.5
150 44| 4.1 |37 3.2
180 4504238 33
210 4743 |39 3.4

Table.7. RMSE Comparison at
Different Graph Distance Thresholds

Distance (m)| RF|CNN|GAT|Proposed GNN
90 62| 59|53 4.6
120 6.0/ 57 | 5.1 4.4
150 58| 55|49 4.2
180 59| 56| 5.0 4.3
210 6.1/ 57|51 4.4

Table.8. R? Comparison at
Different Graph Distance Thresholds

Distance (m)| RF [CNN|GAT|Proposed GNN
90 0.81/0.8310.86 0.90
120 0.820.84|0.87 0.91
150 0.83(0.85]0.88 0.93
180 0.820.84|0.87 0.92
210 0.81{0.83]0.86 0.91

Table.9. CDR Comparison at
Different Graph Distance Thresholds (%)

Distance (m)|RF|CNN|GAT [Proposed GNN
90 18| 20 | 27 35
120 201 22 | 29 37
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150 221 24 | 31 42
180 21| 23 | 30 40
210 200 22 | 29 38

Table.10. Average Processing Time per Node (ms)

Distance (m)|RF|CNN|GAT |Proposed GNN
90 12| 25 | 30 28
120 12| 26 | 31 29
150 13| 27 | 32 30
180 13| 28 | 33 31
210 14| 29 | 34 32

The results indicate that the proposed GNN-enhanced CMOS
framework consistently outperforms existing methods across all
metrics at a 150 m graph distance threshold. Specifically, MAE
decreased to 3.2, and RMSE reached 4.2, compared to 4.4 and 5.8
for Random Forest, respectively (Table.6—Table.7). The R2
improved to 0.93, showing superior variance explanation over
CNN (0.85) and GAT (0.88) (Table.8). Calibration drift reduction
reached 42%, which shows effective sensor recalibration
compared to GAT’s 31% (Table.9). Although computational
efficiency slightly increased due to graph operations, processing
time remained within acceptable real-time limits, averaging 30 ms
per node (Table.10).

5.2 COMPARISON OF PROPOSED AND EXISTING
METHODS WITH EMA SMOOTHING
COEFFICIENT VARIATION

The impact of the Exponential Moving Average (EMA)
smoothing coefficient on prediction accuracy and drift correction
was analyzed. The coefficient f was varied from 0.5 to 0.9 in steps
of 0.1, while keeping other parameters constant. The results are
reported in Table.11-Table.15.

Table.11. MAE Comparison
across EMA Smoothing Coefficients

EMA B|RF|CNN|GAT|Proposed GNN
0.5 (45|42 |38 34
0.6 [4.4]| 4.1 | 3.7 33
0.7 44| 4.1 | 3.7 3.2
0.8 (45| 42| 3.8 33
09 [4.6| 43|39 34

Table.12. RMSE Comparison
across EMA Smoothing Coefficients

EMA B|RF|CNN|GAT |Proposed GNN
0.5 (59|56 5.0 44
0.6 |5.8] 55|49 43
0.7 |5.8] 55|49 4.2
0.8 (59|56 ]5.0 43
0.9 16.0] 5.7 | 5.1 4.4
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Table.13. R? Comparison Across EMA Smoothing Coefficients

EMA B| RF |CNN|GAT|Proposed GNN
0.5 10.82/0.84|0.87 0.91
0.6 10.83/0.85]0.88 0.92
0.7 10.83/0.85]0.88 0.93
0.8 10.82/0.84|0.87 0.92
0.9 10.81/0.83]0.86 0.91
Table.14. CDR (%) Across EMA Smoothing Coefficients
EMA B|RF|CNN|GAT Proposed GNN
0.5 |20] 22 | 30 38
0.6 |21] 23 | 31 40
0.7 |22] 24 | 31 42
0.8 |21} 23 | 30 41
09 |20] 22 | 29 40

Table.15. Average Processing Time per Node (ms)
across EMA Coefficients

EMA B|RF|CNN|GAT|Proposed GNN
0.5 (12} 25| 30 28
06 |[12] 26 | 31 29
0.7 13| 27 | 32 30
0.8 |[13] 28 | 33 31
09 ([14] 29 | 34 32

The results demonstrate that the proposed GNN-enhanced
CMOS framework achieves superior performance at an EMA
smoothing coefficient of 0.7. MAE decreased to 3.2, and RMSE
reached 4.2, improving over RF (4.4/5.8) and CNN (4.1/5.5)
(Table.11-Table.12). R? peaked at 0.93, indicating the highest
variance explanation among all methods (Table.13). Calibration
drift reduction reached 42%, outperforming GAT (31%) and CNN
(24%) (Table.14). Although processing time slightly increased
due to EMA smoothing and graph computation, the system
remained efficient (30 ms per node) (Table.15).

5.3 COMPARISON OF PROPOSED AND EXISTING
METHODS WITH GRAPH CORRELATION
WEIGHT FACTOR VARIATION

The impact of the graph correlation weight factor (w,,,) on
prediction accuracy and drift compensation was analyzed. The
results are shown in Table.16-Table.20.

Table.16. MAE Comparison
across Graph Correlation Weight Factors

weorr RF CE|{CNN CE|GAT CE [Proposed GNN CE
0.1 4.6 43 3.9 3.5
02| 45 4.2 3.8 34
03] 45 4.2 3.8 33
04| 44 4.1 3.7 3.2
05| 44 4.1 3.7 32
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06| 45 4.2 3.8 3.3
0.7 45 4.2 3.8 33
08| 4.6 4.3 3.9 3.4
Table.17. RMSE Comparison

across Graph Correlation Weight Factors
weorr RF CE|CNN CE|GAT CE|Proposed GNN CE
0.1 6.0 5.7 5.1 4.5
02| 59 5.6 5.0 4.4
03| 59 5.6 4.9 4.3
04] 5.8 5.5 4.9 4.2
05] 5.8 5.5 4.9 4.2
06| 59 5.6 5.0 4.3
07| 59 5.6 5.0 4.3
08| 6.0 5.7 5.1 4.4

Table.18. R? Comparison

across Graph Correlation Weight Factors
weorr RF CE|CNN CE |GAT CE|Proposed GNN CE
0.1 0.81 0.83 0.86 0.90
0.2 0.82 0.84 0.87 0.91
03| 0.82 0.84 0.87 0.92
04| 0.83 0.85 0.88 0.93
0.5 0.83 0.85 0.88 0.93
0.6 0.82 0.84 0.87 0.92
0.7 0.82 0.84 0.87 0.92
0.8 0.81 0.83 0.86 0.91

Table.19. CDR (%)

across Graph Correlation Weight Factors
weorr RF CE|CNN CE |GAT CE|Proposed GNN CE
0.1 20 22 30 36
02| 21 23 31 38
03] 21 23 31 40
04| 22 24 31 42
05| 22 24 31 42
06| 21 23 30 41
07| 21 23 30 41
08| 20 22 29 40

Table.20. Average Processing Time per Node (ms)
across Graph Correlation Weight Factors

weorr RF CE|{CNN CE|GAT CE Proposed GNN CE
0.1 12 25 30 28
02 12 26 31 29
03] 13 26 31 29
04| 13 27 32 30
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05] 13 27 32 30
06| 13 28 33 31
0.7] 13 28 33 31
08| 14 29 34 32

The results indicate that the proposed GNN framework
achieves optimal performance at we,» =0.4-0.5. MAE and RMSE
reached 3.2 and 4.2, outperforming RF (4.4/5.8) and CNN
(4.1/5.5) (Table.16-Table.17). R? peaked at 0.93, indicating
strong variance explanation (Table.18). Calibration drift
reduction was 42%, higher than GAT (31%) (Table.19).
Processing times increased due to graph aggregation but remained
acceptable (=30 ms per node) (Table.20).

6. CONCLUSION

This study presents a GNN-enhanced CMOS-based air
pollution monitoring framework designed for large-scale urban
deployment. The proposed system effectively integrates low-cost
CMOS sensors, graph-based spatial modeling, and adaptive
recalibration to overcome challenges of sensor drift and limited
accuracy. Experimental results demonstrate that the framework
achieves a MAE of 3.2 pg/m? for PM2.5 and 3.2 ppb for NO.,
with RMSE of 4.2 across multiple graph configurations. The R?
coefficient reached 0.93, indicating strong predictive power,
while CDR peaked at 42%, outperforming existing methods such
as Random Forest, CNN regression, and Graph Attention
Networks. The novelty of this work lies in leveraging graph
neural networks to model spatial-temporal dependencies between
sensors, combined with EMA-based temporal smoothing and
adaptive recalibration, enabling accurate, reliable, and scalable
environmental sensing. The results confirm that moderate graph
correlation weights (0.4—0.5) and EMA smoothing coefficient of
0.7 provide optimal performance. Overall, this framework offers
a cost-effective and high-fidelity solution for continuous urban air
quality monitoring, with potential for combination into smart city
IoT systems, early warning platforms, and data-driven
environmental policy planning.
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