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Abstract 

The growing accumulation of solid and electronic waste has created a 

pressing need for intelligent, energy-efficient, and sustainable waste 

management systems. Traditional waste processing frameworks often 

fail to optimize sorting, recycling, and treatment operations, leading to 

increased environmental pollution and inefficient energy consumption. 

Recent advances in artificial intelligence (AI) and power electronics 

provide opportunities to design adaptive control mechanisms that can 

optimize energy flow, automate waste classification, and minimize 

ecological impact. Existing automated waste management systems lack 

real-time adaptability and energy optimization, especially under 

variable operational loads. Moreover, conventional control systems are 

unable to integrate heterogeneous waste data or predict system 

behavior dynamically. Therefore, a hybrid intelligent model is essential 

to enable sustainable waste handling through optimized decision-

making and efficient energy utilization. This work proposes a 

MOSFET-operated Fuzzy Logic and Deep Reinforcement Learning 

(DRL) framework for sustainable waste management and 

environmental remediation. The system employs a fuzzy logic 

controller to regulate the MOSFET-based power flow in sorting and 

recycling units, ensuring stable operation under fluctuating waste 

loads. Meanwhile, a DRL agent learns optimal waste sorting and 

treatment strategies from sensor data, improving efficiency over time. 

The hybrid model is simulated using MATLAB and TensorFlow 

environments to evaluate its energy efficiency, decision accuracy, and 

operational stability. Simulation outcomes demonstrated that the 

proposed hybrid system achieved energy efficiency up to 88%, improved 

waste classification accuracy to 91%, and exhibited a DRL 

convergence rate of 0.056 per episode. System stability was enhanced 

with actuator variance reduced to 0.021, and computational efficiency 

per decision cycle remained around 0.027 s, outperforming 

conventional fuzzy logic, deep learning, and RL-based methods by a 

substantial margin. 
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1. INTRODUCTION 

Sustainable waste management has become a global priority 

due to rapid industrialization, urbanization, and population 

growth, which have collectively escalated waste generation and 

environmental degradation [1–3]. According to global 

environmental reports, the world produces over 2 billion tons of 

municipal solid waste annually, a figure expected to rise by 70% 

by 2050 if sustainable measures are not implemented. Traditional 

waste management systems largely rely on manual or semi-

automated processes that lack intelligence, resulting in 

inefficiencies in waste segregation, energy utilization, and 

recycling operations. Modern smart waste management systems 

aim to leverage advanced computational intelligence, Internet of 

Things (IoT) sensors, and power electronics to automate and 

optimize waste collection, sorting, and treatment processes. 

The combination of artificial intelligence (AI) techniques, 

particularly fuzzy logic and machine learning, has shown 

potential in addressing uncertainties in waste composition and 

operational dynamics. These intelligent control systems enable 

adaptive decision-making and optimize energy consumption 

across interconnected processes. In particular, power-efficient 

devices such as Metal-Oxide-Semiconductor Field-Effect 

Transistors (MOSFETs) offer controllable and reliable switching 

capabilities that can enhance the energy efficiency of automated 

waste systems. Thus, combining AI-based intelligence with 

energy-efficient hardware presents a promising pathway toward 

achieving sustainable waste management and environmental 

remediation. 

Despite technological advancements, current waste 

management systems face several persistent challenges [4–5]. 

Firstly, dynamic variations in waste composition and load 

intensity require real-time control mechanisms that can adapt 

without compromising energy efficiency or system stability. Most 

existing automation frameworks rely on static rule-based systems 

that cannot respond effectively to the nonlinear and stochastic 

behavior inherent in waste processing environments. Secondly, 

data heterogeneity and sensor noise make it difficult to achieve 

accurate classification and predictive control. These issues often 

lead to suboptimal resource utilization, excessive energy 

consumption, and delayed decision responses. 

Moreover, the power management aspect remains 

underexplored in intelligent waste systems. The lack of 

synchronization between hardware components such as 

MOSFETs and intelligent control algorithms results in 

unnecessary energy loss and operational inefficiency. Thus, there 

is an urgent need for hybrid control architectures that combine 

intelligent decision-making, real-time adaptability, and energy-

efficient hardware operation. 

1.1 PROBLEM STATEMENT 

Existing intelligent waste management systems still struggle 

to achieve optimal performance under dynamic environmental 

and operational conditions [6–8]. While machine learning-based 

techniques improve decision accuracy, they often require 

extensive data training and fail to address real-time adaptability. 

On the other hand, conventional fuzzy logic controllers handle 

uncertainty well but lack learning ability and scalability. 

Furthermore, energy efficiency and power regulation, which are 

critical for sustainability, are rarely considered alongside 

intelligent control in these systems. 

To bridge this gap, an integrated framework that couples 

Fuzzy Logic with Deep Reinforcement Learning (DRL) over a 
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MOSFET-based control system can offer a balanced trade-off 

between adaptability, intelligence, and energy optimization. Such 

a hybrid model would not only enable self-learning and decision 

improvement over time but also ensure stable energy 

consumption across variable operational conditions, ultimately 

contributing to sustainable and environmentally friendly waste 

management systems. 

1.2 OBJECTIVES 

The primary objectives of this research are as follows: 

• To design a MOSFET-operated fuzzy logic and deep 

reinforcement learning system capable of optimizing energy 

utilization and enhancing automation in waste management 

processes. 

• To develop an intelligent control framework that can adapt 

to variable waste compositions and environmental 

conditions in real time. 

• To evaluate the proposed model’s performance in terms of 

energy efficiency, classification accuracy, and operational 

stability through simulation and analysis. 

The novelty of the proposed work lies in the combination of 

MOSFET-based hardware control with hybrid Fuzzy Logic and 

DRL intelligence, enabling both interpretability and self-learning. 

Unlike conventional systems that use either static fuzzy 

controllers or black-box machine learning models, this hybrid 

architecture provides a dual-layer control mechanism where fuzzy 

logic ensures stability and interpretability, while DRL 

continuously learns optimal strategies for waste classification and 

energy regulation. In addition, the use of MOSFETs ensures that 

energy efficiency is achieved at the hardware level, making the 

entire system more sustainable and eco-friendlier. 

This study makes the following key contributions: 

• The authors develop a hybrid Fuzzy Logic–DRL framework 

integrated with MOSFET-based control for sustainable 

waste management: The proposed system intelligently 

regulates power flow, adapts to varying waste loads, and 

optimizes energy consumption dynamically. 

2. RELATED WORKS 

Intelligent waste management systems have gained substantial 

research attention over the last decade, driven by advancements 

in AI, IoT, and power electronics [9–16]. Early studies focused 

primarily on rule-based and fuzzy logic systems, which offered 

effective decision-making under uncertain and imprecise data 

conditions. For example, several researchers developed fuzzy 

logic-based controllers for waste segregation and recycling that 

improved classification accuracy and reduced manual 

intervention [9]. However, these methods relied on fixed 

membership functions and rule sets, limiting their adaptability in 

dynamic environments. 

Subsequent works introduced machine learning and deep 

learning techniques to address these limitations. Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs) were applied for waste image recognition and 

classification, achieving higher accuracy than traditional systems 

[10]. Nevertheless, these models required extensive labeled data 

and computational resources, making them less suitable for real-

time waste processing applications. Furthermore, they lacked 

mechanisms for energy management, focusing solely on data-

driven classification. 

To improve real-time adaptability, researchers began 

integrating Reinforcement Learning (RL) approaches into 

environmental and waste management systems [11]. RL agents 

learn optimal actions based on feedback from the environment, 

making them ideal for dynamic and uncertain settings. However, 

standard RL models often suffer from slow convergence and 

instability when applied to multi-variable control systems. Recent 

advancements in Deep Reinforcement Learning (DRL), which 

combine neural networks with RL, have overcome these 

limitations by enabling scalable learning and decision 

optimization in complex environments [12]. 

In parallel, the role of power electronics in sustainable 

automation gained attention. MOSFETs have been extensively 

used for power regulation, motor control, and renewable energy 

systems due to their high efficiency and fast switching 

characteristics [13]. Yet, their application in intelligent waste 

management remains limited. Integrating MOSFETs with AI-

driven control mechanisms offers a powerful means to reduce 

energy consumption and improve operational stability. 

Some studies have explored hybrid approaches that combine 

Fuzzy Logic with Reinforcement Learning to achieve adaptive 

and interpretable control [14]. These systems leverage fuzzy rules 

to handle uncertainties while enabling reinforcement agents to 

learn and refine decisions. This synergy enhances performance in 

dynamic scenarios but is rarely extended to hardware-based 

energy regulation. Recent works have also highlighted the 

importance of IoT-enabled waste monitoring systems using 

sensors, cloud computing, and AI algorithms for data analysis 

[15]. While these systems improve monitoring and automation, 

they still lack intelligent energy control and adaptive 

optimization. 

Most recently, researchers have proposed AI-driven 

sustainable frameworks integrating optimization algorithms, 

energy-efficient devices, and smart controllers for waste and 

pollution management [16]. However, existing models often 

remain computationally intensive and hardware-dependent, 

lacking seamless combination between intelligent algorithms and 

physical control systems. 

The proposed research bridges these gaps by coupling 

MOSFET-based energy control with Fuzzy Logic and DRL, 

ensuring both adaptability and sustainability. This hybridization 

introduces a new paradigm that not only learns optimal strategies 

for waste classification and energy use but also minimizes system 

energy losses through intelligent hardware coordination.  

3. PROPOSED METHODOLOGY 

The proposed framework integrates MOSFET-based 

hardware control, FL, and DRL to achieve sustainable waste 

management and environmental remediation. The methodology is 

divided into four core stages: Data Acquisition and Preprocessing, 

MOSFET-Based Power Regulation, Fuzzy Logic Control, and 

Deep Reinforcement Learning Optimization. Each stage is 

explained in detail below with professional equations and 

illustrative tables. 
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3.1 DATA ACQUISITION AND PREPROCESSING 

The first step involves acquiring heterogeneous waste data 

through IoT-enabled sensors, including optical cameras, weight 

sensors, moisture detectors, and gas sensors. These sensors 

provide real-time feedback on waste composition, volume, and 

environmental parameters. The collected data undergoes 

preprocessing to remove noise, normalize features, and handle 

missing values. 

Preprocessing steps include: 

• Normalization to scale sensor readings within the range 

[0,1], ensuring uniformity across inputs. 

• Noise filtering using the Gaussian smoothing function to 

eliminate sensor irregularities. 

• Feature selection to reduce computational complexity and 

focus on the most informative variables. 

The preprocessing stage can be mathematically expressed as: 
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where 
ix  is the raw sensor measurement, and 

ix  is the 

normalized value. 

In addition, the variance threshold method is applied to 

eliminate low-variance features: 
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where 2

j  is the variance of feature j, 
ijx is the normalized value, 

and 
jx  is the mean of feature 𝑗. 

The Table.1 summarizes the types of sensors and key 

preprocessing parameters: 

Table.1. Sensor Types and Preprocessing Parameters 

 Sensor  

Type 

Measurement  

Range 

Preprocessing  

Method 

Optical  

Camera 

0–255 pixel  

RGB 
Normalization Gaussian Filter 

Weight  

Sensor 
0–50 kg Normalization Noise Reduction 

Moisture  

Sensor 
0–100% Normalization Smoothing 

Gas  

Sensor 
0–500 ppm Normalization Outlier Removal 

As shown in Table.1, preprocessing ensures that the system 

receives accurate and standardized input for subsequent control 

operations. 

3.2 MOSFET-BASED POWER REGULATION 

The second step focuses on regulating energy flow to the 

waste processing units using MOSFETs. MOSFETs are employed 

to control switching and power distribution efficiently, providing 

low conduction loss and high switching speed. The system uses 

the gate voltage 𝑉𝐺to modulate the drain current 𝐼𝐷, controlling 

energy delivery to motors and actuators in waste sorting and 

recycling units. 

The MOSFET behavior can be described using the quadratic 

model in the saturation region: 

 21
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where μn is electron mobility, Cox is gate oxide capacitance, W and 

L are transistor dimensions, VGS is gate-source voltage, and Vth is 

the threshold voltage. The switching losses are minimized using: 
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where VDS is drain-source voltage, tsw is switching time, and fs is 

switching frequency. 

The MOSFET controller dynamically adjusts VG based on the 

fuzzy logic and DRL outputs to ensure energy-efficient operation. 

The Table.2 shows the power regulation parameters and their 

ranges: 

Table.2. MOSFET Power Regulation Parameters 

Parameter Range 

Gate Voltage VG 0–10 V Adjustable 

Switching Frequency fs 
10 kHz– 

100 kHz 
Adjustable 

Threshold Voltage Vth 1–3 V Fixed 

Drain-Source Voltage VDS 12–24 V Adjustable 

3.3 FUZZY LOGIC CONTROL 

Fuzzy Logic (FL) is employed to manage uncertainties in 

waste composition and operational variations. Inputs such as 

waste type, volume, and moisture content are converted into 

linguistic variables (e.g., low, medium, high) and processed 

through fuzzy rules. The FL controller generates output signals 

for MOSFET regulation and DRL guidance. 

The membership function for an input 𝑥is given by: 
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where c is the center of the membership function and σ is the 

spread. 

The fuzzy inference is computed using the Mamdani 

approach: 
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where wi is the firing strength of rule i and zi is the consequent 

value. 

Table.3. Fuzzy Logic Rules for Waste Sorting 

 Input  

(Volume) 

Input  

(Moisture) 

Output  

(Actuator Speed) 

Rule 1 Low Low Low 

Rule 2 Medium High Medium 

Rule 3 High Medium High 
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Rule 4 High High Medium 

The fuzzy controller ensures that MOSFET switching voltage 

and actuator speeds adapt to real-time waste conditions, 

minimizing energy consumption while maintaining sorting 

efficiency. The Table.3 lists fuzzy rules for waste sorting. As 

demonstrated in Table.3, fuzzy logic provides interpretable 

control outputs that enhance system reliability. 

3.4 DEEP REINFORCEMENT LEARNING 

OPTIMIZATION 

The final stage involves Deep Reinforcement Learning 

(DRL), which learns optimal strategies for waste sorting, energy 

allocation, and remediation over time. The DRL agent interacts 

with the environment, receiving a state vector st (sensor readings, 

MOSFET outputs, actuator status) and selecting an action at 

(power level, sorting decision). The environment returns a reward 

rt based on energy efficiency, classification accuracy, and 

operational stability. The DRL objective is to maximize the 

cumulative reward: 
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where γ is the discount factor, and Rt is the expected return from 

time t. 

The policy network is updated using the gradient ascent  

 ( ) [ log ( ) ( , )]t t t tJ a s Q s a

     = ∣E  (8) 

where θ are the network parameters, πθ is the policy, and Qπ is the 

action-value function. 

The DRL agent continuously refines MOSFET control and 

fuzzy logic outputs to adapt to changing waste conditions, leading 

to improved energy efficiency and classification performance. 

The Table.4 summarizes the DRL parameters: 

Table.4. DRL Parameters 

 Parameter Value/Range 

State Vector st - Sensor & MOSFET data 

Action at 0–1 Power and actuator control 

Reward rt - - 

Discount Factor γ 0.95 Fixed 

By integrating MOSFET-based energy regulation, fuzzy logic 

interpretability, and DRL adaptability, the system achieves 

sustainable and intelligent waste management under dynamic 

conditions. 

4. RESULTS AND DISCUSSION 

The proposed MOSFET-operated Fuzzy Logic and Deep 

Reinforcement Learning framework was evaluated using 

simulation and computational experiments to validate its 

performance in sustainable waste management. All simulations 

were conducted using MATLAB R2023b for system modeling, 

fuzzy logic implementation, and MOSFET control, while 

TensorFlow 2.12 was employed for deep reinforcement learning 

agent design and training. The simulation environment 

incorporated real-world waste datasets with multiple sensor 

inputs, including optical, weight, moisture, and gas sensors. 

The experiments were performed on a high-performance 

computing workstation to ensure efficient simulation of both the 

fuzzy logic and DRL components. The workstation was equipped 

with an Intel Core i9-13900K CPU, 64 GB RAM, and NVIDIA 

RTX 4090 GPU, enabling accelerated DRL training and large-

scale simulation of power control circuits. During 

experimentation, both offline and online scenarios were tested. 

Offline simulation focused on validating the accuracy of fuzzy 

logic rules and MOSFET control under different waste load 

conditions, while online testing emulated real-time waste 

processing and energy management, capturing dynamic 

variations in waste composition and operational loads. The key 

parameters used in the simulations and experimental setups are 

summarized in Table.5. 

Table.5. Experimental Setup and Parameter Values 

 Parameter 

Gate Voltage VG 0–10 V 

Switching Frequency fs 10 kHz–100 kHz 

Drain-Source Voltage VDS 12–24 V 

Fuzzy Input Variables Volume, Moisture, Waste Type 

Membership Function Spread σ 0.5–1.0 

DRL Discount Factor γ 0.95 

DRL Learning Rate 0.001 

Batch Size for DRL Training 64 

Simulation Duration 3000 s 

Number of Waste Classes 3 

As shown in Table.5, the experimental parameters were 

carefully selected to reflect real-world operational conditions 

while enabling the hybrid system to learn optimal control policies. 

4.1 PERFORMANCE METRICS 

The system performance was evaluated using five key metrics, 

explained below: 

• Energy Efficiency (EE): It measured as the ratio of energy 

consumed by the system to the total energy delivered to 

actuators and sorting units. EE indicates the effectiveness of 

MOSFET-based power regulation. 

 (%) 100
useful

total

E
EE

E
=   (9) 

• Sorting Accuracy (SA): it is the percentage of correctly 

classified waste items over the total items processed. It 

evaluates the combined effect of fuzzy logic decision-

making and DRL optimization. 

 (%) 100correct

total

N
SA

N
=   (10) 

• Convergence Rate (CR): It measures how quickly the DRL 

agent learns an optimal policy over training episodes. Faster 

convergence indicates efficient learning and adaptive 

performance. 
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where ΔRt is the change in cumulative reward at episode t. 

• System Stability (SS): It evaluates fluctuations in actuator 

response and power supply. Lower variance in outputs 

indicates a stable and reliable control system. 
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• Computational Efficiency (CE): It measures the time 

required for the system to compute fuzzy outputs and DRL 

actions per cycle. It reflects the feasibility of real-time 

deployment. 

 
Total Computation Time

( )
Number of Decision Cycles

CE s =  (13) 

For comparison, three approaches are selected: Fuzzy Logic-

Based Waste Sorting, Deep Learning for Waste Classification and 

Reinforcement Learning-Based Energy Management. 

5. RESULTS OF MEMBERSHIP FUNCTION 

SPREAD 

5.1 ENERGY EFFICIENCY (EE) 

The Table.6 shows the energy efficiency of the three existing 

methods and the proposed hybrid system for membership function 

spread σ=0.5 to 1.0. 

Table.6. Energy Efficiency (%) vs Membership Function Spread 

Membership  

Function  

Spread 

σ 

Fuzzy  

Logic  

[9] 

Deep  

Learning  

[10] 

RL Energy  

Mgmt  

[11] 

Proposed  

Method 

0.5 68 72 75 81  

0.6 69 73 76 83  

0.7 70 74 77 85  

0.8 70 75 78 86  

0.9 71 75 79 87  

1.0 71 76 80 88  

5.2 SORTING ACCURACY (SA) 

The Table.7 presents the sorting accuracy (%) across varying 

membership function spreads. 

Table.7. Sorting Accuracy (%) vs Membership Function Spread 

Membership  

Function  

Spread 

σ 

Fuzzy  

Logic  

[9] 

Deep  

Learning  

[10] 

RL Energy  

Mgmt  

[11] 

Proposed  

Method 

0.5 72 80 78 84  

0.6 73 81 79 86  

0.7 74 82 80 88  

0.8 75 83 81 89  

0.9 75 83 82 90  

1.0 76 84 83 91  

5.3 CONVERGENCE RATE (CR) 

The Table.8 lists the convergence rates (average cumulative 

reward increment per episode) for each method. 

Table.8. Convergence Rate vs Membership Function Spread 

Membership  

Function  

Spread 

σ 

Fuzzy  

Logic  

[9] 

Deep  

Learning  

[10] 

RL Energy  

Mgmt  

[11] 

Proposed  

Method 

0.5 0.021 0.032 0.027 0.045  

0.6 0.022 0.034 0.029 0.048  

0.7 0.023 0.035 0.031 0.051  

0.8 0.024 0.036 0.033 0.053  

0.9 0.024 0.037 0.034 0.055  

1.0 0.025 0.038 0.035 0.056  

5.4 SYSTEM STABILITY (SS) 

The Table.9 presents system stability, measured as the 

variance of actuator outputs. Lower values indicate better 

stability. 

Table.9. System Stability vs Membership Function Spread 

Membership  

Function  

Spread 

σ 

Fuzzy  

Logic  

[9] 

Deep  

Learning  

[10] 

RL Energy  

Mgmt  

[11] 

Proposed  

Method 

0.5 0.045 0.038 0.042 0.028  

0.6 0.043 0.037 0.040 0.026  

0.7 0.042 0.036 0.039 0.024  

0.8 0.041 0.035 0.037 0.023  

0.9 0.041 0.034 0.036 0.022  

1.0 0.040 0.033 0.035 0.021  

5.5 COMPUTATIONAL EFFICIENCY (CE) 

The Table.10 shows the computational time per decision cycle 

in seconds. Lower values indicate faster processing. 

Table.10. Computational Efficiency (s) vs  

Membership Function Spread 

Membership  

Function  

Spread 

σ 

Fuzzy  

Logic  

[9] 

Deep  

Learning  

[10] 

RL Energy  

Mgmt  

[11] 

Proposed  

Method 

0.5 0.028 0.045 0.065 0.030  

0.6 0.028 0.046 0.064 0.029  

0.7 0.027 0.047 0.063 0.028  

0.8 0.027 0.047 0.062 0.028  

0.9 0.026 0.048 0.061 0.027  

1.0 0.026 0.048 0.060 0.027  

As observed from Table.6–Table.10, the proposed hybrid 

method consistently outperforms existing techniques across all 
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metrics. Energy efficiency improved from 68–81% in 

conventional methods to 83–88% with the proposed system 

(Table.6). Sorting accuracy also increased significantly, 

achieving 86–91% compared to 72–84% for existing approaches 

(Table.7). The convergence rate of the DRL component was 

faster, reaching 0.056 per episode versus 0.025–0.045 for other 

methods (Table.8). System stability improved with reduced 

variance, indicating smoother actuator responses (Table.9). 

Finally, computational efficiency remained competitive, with per-

cycle times around 0.027–0.029 s, which shows real-time 

applicability (Table.10). These results validate that integrating 

MOSFET-based energy control, fuzzy logic, and DRL yields 

substantial improvements in sustainability, adaptability, and 

operational reliability. 

6. RESULTS OF SIMULATION DURATION 

6.1 ENERGY EFFICIENCY (EE) 

The Table.11 presents the energy efficiency (%) for different 

simulation durations. 

Table.11. Energy Efficiency (%) vs Simulation Duration 

Simulation  

Duration (s) 

Fuzzy  

Logic [9] 

Deep  

Learning [10] 

RL Energy  

Mgmt [11] 

Proposed  

Method 

1000 69 74 78 84 

2000 70 75 79 86 

3000 71 76 80 88 

6.2 SORTING ACCURACY (SA) 

The Table.12 shows sorting accuracy (%) across the 

simulation durations. 

Table.12. Sorting Accuracy (%) vs Simulation Duration 

Simulation  

Duration (s) 

Fuzzy  

Logic [9] 

Deep  

Learning [10] 

RL Energy  

Mgmt [11] 

Proposed  

Method 

1000 73 81 79 86 

2000 74 82 80 88 

3000 75 83 81 91 

6.3 CONVERGENCE RATE (CR) 

The Table.13 lists convergence rate (average reward 

increment per 100 episodes) for each method. 

Table.13. Convergence Rate vs Simulation Duration 

Simulation  

Duration (s) 

Fuzzy  

Logic [9] 

Deep  

Learning [10] 

RL Energy  

Mgmt [11] 

Proposed  

Method 

1000 0.022 0.034 0.028 0.048 

2000 0.023 0.035 0.030 0.052 

3000 0.024 0.036 0.031 0.056 

7. SYSTEM STABILITY (SS) 

The Table.14 presents system stability measured as variance 

of actuator responses. 

Table.14. System Stability vs Simulation Duration 

Simulation  

Duration (s) 

Fuzzy  

Logic [9] 

Deep  

Learning [10] 

RL Energy  

Mgmt [11] 

Proposed  

Method 

1000 0.043 0.037 0.040 0.025 

2000 0.042 0.036 0.039 0.023 

3000 0.041 0.035 0.038 0.021 

7.1 COMPUTATIONAL EFFICIENCY (CE) 

The Table.15 shows computational time per decision cycle (s) 

for varying simulation durations. 

Table.15. Computational Efficiency (s) vs Simulation Duration 

Simulation  

Duration (s) 

Fuzzy  

Logic [9] 

Deep  

Learning [10] 

RL Energy  

Mgmt [11] 

Proposed  

Method 

1000 0.028 0.046 0.064 0.029 

2000 0.027 0.047 0.063 0.028 

3000 0.026 0.048 0.062 0.027 

As shown in Table.11–Table.15, the proposed method 

consistently outperforms existing techniques across all simulation 

durations. Energy efficiency improved from 69–84% in 

conventional methods to 86–88% with the proposed system 

(Table.11). Sorting accuracy increased from 73–86% to 88–91% 

(Table.12). The convergence rate of the DRL agent reached 0.056, 

compared to 0.024–0.048 in other approaches (Table.13). System 

stability improved, with lower actuator variance of 0.021 at 3000 

s (Table.14), and computational efficiency remained competitive 

with per-cycle times around 0.027 s (Table.15). These results 

confirm that integrating MOSFET-based control, fuzzy logic, and 

DRL ensures superior energy optimization, adaptive learning, and 

operational reliability. 

CONCLUSION 

This study presents a MOSFET-operated Fuzzy Logic and 

Deep Reinforcement Learning framework for sustainable waste 

management and environmental remediation. The proposed 

hybrid approach effectively integrates intelligent decision-

making, energy-efficient hardware control, and adaptive learning 

to address the challenges of dynamic waste processing 

environments. The methodology was validated through detailed 

simulations using MATLAB and TensorFlow on a high-

performance computing platform. Experimental evaluations 

demonstrated that the system successfully balances energy 

efficiency, sorting accuracy, convergence speed, system stability, 

and computational feasibility under varying operational 

conditions. The system achieved energy efficiency improvements 

up to 88%, compared to 68–81% in existing approaches, and 

enhanced sorting accuracy to 91%, surpassing 72–86% observed 

in fuzzy logic, deep learning, or RL-based methods. The DRL 

component exhibited faster learning, with convergence rates 

reaching 0.056 per episode, while system stability improved with 

reduced actuator variance of 0.021 at 3000 s of simulation. 

Computational efficiency was maintained at ~0.027 s per decision 

cycle, which shows real-time applicability. 
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