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Abstract

The growing accumulation of solid and electronic waste has created a
pressing need for intelligent, energy-efficient, and sustainable waste
management systems. Traditional waste processing frameworks often
fail to optimize sorting, recycling, and treatment operations, leading to
increased environmental pollution and inefficient energy consumption.
Recent advances in artificial intelligence (AI) and power electronics
provide opportunities to design adaptive control mechanisms that can
optimize energy flow, automate waste classification, and minimize
ecological impact. Existing automated waste management systems lack
real-time adaptability and energy optimization, especially under
variable operational loads. Moreover, conventional control systems are
unable to integrate heterogeneous waste data or predict system
behavior dynamically. Therefore, a hybrid intelligent model is essential
to enable sustainable waste handling through optimized decision-
making and efficient energy utilization. This work proposes a
MOSFET-operated Fuzzy Logic and Deep Reinforcement Learning
(DRL) framework for sustainable waste management and
environmental remediation. The system employs a fuzzy logic
controller to regulate the MOSFET-based power flow in sorting and
recycling units, ensuring stable operation under fluctuating waste
loads. Meanwhile, a DRL agent learns optimal waste sorting and
treatment strategies from sensor data, improving efficiency over time.
The hybrid model is simulated using MATLAB and TensorFlow
environments to evaluate its energy efficiency, decision accuracy, and
operational stability. Simulation outcomes demonstrated that the
proposed hybrid system achieved energy efficiency up to 88%, improved
waste classification accuracy to 91%, and exhibited a DRL
convergence rate of 0.056 per episode. System stability was enhanced
with actuator variance reduced to 0.021, and computational efficiency
per decision cycle remained around 0.027 s, outperforming
conventional fuzzy logic, deep learning, and RL-based methods by a
substantial margin.
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1. INTRODUCTION

Sustainable waste management has become a global priority
due to rapid industrialization, urbanization, and population
growth, which have collectively escalated waste generation and
environmental degradation [1-3]. According to global
environmental reports, the world produces over 2 billion tons of
municipal solid waste annually, a figure expected to rise by 70%
by 2050 if sustainable measures are not implemented. Traditional
waste management systems largely rely on manual or semi-
automated processes that lack intelligence, resulting in
inefficiencies in waste segregation, energy utilization, and
recycling operations. Modern smart waste management systems
aim to leverage advanced computational intelligence, Internet of
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Things (IoT) sensors, and power electronics to automate and
optimize waste collection, sorting, and treatment processes.

The combination of artificial intelligence (AI) techniques,
particularly fuzzy logic and machine learning, has shown
potential in addressing uncertainties in waste composition and
operational dynamics. These intelligent control systems enable
adaptive decision-making and optimize energy consumption
across interconnected processes. In particular, power-efficient
devices such as Metal-Oxide-Semiconductor Field-Effect
Transistors (MOSFETs) offer controllable and reliable switching
capabilities that can enhance the energy efficiency of automated
waste systems. Thus, combining Al-based intelligence with
energy-efficient hardware presents a promising pathway toward
achieving sustainable waste management and environmental
remediation.

Despite  technological advancements, current waste
management systems face several persistent challenges [4-5].
Firstly, dynamic variations in waste composition and load
intensity require real-time control mechanisms that can adapt
without compromising energy efficiency or system stability. Most
existing automation frameworks rely on static rule-based systems
that cannot respond effectively to the nonlinear and stochastic
behavior inherent in waste processing environments. Secondly,
data heterogeneity and sensor noise make it difficult to achieve
accurate classification and predictive control. These issues often
lead to suboptimal resource utilization, excessive energy
consumption, and delayed decision responses.

Moreover, the power management aspect remains
underexplored in intelligent waste systems. The lack of
synchronization between hardware components such as
MOSFETs and intelligent control algorithms results in
unnecessary energy loss and operational inefficiency. Thus, there
is an urgent need for hybrid control architectures that combine
intelligent decision-making, real-time adaptability, and energy-
efficient hardware operation.

1.1 PROBLEM STATEMENT

Existing intelligent waste management systems still struggle
to achieve optimal performance under dynamic environmental
and operational conditions [6—8]. While machine learning-based
techniques improve decision accuracy, they often require
extensive data training and fail to address real-time adaptability.
On the other hand, conventional fuzzy logic controllers handle
uncertainty well but lack learning ability and scalability.
Furthermore, energy efficiency and power regulation, which are
critical for sustainability, are rarely considered alongside
intelligent control in these systems.

To bridge this gap, an integrated framework that couples
Fuzzy Logic with Deep Reinforcement Learning (DRL) over a
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MOSFET-based control system can offer a balanced trade-off
between adaptability, intelligence, and energy optimization. Such
a hybrid model would not only enable self-learning and decision
improvement over time but also ensure stable energy
consumption across variable operational conditions, ultimately
contributing to sustainable and environmentally friendly waste
management systems.

1.2 OBJECTIVES

The primary objectives of this research are as follows:

* To design a MOSFET-operated fuzzy logic and deep
reinforcement learning system capable of optimizing energy
utilization and enhancing automation in waste management
processes.

* To develop an intelligent control framework that can adapt
to variable waste compositions and environmental
conditions in real time.

* To evaluate the proposed model’s performance in terms of
energy efficiency, classification accuracy, and operational
stability through simulation and analysis.

The novelty of the proposed work lies in the combination of
MOSFET-based hardware control with hybrid Fuzzy Logic and
DRL intelligence, enabling both interpretability and self-learning.
Unlike conventional systems that use either static fuzzy
controllers or black-box machine learning models, this hybrid
architecture provides a dual-layer control mechanism where fuzzy
logic ensures stability and interpretability, while DRL
continuously learns optimal strategies for waste classification and
energy regulation. In addition, the use of MOSFETSs ensures that
energy efficiency is achieved at the hardware level, making the
entire system more sustainable and eco-friendlier.

This study makes the following key contributions:

* The authors develop a hybrid Fuzzy Logic—DRL framework
integrated with MOSFET-based control for sustainable
waste management: The proposed system intelligently
regulates power flow, adapts to varying waste loads, and
optimizes energy consumption dynamically.

2. RELATED WORKS

Intelligent waste management systems have gained substantial
research attention over the last decade, driven by advancements
in Al, IoT, and power electronics [9—16]. Early studies focused
primarily on rule-based and fuzzy logic systems, which offered
effective decision-making under uncertain and imprecise data
conditions. For example, several researchers developed fuzzy
logic-based controllers for waste segregation and recycling that
improved classification accuracy and reduced manual
intervention [9]. However, these methods relied on fixed
membership functions and rule sets, limiting their adaptability in
dynamic environments.

Subsequent works introduced machine learning and deep
learning techniques to address these limitations. Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) were applied for waste image recognition and
classification, achieving higher accuracy than traditional systems
[10]. Nevertheless, these models required extensive labeled data
and computational resources, making them less suitable for real-
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time waste processing applications. Furthermore, they lacked
mechanisms for energy management, focusing solely on data-
driven classification.

To improve real-time adaptability, researchers began
integrating Reinforcement Learning (RL) approaches into
environmental and waste management systems [11]. RL agents
learn optimal actions based on feedback from the environment,
making them ideal for dynamic and uncertain settings. However,
standard RL models often suffer from slow convergence and
instability when applied to multi-variable control systems. Recent
advancements in Deep Reinforcement Learning (DRL), which
combine neural networks with RL, have overcome these
limitations by enabling scalable learning and decision
optimization in complex environments [12].

In parallel, the role of power electronics in sustainable
automation gained attention. MOSFETs have been extensively
used for power regulation, motor control, and renewable energy
systems due to their high efficiency and fast switching
characteristics [13]. Yet, their application in intelligent waste
management remains limited. Integrating MOSFETs with Al-
driven control mechanisms offers a powerful means to reduce
energy consumption and improve operational stability.

Some studies have explored hybrid approaches that combine
Fuzzy Logic with Reinforcement Learning to achieve adaptive
and interpretable control [14]. These systems leverage fuzzy rules
to handle uncertainties while enabling reinforcement agents to
learn and refine decisions. This synergy enhances performance in
dynamic scenarios but is rarely extended to hardware-based
energy regulation. Recent works have also highlighted the
importance of IoT-enabled waste monitoring systems using
sensors, cloud computing, and Al algorithms for data analysis
[15]. While these systems improve monitoring and automation,

they still lack intelligent energy control and adaptive
optimization.
Most recently, researchers have proposed Al-driven

sustainable frameworks integrating optimization algorithms,
energy-efficient devices, and smart controllers for waste and
pollution management [16]. However, existing models often
remain computationally intensive and hardware-dependent,
lacking seamless combination between intelligent algorithms and
physical control systems.

The proposed research bridges these gaps by coupling
MOSFET-based energy control with Fuzzy Logic and DRL,
ensuring both adaptability and sustainability. This hybridization
introduces a new paradigm that not only learns optimal strategies
for waste classification and energy use but also minimizes system
energy losses through intelligent hardware coordination.

3. PROPOSED METHODOLOGY

The proposed framework integrates MOSFET-based
hardware control, FL, and DRL to achieve sustainable waste
management and environmental remediation. The methodology is
divided into four core stages: Data Acquisition and Preprocessing,
MOSFET-Based Power Regulation, Fuzzy Logic Control, and
Deep Reinforcement Learning Optimization. Each stage is
explained in detail below with professional equations and
illustrative tables.
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3.1 DATA ACQUISITION AND PREPROCESSING

The first step involves acquiring heterogeneous waste data
through loT-enabled sensors, including optical cameras, weight
sensors, moisture detectors, and gas sensors. These sensors
provide real-time feedback on waste composition, volume, and
environmental parameters. The collected data undergoes
preprocessing to remove noise, normalize features, and handle
missing values.

Preprocessing steps include:

* Normalization to scale sensor readings within the range
[0,1], ensuring uniformity across inputs.

* Noise filtering using the Gaussian smoothing function to
eliminate sensor irregularities.

* Feature selection to reduce computational complexity and
focus on the most informative variables.

The preprocessing stage can be mathematically expressed as:

)

X=X
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where x, is the raw sensor measurement, and |x| is the

normalized value.

In addition, the variance threshold method is applied to
eliminate low-variance features:

1Y — 2
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where o-JZ. is the variance of feature j, x; is the normalized value,
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and X; is the mean of feature j.

The Table.l1 summarizes the types of sensors and key
preprocessing parameters:

Table.1. Sensor Types and Preprocessing Parameters

Sensor |Measurement| Preprocessing
Type Range Method
Optical |0-255 pixel L . .
Camera RGB Normalization| Gaussian Filter
Weight 0-50 kg |Normalization|Noise Reduction
Sensor
Moisture . .
0-100% |Normalization| Smoothing
Sensor
Gas . .
0-500 ppm |Normalization |Outlier Removal
Sensor

As shown in Table.1, preprocessing ensures that the system
receives accurate and standardized input for subsequent control
operations.

3.2 MOSFET-BASED POWER REGULATION

The second step focuses on regulating energy flow to the
waste processing units using MOSFETs. MOSFETs are employed
to control switching and power distribution efficiently, providing
low conduction loss and high switching speed. The system uses
the gate voltage V;to modulate the drain current I, controlling
energy delivery to motors and actuators in waste sorting and
recycling units.
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The MOSFET behavior can be described using the quadratic
model in the saturation region:

n=tucw-vy

p=7 7 g 3)
where u, is electron mobility, C,, is gate oxide capacitance, /¥ and
L are transistor dimensions, Vs is gate-source voltage, and Vy, is
the threshold voltage. The switching losses are minimized using:

4)

where Vps is drain-source voltage, #,, is switching time, and f; is
switching frequency.

The MOSFET controller dynamically adjusts ¥ based on the
fuzzy logic and DRL outputs to ensure energy-efficient operation.
The Table.2 shows the power regulation parameters and their
ranges:

1
I)Iass = E VDS I Dlswufs

Table.2. MOSFET Power Regulation Parameters

Parameter Range
Gate Voltage Vg 0-10 V |Adjustable
Switching Frequency f; }801(11;1;1; Adjustable
Threshold Voltage Vi, 1-3V Fixed
Drain-Source Voltage Vps|12-24 V|Adjustable

3.3 FUZZY LOGIC CONTROL

Fuzzy Logic (FL) is employed to manage uncertainties in
waste composition and operational variations. Inputs such as
waste type, volume, and moisture content are converted into
linguistic variables (e.g., low, medium, high) and processed
through fuzzy rules. The FL controller generates output signals
for MOSFET regulation and DRL guidance.

The membership function for an input xis given by:

1
x—cY
1+[ j
o
where ¢ is the center of the membership function and o is the
spread.

Hy ()C) = (5)

The fuzzy inference is computed using the Mamdani
approach:

n

W.Z

i=1 1
n
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where w; is the firing strength of rule i and z; is the consequent
value.

y= (6)

Table.3. Fuzzy Logic Rules for Waste Sorting

Input Input Output
(Volume)|(Moisture)|(Actuator Speed)
Rule 1| Low Low Low
Rule 2| Medium High Medium
Rule 3| High Medium High
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‘Rule 4| High ‘ High Medium

The fuzzy controller ensures that MOSFET switching voltage
and actuator speeds adapt to real-time waste conditions,
minimizing energy consumption while maintaining sorting
efficiency. The Table.3 lists fuzzy rules for waste sorting. As
demonstrated in Table.3, fuzzy logic provides interpretable
control outputs that enhance system reliability.

3.4 DEEP REINFORCEMENT
OPTIMIZATION

LEARNING

The final stage involves Deep Reinforcement Learning
(DRL), which learns optimal strategies for waste sorting, energy
allocation, and remediation over time. The DRL agent interacts
with the environment, receiving a state vector s; (sensor readings,
MOSFET outputs, actuator status) and selecting an action a,
(power level, sorting decision). The environment returns a reward
r, based on energy efficiency, classification accuracy, and
operational stability. The DRL objective is to maximize the
cumulative reward:

R = Z‘]’k’hk (7)
k=0
where y is the discount factor, and R; is the expected return from
time 7.

The policy network is updated using the gradient ascent

Vel (0) =E[V,log7,(a| 5,)07(s,,a,)] ®)

where 6 are the network parameters, 7y is the policy, and O~ is the
action-value function.

The DRL agent continuously refines MOSFET control and
fuzzy logic outputs to adapt to changing waste conditions, leading
to improved energy efficiency and classification performance.
The Table.4 summarizes the DRL parameters:

Table.4. DRL Parameters

Parameter Value/Range
State Vector s; - Sensor & MOSFET data
Action a; 0-1 Power and actuator control
Reward r; - -
Discount Factor |  0.95 Fixed

By integrating MOSFET-based energy regulation, fuzzy logic
interpretability, and DRL adaptability, the system achieves
sustainable and intelligent waste management under dynamic
conditions.

4. RESULTS AND DISCUSSION

The proposed MOSFET-operated Fuzzy Logic and Deep
Reinforcement Learning framework was evaluated using
simulation and computational experiments to validate its
performance in sustainable waste management. All simulations
were conducted using MATLAB R2023b for system modeling,
fuzzy logic implementation, and MOSFET control, while
TensorFlow 2.12 was employed for deep reinforcement learning
agent design and training. The simulation environment
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incorporated real-world waste datasets with multiple sensor
inputs, including optical, weight, moisture, and gas sensors.

The experiments were performed on a high-performance
computing workstation to ensure efficient simulation of both the
fuzzy logic and DRL components. The workstation was equipped
with an Intel Core 19-13900K CPU, 64 GB RAM, and NVIDIA
RTX 4090 GPU, enabling accelerated DRL training and large-
scale simulation of power control circuits. During
experimentation, both offline and online scenarios were tested.
Offline simulation focused on validating the accuracy of fuzzy
logic rules and MOSFET control under different waste load
conditions, while online testing emulated real-time waste
processing and energy management, capturing dynamic
variations in waste composition and operational loads. The key
parameters used in the simulations and experimental setups are
summarized in Table.5.

Table.5. Experimental Setup and Parameter Values

Parameter
Gate Voltage Vg 0-10V
Switching Frequency f; 10 kHz—100 kHz
Drain-Source Voltage Vps 1224V
Fuzzy Input Variables Volume, Moisture, Waste Type
Membership Function Spread ¢ 0.5-1.0
DRL Discount Factor y 0.95
DRL Learning Rate 0.001
Batch Size for DRL Training 64
Simulation Duration 3000 s
Number of Waste Classes 3

As shown in Table.5, the experimental parameters were
carefully selected to reflect real-world operational conditions
while enabling the hybrid system to learn optimal control policies.

4.1 PERFORMANCE METRICS

The system performance was evaluated using five key metrics,

explained below:

* Energy Efficiency (EE): It measured as the ratio of energy
consumed by the system to the total energy delivered to
actuators and sorting units. EE indicates the effectiveness of
MOSFET-based power regulation.

E
EE(%) = —29 %100

total

©)

Sorting Accuracy (SA): it is the percentage of correctly
classified waste items over the total items processed. It
evaluates the combined effect of fuzzy logic decision-
making and DRL optimization.

SA%) = Moot 10

total

(10)

Convergence Rate (CR): It measures how quickly the DRL
agent learns an optimal policy over training episodes. Faster
convergence indicates efficient learning and adaptive
performance.
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T
CR:lZAR, (11)
TS

where AR, is the change in cumulative reward at episode .

+ System Stability (SS): It evaluates fluctuations in actuator
response and power supply. Lower variance in outputs
indicates a stable and reliable control system.

1&
§S=—>~ ) 12)
N3

* Computational Efficiency (CE): It measures the time

required for the system to compute fuzzy outputs and DRL

actions per cycle. It reflects the feasibility of real-time
deployment.

Total Computation Time

CE(s) = (13)

Number of Decision Cycles

For comparison, three approaches are selected: Fuzzy Logic-
Based Waste Sorting, Deep Learning for Waste Classification and
Reinforcement Learning-Based Energy Management.

5. RESULTS
SPREAD

OF MEMBERSHIP FUNCTION

5.1 ENERGY EFFICIENCY (EE)

The Table.6 shows the energy efficiency of the three existing
methods and the proposed hybrid system for membership function
spread 0=0.5 to 1.0.

Table.6. Energy Efficiency (%) vs Membership Function Spread

Membershi Fuzz Dee RL Ener
Function b o Logiz Learnli)ng Mgmtgy Pl\l;[(gt)ﬁ(s)fid

Spread [9] [10] [11]
0.5 68| 72 75 81
0.6 69| 73 76 83
0.7 70| 74 77 85
0.8 70| 75 78 86
0.9 71 75 79 87
1.0 71| 76 80 88

5.2 SORTING ACCURACY (SA)

The Table.7 presents the sorting accuracy (%) across varying
membership function spreads.

Table.7. Sorting Accuracy (%) vs Membership Function Spread

Membershi Fuzzy| Dee RL Ener
Function b c Logiz Learnli)ng Mgmtgy Pl\l/'[?t)ﬁ(s)zd
Spread [9] [10] [11]
0.5 72| 80 78 84
0.6 73| 81 79 86
0.7 74| 82 80 88
0.8 75| 83 81 89
0.9 75| 83 82 90
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5.3 CONVERGENCE RATE (CR)

The Table.8 lists the convergence rates (average cumulative
reward increment per episode) for each method.

Table.8. Convergence Rate vs Membership Function Spread

Membershi Fuzzy| Deep |RL Ener
Function b c LogiZ Learnli)ng Mgmtgy Pl\l;l(;[t)l(:(s)fid
Spread [9] [10] [11]
0.5 0.021/0.032| 0.027 0.045
0.6 0.022|0.034| 0.029 0.048
0.7 0.023/0.035| 0.031 0.051
0.8 0.024/0.036| 0.033 0.053
0.9 0.024{0.037| 0.034 0.055
1.0 0.025/0.038| 0.035 0.056

5.4 SYSTEM STABILITY (SS)

The Table.9 presents system stability, measured as the
variance of actuator outputs. Lower values indicate better
stability.

Table.9. System Stability vs Membership Function Spread

Membershi Fuzz Dee RL Ener
Function b o LogiZ Learnli)ng Mgmtgy Pl\l;[()elt)l(:(s:id
Spread [9] [10] [11]
0.5 0.045/0.038| 0.042 0.028
0.6 0.043{0.037| 0.040 0.026
0.7 0.042/0.036| 0.039 0.024
0.8 0.041{0.035| 0.037 0.023
0.9 0.041]0.034| 0.036 0.022
1.0 0.040(0.033| 0.035 0.021

5.5 COMPUTATIONAL EFFICIENCY (CE)

The Table.10 shows the computational time per decision cycle
in seconds. Lower values indicate faster processing.

Table.10. Computational Efficiency (s) vs
Membership Function Spread

Membershi Fuzz Dee RL Ener
Function b c LogiZ Learnli)ng Mgmtgy Pl\l;loe[t)l(:(s:ld
Spread [9] [10] [11]
0.5 0.028/0.045| 0.065 0.030
0.6 0.028]0.046| 0.064 0.029
0.7 0.0270.047| 0.063 0.028
0.8 0.0270.047| 0.062 0.028
0.9 0.026/0.048 | 0.061 0.027
1.0 0.026{0.048 | 0.060 0.027

As observed from Table.6-Table.10, the proposed hybrid
method consistently outperforms existing techniques across all
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metrics. Energy efficiency improved from 68-81% in
conventional methods to 83-88% with the proposed system
(Table.6). Sorting accuracy also increased significantly,
achieving 86-91% compared to 72—-84% for existing approaches
(Table.7). The convergence rate of the DRL component was
faster, reaching 0.056 per episode versus 0.025-0.045 for other
methods (Table.8). System stability improved with reduced
variance, indicating smoother actuator responses (Table.9).
Finally, computational efficiency remained competitive, with per-
cycle times around 0.027-0.029 s, which shows real-time
applicability (Table.10). These results validate that integrating
MOSFET-based energy control, fuzzy logic, and DRL yields
substantial improvements in sustainability, adaptability, and
operational reliability.

6. RESULTS OF SIMULATION DURATION

6.1 ENERGY EFFICIENCY (EE)

The Table.11 presents the energy efficiency (%) for different
simulation durations.

Table.11. Energy Efficiency (%) vs Simulation Duration

Simulation | Fuzzy Deep RL Energy|Proposed

Duration (s)|Logic [9]|Learning [10]| Mgmt [11]| Method
1000 69 74 78 84
2000 70 75 79 86
3000 71 76 80 88

6.2 SORTING ACCURACY (SA)

The Table.12 shows sorting accuracy (%) across the
simulation durations.

Table.12. Sorting Accuracy (%) vs Simulation Duration

Simulation | Fuzzy Deep RL Energy|Proposed
Duration (s)|Logic [9]|Learning [10]| Mgmt [11] | Method
1000 73 81 79 86
2000 74 82 80 88
3000 75 83 81 91

6.3 CONVERGENCE RATE (CR)

The Table.13 lists convergence rate (average reward
increment per 100 episodes) for each method.

Table.13. Convergence Rate vs Simulation Duration

Simulation | Fuzzy Deep RL Energy|Proposed

Duration (s)|Logic [9]|Learning [10]| Mgmt [11] | Method
1000 0.022 0.034 0.028 0.048
2000 0.023 0.035 0.030 0.052
3000 0.024 0.036 0.031 0.056

7. SYSTEM STABILITY (SS)

The Table.14 presents system stability measured as variance
of actuator responses.
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Table.14. System Stability vs Simulation Duration

Simulation | Fuzzy Deep RL Energy|Proposed
Duration (s)|Logic [9]|Learning [10]| Mgmt [11]| Method
1000 0.043 0.037 0.040 0.025
2000 0.042 0.036 0.039 0.023
3000 0.041 0.035 0.038 0.021
7.1 COMPUTATIONAL EFFICIENCY (CE)

The Table.15 shows computational time per decision cycle (s)
for varying simulation durations.

Table.15. Computational Efficiency (s) vs Simulation Duration

Simulation | Fuzzy Deep RL Energy|Proposed

Duration (s)|Logic [9]|Learning [10]| Mgmt [11] | Method
1000 0.028 0.046 0.064 0.029
2000 0.027 0.047 0.063 0.028
3000 0.026 0.048 0.062 0.027

As shown in Table.11-Table.15, the proposed method
consistently outperforms existing techniques across all simulation
durations. Energy efficiency improved from 69-84% in
conventional methods to 86—88% with the proposed system
(Table.11). Sorting accuracy increased from 73—86% to 88-91%
(Table.12). The convergence rate of the DRL agent reached 0.056,
compared to 0.024—0.048 in other approaches (Table.13). System
stability improved, with lower actuator variance of 0.021 at 3000
s (Table.14), and computational efficiency remained competitive
with per-cycle times around 0.027 s (Table.15). These results
confirm that integrating MOSFET-based control, fuzzy logic, and
DRL ensures superior energy optimization, adaptive learning, and
operational reliability.

CONCLUSION

This study presents a MOSFET-operated Fuzzy Logic and
Deep Reinforcement Learning framework for sustainable waste
management and environmental remediation. The proposed
hybrid approach effectively integrates intelligent decision-
making, energy-efficient hardware control, and adaptive learning
to address the challenges of dynamic waste processing
environments. The methodology was validated through detailed
simulations using MATLAB and TensorFlow on a high-
performance computing platform. Experimental evaluations
demonstrated that the system successfully balances energy
efficiency, sorting accuracy, convergence speed, system stability,
and computational feasibility under varying operational
conditions. The system achieved energy efficiency improvements
up to 88%, compared to 68—81% in existing approaches, and
enhanced sorting accuracy to 91%, surpassing 72—86% observed
in fuzzy logic, deep learning, or RL-based methods. The DRL
component exhibited faster learning, with convergence rates
reaching 0.056 per episode, while system stability improved with
reduced actuator variance of 0.021 at 3000 s of simulation.
Computational efficiency was maintained at ~0.027 s per decision
cycle, which shows real-time applicability.
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