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Abstract

Air pollution poses a growing threat to public health, urban
sustainability, and environmental balance. Traditional air monitoring
stations, though accurate, are expensive and offer limited spatial
coverage. The combination of wireless sensor networks (WSNs) with
intelligent predictive models provides a low-cost and scalable solution
for real-time air quality assessment. Field Programmable Gate Arrays
(FPGASs) further enhance system performance by offering high-speed
data processing and energy-efficient computation at the edge. Despite
technological progress, existing air quality monitoring frameworks
often suffer from high latency, limited adaptability to dynamic
conditions, and excessive power consumption. In addition, the
fluctuating nature of environmental parameters such as temperature,
humidity, and particulate matter (PM2.5, PM10) necessitates a model
capable of learning temporal dependencies for accurate forecasting.
This work presents an FPGA-induced WSN architecture integrated
with Long Short-Term Memory (LSTM) networks for predictive air
pollution monitoring. The proposed system deploys distributed sensor
nodes equipped with low-power microcontrollers and FPGA modules
for edge data pre-processing. Sensor data streams are transmitted via
wireless nodes to a centralized unit running an optimized LSTM model
for pollutant prediction. The FPGA accelerates matrix computations,
reducing inference latency, while adaptive data sampling minimizes
energy usage. The model is trained and tested on real-time datasets
containing concentrations of CO: NO: and PM:s from urban
monitoring sites. Experimental evaluation demonstrated that the
proposed FPGA-enabled LSTM system achieved a Root Mean Squared
Error (RMSE) of 3.5-3.6, a Mean Absolute Error (MAE) of 2.8-2.9,
and a Mean Absolute Percentage Error (MAPE) of 1.5-1.6% over 10
sensor nodes. Energy consumption per node was reduced to 9.5-9.6 J,
while prediction latency was lowered to approximately 95 ms,
outperforming traditional ANN, regression, and CPU-based LSTM
methods. The framework exhibited high scalability and real-time
predictive capability, confirming its effectiveness for low-latency,
energy-efficient, and accurate urban air quality monitoring.
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1. INTRODUCTION

Air pollution remains one of the most significant
environmental challenges of the 21st century, contributing to
millions of premature deaths annually and accelerating climate
change [1]. Rapid industrialization, vehicular emissions, and
urban expansion have intensified pollutant concentrations in the
atmosphere, leading to severe health issues such as respiratory
illnesses, cardiovascular diseases, and impaired cognitive
functions [2]. Conventional air monitoring systems rely on fixed,
high-precision stations that provide accurate readings but suffer
from limited spatial coverage and high operational costs [3].
Consequently, there has been a growing shift towards intelligent,
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distributed, and cost-effective air quality monitoring systems that
can provide real-time insights into dynamic environmental
conditions.

In recent years, Wireless Sensor Networks (WSNs) have
emerged as an essential technology for environmental sensing due
to their flexibility, scalability, and ability to collect data from
multiple locations simultaneously. Each WSN node is equipped
with sensors capable of detecting critical air pollutants such as
CO:, NO;, and particulate matter (PM..s and PMio). However,
while WSNs enable widespread data collection, their
effectiveness relies heavily on efficient data processing and
predictive analytics to extract meaningful information and
anticipate pollution trends. This is where advanced machine
learning models, particularly Long Short-Term Memory (LSTM)
networks, have demonstrated remarkable success in capturing
temporal dependencies and nonlinear relationships in
environmental data.

Despite technological advancements, implementing large-
scale WSN-based air pollution monitoring systems faces several
challenges. First, the massive influx of sensor data leads to
substantial computational overhead and latency, particularly
when processed on traditional microcontroller-based systems [4].
These delays hinder the ability to deliver real-time predictions
necessary for early warning and decision-making. Second, the
energy consumption of continuous sensing and transmission
remains a critical concern, especially in remote or battery-
powered deployments [5]. Traditional cloud-based processing
further exacerbates these issues by increasing communication
delays and energy requirements. Therefore, there is an urgent
need for a high-performance, low-latency, and energy-efficient
computational infrastructure that can operate at the network edge
and support real-time air quality prediction.

Existing air quality monitoring frameworks still fall short in
addressing three major concerns: latency, power efficiency, and
prediction accuracy. Most existing systems rely on centralized
data processing, which introduces significant delays due to long-
distance data transmission [6]. In addition, standard
microcontroller platforms are limited in their ability to perform
real-time deep learning computations, restricting the use of
complex models like LSTMs that require high processing power
[7]. These constraints limit the responsiveness and adaptability of
current monitoring solutions, particularly in dynamic urban
environments where pollutant levels fluctuate rapidly due to
changing weather and traffic patterns. Hence, an integrated
solution that combines hardware acceleration with intelligent
temporal modeling is crucial for achieving scalable and efficient
predictive monitoring.

The primary objective of this research is to design and
implement an FPGA-induced Wireless Sensor Network
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integrated with LSTM-based predictive modeling for real-time air
pollution monitoring. The system aims to:

* Reduce latency in pollutant prediction by leveraging FPGA-
based parallel computation.

* Enhance energy efficiency in data transmission and
processing through adaptive sampling and local
computation at sensor nodes.

* Improve predictive accuracy using LSTM models capable of
learning temporal patterns in air quality data.

* Establish a scalable, low-cost, and portable monitoring
framework suitable for both urban and rural environments.

The novelty of this study lies in the synergistic combination
of FPGA hardware acceleration with LSTM neural networks in a
distributed WSN architecture. Unlike traditional systems that
depend solely on cloud-based processing or simple regression
models, the proposed approach enables on-edge intelligent
prediction with significantly lower computational latency. The
FPGA modules are programmed to perform high-speed matrix
computations essential for LSTM operations, thereby accelerating
prediction without compromising energy efficiency. Moreover,
the framework introduces a dynamic data-handling strategy that
allows each node to adapt its sampling rate based on pollution
variation, further optimizing power usage and bandwidth.

The main contributions of this research can be summarized as
follows:

* A novel FPGA-enabled WSN system is designed to perform
edge-level pre-processing, feature extraction, and efficient
data transmission. This architecture leverages the
reconfigurability of FPGA hardware to optimize
computation speed and energy consumption.

An LSTM-based forecasting model is integrated into the
system to predict pollutant concentrations such as COz, NO2,
and PM:.s in real time. The combination of FPGA
computation and deep temporal learning allows for a robust
and adaptive framework that outperforms conventional
microcontroller-based predictive systems.

2. RELATED WORKS

Air pollution monitoring using WSNs has been an active
research area for over a decade, with significant contributions
aimed at improving accuracy, scalability, and real-time
responsiveness. Early works focused primarily on deploying
distributed sensor nodes to measure environmental parameters
such as temperature, humidity, and gaseous pollutants [8]. These
systems relied on simple microcontroller-based designs and
transmitted raw data to centralized servers for analysis. While
functional, these methods suffered from high communication
overhead and limited predictive capability due to the absence of
intelligent modeling.

To overcome these issues, researchers introduced machine
learning-based air quality prediction models, including support
vector machines (SVM), random forests, and artificial neural
networks (ANN) [9]. These algori demonstrated improved
accuracy in pollutant forecasting; however, their computational
complexity often rendered them unsuitable for real-time
deployment on resource-constrained WSN nodes. The transition
toward deep learning models, particularly LSTM networks,
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marked a turning point in environmental monitoring research
[10]. LSTM’s ability to capture long-term temporal dependencies
made it ideal for predicting pollutants influenced by time-series
factors such as traffic flow and meteorological variations.

Recent studies have explored integrating edge computing and
IoT technologies to enhance responsiveness and energy efficiency
in environmental monitoring [11]. Edge devices were introduced
to perform preliminary data processing, reducing the volume of
information transmitted to the cloud. However, most edge
systems continued to rely on conventional microcontrollers,
which still posed limitations in handling complex deep learning
computations. To address these challenges, FPGA-based systems
have emerged as a promising alternative, offering customizable
hardware acceleration and parallelism for real-time applications
[12].

For example, [13] demonstrated the use of FPGA co-
processors in environmental sensing platforms to significantly
reduce computational latency during signal processing tasks.
Similarly, [14] employed FPGA-based architectures for real-time
temperature and humidity monitoring, achieving notable
improvements in energy efficiency and data throughput. In
parallel, LSTM-based models have been applied in several air
quality prediction frameworks, with [15] reporting that LSTM
achieved over 20% higher accuracy than conventional recurrent
neural networks (RNNs) and regression models.

Despite these advances, the fusion of FPGA hardware
acceleration and deep learning models for predictive air pollution
monitoring remains underexplored. Previous studies primarily
focused either on hardware optimization or algorithmic
improvements in isolation, without achieving a cohesive
combination between computation and intelligence. The proposed
research addresses this gap by combining the processing power of
FPGAs with the predictive accuracy of LSTMs within a WSN-
based sensing framework. This combination facilitates low-
latency, energy-efficient, and scalable environmental monitoring,
setting a new benchmark for smart and sustainable air quality
management systems.

3. PROPOSED METHOD

The proposed framework, FPGA-enabled WSN integrated
with LSTM for predictive air pollution monitoring, involves
several sequential steps to ensure accurate, low-latency, and
energy-efficient air quality prediction. Each step is discussed in
detail below.

3.1 SENSOR NODE DEPLOYMENT AND DATA
ACQUISITION

The first stage of the system involves deploying wireless
sensor nodes equipped with environmental sensors to capture
real-time pollutant concentrations (CO2, NO2, PMoa.s),
temperature, and humidity. The nodes were strategically
distributed across an urban area to ensure dense coverage,
minimizing blind spots and improving data granularity. Each node
collects analog sensor readings, which are converted to digital
signals via ADC modules integrated on low-power
microcontrollers.



ISSN: 2395-1680 (ONLINE)

The FPGA module at each node performs preliminary filtering
and feature extraction. This includes noise removal through
digital filters and normalization of data to maintain consistency
across all sensors. The processed data is then packetized and
transmitted wirelessly to the central aggregator node for LSTM-
based prediction.

Eq.(1) represents the normalization process applied to sensor
readings x;:

X —X

norm __ i i
x,‘ — i min (1)
xmux - xm[n
where x; is the raw sensor reading, Xi» and X, are the minimum
and maximum observed values in the dataset. Normalization
ensures that LSTM inputs are scale-invariant and aids in faster

model convergence.

Table.1. Sensor Node Data

Node| CO: | NO: | PMz.s [Temperature Humidity
ID |(ppm) (ppb)|(ng/m*) (&) (%)
NO1| 420 | 35 55 28 65
NO02 | 450 | 40 48 27 62
NO3 | 400 | 38 50 29 64

The Table.l shows a snapshot of sensor readings collected
from distributed WSN nodes.

FPGA-BASED PREPROCESSING
FEATURE EXTRACTION

3.2 AND

After data acquisition, the sensor data is preprocessed on
FPGA modules to reduce latency and energy consumption. FPGA
enables parallel execution of computations, including digital
filtering, moving average calculation, and feature extraction.
Features include moving averages, variance, and temporal
gradients of pollutant levels, which enhance the predictive
capability of the LSTM model.

The moving average of pollutant concentration y, over a
window size wis calculated as:

1 t
V== Z X;
Wiz —w+1

)
where x; is the sensor reading at time step , and w represents the
size of the time window. This equation smooths transient

fluctuations, ensuring the LSTM receives stable inputs.

Table.2. Feature Extraction for CO-

N D)o ) (sl (5l
NO! 420 418 12
NO02 450 445 15
NO3 400 402 10

The Table.2 illustrates feature extraction performed on FPGA
nodes before LSTM prediction.
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3.3 WIRELESS DATA TRANSMISSION AND EDGE
AGGREGATION

The preprocessed features are transmitted wirelessly using
low-power protocols such as ZigBee or LoRa to an aggregator
node. FPGA at the edge also handles data compression using
lightweight algorithms to minimize bandwidth consumption. This
step reduces packet collisions and ensures reliable transmission in
urban deployments. The received data X; at the edge aggregator
can be mathematically represented as:

N
X, — Zfi(x;wrm’Ax[) (3)
i=1
where f; is the FPGA-processed feature vector from the i node,

norm

x/”™ is the normalized reading, Ax, is the temporal gradient, and

N is the total number of nodes. This aggregation ensures a unified,
structured dataset for LSTM input.

Table 3.3 — Aggregated Edge Data

Timestamp CO: NO: PM:.s | Temp | Humidity
Feature | Feature | Feature | Feature | Feature
10:00 AM | 418 36 52 28 63
10:05 AM | 421 37 50 28 64
10:10 AM | 419 35 51 27 62

The Table.3 represents edge-aggregated features ready for
LSTM processing.

3.4 LSTM-BASED PREDICTION MODEL

The aggregated feature vectors are fed into an LSTM network
for pollutant prediction. LSTM is chosen for its ability to capture
long-term dependencies in time-series data, which is essential for
forecasting pollutants influenced by dynamic environmental
factors. The LSTM cell operates using input (i;), forget (f;), and
output (o;) gates, controlling the flow of information over time.
The LSTM equations are:

fo=0W, [h_.X,]+b,) 4)
i, =00, -[h_, X,1+b) (5)
C, =tanh(W,.-[, ,, X,]+b;) (6)
C=f*C_ +i*C (7)

h, =o, *tanh(C,) (8)

where X; is the input vector at time ¢, 4, is the hidden state, C; is
the cell state, and W and b represent weights and biases.

Table.4. LSTM Predicted Pollutant

Timestamp Predicted | Predicted| Predicted
CO: (ppm)|NO: (ppb)|PM:.s (ug/m?)
10:15 AM 422 38 53
10:20 AM 425 39 55
10:25 AM 423 37 54

The Table.4 shows the LSTM network’s predicted pollutant
values based on edge-aggregated features.
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3.5 MODEL EVALUATION AND FEEDBACK
LOOP

The predicted outputs are evaluated against actual sensor
readings using performance metrics such as Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE).
This evaluation informs adaptive adjustments in both FPGA
preprocessing and LSTM hyperparameters, creating a feedback
loop for continuous improvement. RMSE is calculated as:

1 n .
RMSE = 1/;2(3@ -5)
t=1

where ) is the actual pollutant reading, p,is the predicted value,

€))

and 7 is the total number of samples.

Table.5. Model Evaluation Metrics

Pollutant RMSE MAPE (%)
CO: 35 1.2
NO: 2.1 L5

PMo:.s 4.0 2.0

The Table.5 presents performance metrics of the LSTM-based
predictive model.

3.6 SYSTEM OPTIMIZATION AND SCALABILITY

Finally, the proposed framework incorporates dynamic node
scheduling and adaptive sampling to optimize energy usage and
network longevity. FPGA modules can adjust sampling rates
based on pollutant volatility, while LSTM predictions inform the
system of expected trends, enabling predictive resource
allocation. The combination of hardware acceleration, edge
intelligence, and dynamic control ensures the system can scale to
larger urban environments without sacrificing accuracy or
efficiency. The adaptive sampling decision can be mathematically

expressed as:
o
— P
S, =8, 1+ _—
xp

where s, is the adjusted sampling interval, s, is the base interval,

(10)

o, is the standard deviation of the pollutant in the recent time

window, and X, is the mean value.

Table.6. Adaptive Sampling Intervals

Node ID|CO: Volatility|Sampling Interval (s)
NO1 5 10
NO02 7 12
NO3 4 9

The Table.6 illustrates adaptive sampling intervals based on
pollutant variability.

4. RESULTS AND DISCUSSION

The experiments were conducted to evaluate the performance
of the proposed FPGA-induced WSN integrated with LSTM
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models for predictive air pollution monitoring. The simulations
were carried out using MATLAB R2024b and Python 3.12 with
TensorFlow and Keras libraries for deep learning implementation.
The FPGA-based preprocessing and feature extraction were
simulated using Xilinx Vivado 2023.1 to emulate the hardware
acceleration of sensor nodes.

A hybrid experimental setup combining real-world and
synthetic datasets was employed. Real-time pollutant
measurements (COz, NOz, PM..s) were collected from urban air
quality monitoring stations, while synthetic variations were
introduced to evaluate system adaptability under fluctuating
environmental conditions. The experiments were performed on a
workstation equipped with an Intel Core 19-13900K CPU, 64 GB
RAM, and an NVIDIA RTX 4090 GPU, enabling high-speed
LSTM training and simulation of FPGA operations in parallel.

The experimental protocol aimed to assess prediction
accuracy, latency, energy efficiency, and scalability, comparing
the proposed method against baseline microcontroller-based
systems and conventional LSTM deployments without hardware
acceleration. Each experiment ran multiple trials over 48 hours to
ensure statistical reliability of the results.

4.1 EXPERIMENTAL SETUP AND PARAMETERS

The experimental setup involved defining sensor node
parameters, LSTM hyperparameters, and FPGA configurations.
The table below summarizes the major experimental parameters
and their corresponding values.

Table.7. Parameters

Parameter Value / Configuration
10
5 (CO2, NOz, PMz2.s,

Temperature, Humidity)

Number of sensor nodes

Sensors per node

Sampling interval 10 seconds (adaptive)

FPGA Module Xilinx Artix-7
LSTM Layers 2

LSTM Units per Layer |64

Dropout 0.2

Learning Rate 0.001

Epochs 150

Batch Size 32

Prediction Horizon 15 minutes

Table.7 presents the experimental parameters employed in the
proposed framework.

4.2 PERFORMANCE METRICS

The performance of the proposed method was evaluated using
five key metrics, providing a comprehensive assessment of
predictive accuracy, efficiency, and reliability. Each metric is
explained below:

* Root Mean Squared Error (RMSE): RMSE measures the
average magnitude of the prediction error, penalizing larger
deviations.
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* MAE: MAE quantifies the average absolute difference 4.3.2 MAE:
between predicted and actual values:
Table.9. MAE Comparison Across Sensor Nodes

1 n
MAE ==Y y, =31 (11)
n; Node|[9]|[11]|[15]|Proposed Method
It provides a straightforward measure of prediction error 1 |4.114.8|3.7 2.8
magnitude without squaring deviations. 2 4214938 2.9
. MAPE:&\/IIA.PE evaluates predi;tion accuracy in pe(r;gfntage 3 1421501038 2.9
terms, helping compare performance across different
pollutant scales: 4 43151139 2.8
100 2 . 5 |43|5.1]3.9 2.8
MAPE ZTZl %I (12) 6 |4.4]52(4.0 2.9
o 7 |44|53]4.0 2.9
Lower MAPE reflects better predictive reliability. s 14515341 28
+ Energy Consumption (EC): EC measures the total power 1 :
consumed by sensor nodes and communication modules 9 [45]54]4.1 2.8
during data collection, preprocessing, and transmission. 10 4.6/5.5|4.2 2.8

FPGA acceleration and adaptive sampling aim to minimize

; o The Table.9 illustrates that the proposed framework achieves
EC, extending node lifetime.

the lowest MAE across all nodes.
4.3.3 MAPE:

Prediction Latency (PL): PL represents the time taken for
the system to produce predictions after receiving sensor
inputs. Lower latency is critical for real-time air quality

1 o,
alerts, particularly in urban environments. FPGA hardware Table.10. MAPE Comparison Across Sensor Nodes (%)

acceleration significantly reduces PL compared to Node|[9]|[11]{[15]|Proposed Method
microcontroller-only systems. 1 Bala1log 15
To benchmark the proposed framework, three existing air > [3la2l29 16
pollution monitoring approaches are considered: Microcontroller- S : ’
based WSN with ANN prediction [9], Edge computing with 3 334229 1.6
regression models [11] and LSTM-based prediction without 4 13.4/43(3.0 1.5
FPGA acceleration [15]. 5 [34l43(30 15
4.3 RESULTS OVER NODES 6 [3.5/4.4]3.0 1.6
7 13.5/44(3.1 1.6
Each metric was measured across 10 sensor nodes, and values
are presented below. § 3.6[45]3.1 L5
4.3.1 RMSE: 9 13.6/45(3.1 1.5
10 (3.7|4.6|3.2 1.5
Table.8. RMSE Comparison The Table.10 demonstrates that the proposed method
Across Sensor Nodes maintains minimal prediction errors in percentage terms.
Node|[9]|[11]{[15]|Proposed Method 4.3.4 EC:
1 |5.2/6.1(4.5 35 Table.11. E c )
able.11. Energy Consumption
2 [53]62]4.6 3.6 Comparison Across Sensor Nodes (Joules)
3 |54/63|4.6 3.6
4 1556447 35 Node| [9] |[11]{[15]|Proposed Method
5 15616547 35 1 |12.5|11.8|14.2 9.5
6 15716648 36 2 112.6(11.9{14.3 9.6
7 5867148 36 3 [12.7|12.0{14.5 9.6
3 15868149 35 4 |12.8|12.1|14.6 9.5
9 15916949 35 5 112.9|12.2114.7 9.5
10 16070050 35 6 [13.0|12.3]14.8 9.6
13.1{12.4{15.0 .6
The Table.8 shows that the proposed method consistently ! o
achieves lower RMSE than existing approaches. 8 |13.2/12.5/15.1 9.5
9 [13.3|12.6/15.2 9.5
10 |13.4{12.7|15.3 9.5
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The Table.11 shows energy efficiency improvements of the
proposed FPGA-enabled method compared to existing
approaches.

4.3.5 PL:

Table.12. Prediction Latency
Comparison Across Sensor Nodes (ms)

Node|[9] |[11]|[15]|Proposed Method
1 |250{180|320 95
2 |255]185|325 97
3 |260{190|330 96
4 |265/195|335 95
5 |270{200|340 96
6 |275(205(345 97
7 |280({210(350 96
8 [285/215(355 95
9 1290{220{360 96
10 |295|225|365 95

The Table.12 demonstrates the significant reduction in
prediction latency achieved using FPGA acceleration.

The results indicate that the proposed FPGA-enabled LSTM
WSN framework outperforms existing methods across all metrics.
RMSE and MAE decreased by approximately 30-35%, while
MAPE was nearly halved (Table.8-Table.10). Energy
consumption was reduced by 28-35%, reflecting FPGA-based
edge preprocessing and adaptive sampling efficiency (Table.11).
Prediction latency dropped dramatically from over 300 ms in
standard LSTM setups to ~95 ms, enabling near real-time alerts
(Table.12). Thus, the combination of hardware acceleration with
temporal deep learning provides a robust, scalable, and efficient
solution for predictive air pollution monitoring.

4.4 RESULTS OVER SAMPLING INTERVALS

The evaluation used a sampling interval starting from 2
seconds, increasing in steps of 2 seconds up to 10 seconds, to
analyze system performance under adaptive sampling conditions.

4.4.1 RMSE:

Table.12. RMSE Comparison
Across Sampling Intervals

Sampling Interval (s)|[9]|[11]|[15]{Proposed Method
2 54/6.2(4.7 3.5
4 5.5/6.3]4.8 35
6 5.6/6.54.9 3.6
8 5.7/6.6|5.0 3.6
10 5.8/6.7]|5.0 35

The Table.12 shows that the proposed method maintains lower
RMSE values across all sampling intervals.
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4.4.2 MAE:

Table.13. MAE Comparison Across Sampling Intervals

Sampling Interval (s)|[9]|[11]{[15]{Proposed Method
2 4314939 2.8
4 4.415.0(4.0 2.9
6 4.5/5.14.1 2.9
8 45|52 4.1 2.8
10 4.6/53|4.2 2.8

The Table.13 demonstrates that the proposed framework
achieves consistently lower MAE compared to existing methods.

4.4.3 MAPE:

Table.14. MAPE Comparison Across Sampling Intervals (%)

Sampling Interval (s)|[9]|[11]|[15]|Proposed Method
2 3.3/4.2|3.0 1.5
4 3.4(43(3.1 1.5
6 3544|132 1.6
8 3545|132 1.6
10 3.6/4.6|3.3 1.5

The Table.14 illustrates that the proposed method maintains
minimal prediction errors across all adaptive sampling intervals.

4.4.4 EC:

Table.15. Energy Consumption
Comparison Across Sampling Intervals (Joules)

Sampling Interval (s)| [9] |[11]|[15]|Proposed Method
2 13.1{12.5(15.0 9.5
4 12.912.3(14.8 9.5
6 12.7{12.1(14.6 9.6
8 12.5|12.0{14.5 9.6
10 12.4/11.8(14.3 9.5

The Table.15 shows energy efficiency gains of the proposed
method across different sampling intervals.

4.4.5 PL:

Table.16. Prediction Latency
Comparison Across Sampling Intervals (ms)

Sampling Interval (s)| [9] |[11]{[15]|Proposed Method
2 280(210|350 95
4 275|205|345 96
6 270{200|340 96
8 265|195|335 95
10 260{190|330 95

The Table.16 demonstrates the significant reduction in latency
achieved by FPGA acceleration across all sampling intervals.

The results indicate that the proposed FPGA-enabled LSTM

WSN consistently outperforms existing methods across all
adaptive sampling intervals. RMSE and MAE decreased by ~30—
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35%, while MAPE reduced by nearly 50% (Table.12—Table.14).
Energy consumption remained stable between 9.5-9.6 I,
reflecting efficient FPGA preprocessing and adaptive sampling
(Table.15). Prediction latency dropped to ~95 ms, significantly
lower than traditional CPU-based LSTM and ANN methods
(Table.16). An adaptive sampling combined with FPGA
acceleration ensures high accuracy, low energy usage, and real-
time responsiveness, making the system suitable for large-scale
urban deployments.

5. CONCLUSION

This study presented a comprehensive framework for
predictive air pollution monitoring by integrating FPGA-enabled
WSNs with LSTM networks. The proposed system addresses
critical limitations of conventional air quality monitoring,
including high latency, limited energy efficiency, and reduced
prediction accuracy in dynamic urban environments. By
leveraging FPGA-based edge computation, the system accelerates
feature extraction and preprocessing, significantly reducing the
computational burden on central servers while enabling real-time
analytics. LSTM models effectively captured temporal
dependencies of pollutant concentrations, including CO2, NO.,
and PMz.s, providing robust and accurate forecasts. Experimental
evaluations demonstrated that the proposed method outperformed
three existing approaches: microcontroller-based WSN with ANN
prediction, edge computing with regression models, and LSTM-
based prediction without FPGA acceleration. Over 10 sensor
nodes, the framework achieved a RMSE of 3.5-3.6, a MAE of
2.8-2.9, and a MAPE of 1.5-1.6%, reflecting a substantial
improvement over baseline methods. The energy consumption per
node was reduced to 9.5-9.6 J, indicating effective utilization of
FPGA acceleration and adaptive sampling strategies. Moreover,
prediction latency dropped to approximately 95 ms, ensuring
near-instantaneous pollutant forecasting and enabling timely
alerts for urban management and public safety.
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