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Abstract 

Air pollution poses a growing threat to public health, urban 

sustainability, and environmental balance. Traditional air monitoring 

stations, though accurate, are expensive and offer limited spatial 

coverage. The combination of wireless sensor networks (WSNs) with 

intelligent predictive models provides a low-cost and scalable solution 

for real-time air quality assessment. Field Programmable Gate Arrays 

(FPGAs) further enhance system performance by offering high-speed 

data processing and energy-efficient computation at the edge. Despite 

technological progress, existing air quality monitoring frameworks 

often suffer from high latency, limited adaptability to dynamic 

conditions, and excessive power consumption. In addition, the 

fluctuating nature of environmental parameters such as temperature, 

humidity, and particulate matter (PM2.5, PM10) necessitates a model 

capable of learning temporal dependencies for accurate forecasting. 

This work presents an FPGA-induced WSN architecture integrated 

with Long Short-Term Memory (LSTM) networks for predictive air 

pollution monitoring. The proposed system deploys distributed sensor 

nodes equipped with low-power microcontrollers and FPGA modules 

for edge data pre-processing. Sensor data streams are transmitted via 

wireless nodes to a centralized unit running an optimized LSTM model 

for pollutant prediction. The FPGA accelerates matrix computations, 

reducing inference latency, while adaptive data sampling minimizes 

energy usage. The model is trained and tested on real-time datasets 

containing concentrations of CO₂, NO₂, and PM₂.₅ from urban 

monitoring sites. Experimental evaluation demonstrated that the 

proposed FPGA-enabled LSTM system achieved a Root Mean Squared 

Error (RMSE) of 3.5–3.6, a Mean Absolute Error (MAE) of 2.8–2.9, 

and a Mean Absolute Percentage Error (MAPE) of 1.5–1.6% over 10 

sensor nodes. Energy consumption per node was reduced to 9.5–9.6 J, 

while prediction latency was lowered to approximately 95 ms, 

outperforming traditional ANN, regression, and CPU-based LSTM 

methods. The framework exhibited high scalability and real-time 

predictive capability, confirming its effectiveness for low-latency, 

energy-efficient, and accurate urban air quality monitoring. 
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1. INTRODUCTION 

Air pollution remains one of the most significant 

environmental challenges of the 21st century, contributing to 

millions of premature deaths annually and accelerating climate 

change [1]. Rapid industrialization, vehicular emissions, and 

urban expansion have intensified pollutant concentrations in the 

atmosphere, leading to severe health issues such as respiratory 

illnesses, cardiovascular diseases, and impaired cognitive 

functions [2]. Conventional air monitoring systems rely on fixed, 

high-precision stations that provide accurate readings but suffer 

from limited spatial coverage and high operational costs [3]. 

Consequently, there has been a growing shift towards intelligent, 

distributed, and cost-effective air quality monitoring systems that 

can provide real-time insights into dynamic environmental 

conditions. 

In recent years, Wireless Sensor Networks (WSNs) have 

emerged as an essential technology for environmental sensing due 

to their flexibility, scalability, and ability to collect data from 

multiple locations simultaneously. Each WSN node is equipped 

with sensors capable of detecting critical air pollutants such as 

CO₂, NO₂, and particulate matter (PM₂.₅ and PM₁₀). However, 

while WSNs enable widespread data collection, their 

effectiveness relies heavily on efficient data processing and 

predictive analytics to extract meaningful information and 

anticipate pollution trends. This is where advanced machine 

learning models, particularly Long Short-Term Memory (LSTM) 

networks, have demonstrated remarkable success in capturing 

temporal dependencies and nonlinear relationships in 

environmental data. 

Despite technological advancements, implementing large-

scale WSN-based air pollution monitoring systems faces several 

challenges. First, the massive influx of sensor data leads to 

substantial computational overhead and latency, particularly 

when processed on traditional microcontroller-based systems [4]. 

These delays hinder the ability to deliver real-time predictions 

necessary for early warning and decision-making. Second, the 

energy consumption of continuous sensing and transmission 

remains a critical concern, especially in remote or battery-

powered deployments [5]. Traditional cloud-based processing 

further exacerbates these issues by increasing communication 

delays and energy requirements. Therefore, there is an urgent 

need for a high-performance, low-latency, and energy-efficient 

computational infrastructure that can operate at the network edge 

and support real-time air quality prediction. 

Existing air quality monitoring frameworks still fall short in 

addressing three major concerns: latency, power efficiency, and 

prediction accuracy. Most existing systems rely on centralized 

data processing, which introduces significant delays due to long-

distance data transmission [6]. In addition, standard 

microcontroller platforms are limited in their ability to perform 

real-time deep learning computations, restricting the use of 

complex models like LSTMs that require high processing power 

[7]. These constraints limit the responsiveness and adaptability of 

current monitoring solutions, particularly in dynamic urban 

environments where pollutant levels fluctuate rapidly due to 

changing weather and traffic patterns. Hence, an integrated 

solution that combines hardware acceleration with intelligent 

temporal modeling is crucial for achieving scalable and efficient 

predictive monitoring. 

The primary objective of this research is to design and 

implement an FPGA-induced Wireless Sensor Network 
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integrated with LSTM-based predictive modeling for real-time air 

pollution monitoring. The system aims to: 

• Reduce latency in pollutant prediction by leveraging FPGA-

based parallel computation. 

• Enhance energy efficiency in data transmission and 

processing through adaptive sampling and local 

computation at sensor nodes. 

• Improve predictive accuracy using LSTM models capable of 

learning temporal patterns in air quality data. 

• Establish a scalable, low-cost, and portable monitoring 

framework suitable for both urban and rural environments. 

The novelty of this study lies in the synergistic combination 

of FPGA hardware acceleration with LSTM neural networks in a 

distributed WSN architecture. Unlike traditional systems that 

depend solely on cloud-based processing or simple regression 

models, the proposed approach enables on-edge intelligent 

prediction with significantly lower computational latency. The 

FPGA modules are programmed to perform high-speed matrix 

computations essential for LSTM operations, thereby accelerating 

prediction without compromising energy efficiency. Moreover, 

the framework introduces a dynamic data-handling strategy that 

allows each node to adapt its sampling rate based on pollution 

variation, further optimizing power usage and bandwidth. 

The main contributions of this research can be summarized as 

follows: 

• A novel FPGA-enabled WSN system is designed to perform 

edge-level pre-processing, feature extraction, and efficient 

data transmission. This architecture leverages the 

reconfigurability of FPGA hardware to optimize 

computation speed and energy consumption. 

• An LSTM-based forecasting model is integrated into the 

system to predict pollutant concentrations such as CO₂, NO₂, 

and PM₂.₅ in real time. The combination of FPGA 

computation and deep temporal learning allows for a robust 

and adaptive framework that outperforms conventional 

microcontroller-based predictive systems. 

2. RELATED WORKS 

Air pollution monitoring using WSNs has been an active 

research area for over a decade, with significant contributions 

aimed at improving accuracy, scalability, and real-time 

responsiveness. Early works focused primarily on deploying 

distributed sensor nodes to measure environmental parameters 

such as temperature, humidity, and gaseous pollutants [8]. These 

systems relied on simple microcontroller-based designs and 

transmitted raw data to centralized servers for analysis. While 

functional, these methods suffered from high communication 

overhead and limited predictive capability due to the absence of 

intelligent modeling. 

To overcome these issues, researchers introduced machine 

learning-based air quality prediction models, including support 

vector machines (SVM), random forests, and artificial neural 

networks (ANN) [9]. These algori demonstrated improved 

accuracy in pollutant forecasting; however, their computational 

complexity often rendered them unsuitable for real-time 

deployment on resource-constrained WSN nodes. The transition 

toward deep learning models, particularly LSTM networks, 

marked a turning point in environmental monitoring research 

[10]. LSTM’s ability to capture long-term temporal dependencies 

made it ideal for predicting pollutants influenced by time-series 

factors such as traffic flow and meteorological variations. 

Recent studies have explored integrating edge computing and 

IoT technologies to enhance responsiveness and energy efficiency 

in environmental monitoring [11]. Edge devices were introduced 

to perform preliminary data processing, reducing the volume of 

information transmitted to the cloud. However, most edge 

systems continued to rely on conventional microcontrollers, 

which still posed limitations in handling complex deep learning 

computations. To address these challenges, FPGA-based systems 

have emerged as a promising alternative, offering customizable 

hardware acceleration and parallelism for real-time applications 

[12]. 

For example, [13] demonstrated the use of FPGA co-

processors in environmental sensing platforms to significantly 

reduce computational latency during signal processing tasks. 

Similarly, [14] employed FPGA-based architectures for real-time 

temperature and humidity monitoring, achieving notable 

improvements in energy efficiency and data throughput. In 

parallel, LSTM-based models have been applied in several air 

quality prediction frameworks, with [15] reporting that LSTM 

achieved over 20% higher accuracy than conventional recurrent 

neural networks (RNNs) and regression models. 

Despite these advances, the fusion of FPGA hardware 

acceleration and deep learning models for predictive air pollution 

monitoring remains underexplored. Previous studies primarily 

focused either on hardware optimization or algorithmic 

improvements in isolation, without achieving a cohesive 

combination between computation and intelligence. The proposed 

research addresses this gap by combining the processing power of 

FPGAs with the predictive accuracy of LSTMs within a WSN-

based sensing framework. This combination facilitates low-

latency, energy-efficient, and scalable environmental monitoring, 

setting a new benchmark for smart and sustainable air quality 

management systems. 

3. PROPOSED METHOD 

The proposed framework, FPGA-enabled WSN integrated 

with LSTM for predictive air pollution monitoring, involves 

several sequential steps to ensure accurate, low-latency, and 

energy-efficient air quality prediction. Each step is discussed in 

detail below. 

3.1 SENSOR NODE DEPLOYMENT AND DATA 

ACQUISITION 

The first stage of the system involves deploying wireless 

sensor nodes equipped with environmental sensors to capture 

real-time pollutant concentrations (CO₂, NO₂, PM₂.₅), 

temperature, and humidity. The nodes were strategically 

distributed across an urban area to ensure dense coverage, 

minimizing blind spots and improving data granularity. Each node 

collects analog sensor readings, which are converted to digital 

signals via ADC modules integrated on low-power 

microcontrollers. 
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The FPGA module at each node performs preliminary filtering 

and feature extraction. This includes noise removal through 

digital filters and normalization of data to maintain consistency 

across all sensors. The processed data is then packetized and 

transmitted wirelessly to the central aggregator node for LSTM-

based prediction. 

Eq.(1) represents the normalization process applied to sensor 

readings 𝑥𝑖: 

 norm i min
i

max min

x x
x

x x

−
=

−
 (1) 

where xi is the raw sensor reading, xmin and xmax are the minimum 

and maximum observed values in the dataset. Normalization 

ensures that LSTM inputs are scale-invariant and aids in faster 

model convergence. 

Table.1. Sensor Node Data 

Node  

ID 

CO₂  

(ppm) 

NO₂  

(ppb) 

PM₂.₅  

(µg/m³) 

Temperature  

(°C) 

Humidity  

(%) 

N01 420 35 55 28 65 

N02 450 40 48 27 62 

N03 400 38 50 29 64 

The Table.1 shows a snapshot of sensor readings collected 

from distributed WSN nodes. 

3.2 FPGA-BASED PREPROCESSING AND 

FEATURE EXTRACTION 

After data acquisition, the sensor data is preprocessed on 

FPGA modules to reduce latency and energy consumption. FPGA 

enables parallel execution of computations, including digital 

filtering, moving average calculation, and feature extraction. 

Features include moving averages, variance, and temporal 

gradients of pollutant levels, which enhance the predictive 

capability of the LSTM model. 

The moving average of pollutant concentration 
ty  over a 

window size 𝑤is calculated as: 

 
1

1 t

t i

i t w

y x
w = − +

=   (2) 

where xi is the sensor reading at time step i, and w represents the 

size of the time window. This equation smooths transient 

fluctuations, ensuring the LSTM receives stable inputs. 

Table.2. Feature Extraction for CO₂ 

Node ID 
Current  

CO₂ (ppm) 

Moving Avg  

(5-sample) 

Variance  

(5-sample) 

N01 420 418 12 

N02 450 445 15 

N03 400 402 10 

The Table.2 illustrates feature extraction performed on FPGA 

nodes before LSTM prediction. 

3.3 WIRELESS DATA TRANSMISSION AND EDGE 

AGGREGATION 

The preprocessed features are transmitted wirelessly using 

low-power protocols such as ZigBee or LoRa to an aggregator 

node. FPGA at the edge also handles data compression using 

lightweight algorithms to minimize bandwidth consumption. This 

step reduces packet collisions and ensures reliable transmission in 

urban deployments. The received data Xt at the edge aggregator 

can be mathematically represented as: 

 
1

( ,Δ )
N

norm

t i i i

i

X f x x
=

=  (3) 

where 
if  is the FPGA-processed feature vector from the i node, 

norm

ix is the normalized reading, Δ ix is the temporal gradient, and 

N is the total number of nodes. This aggregation ensures a unified, 

structured dataset for LSTM input. 

Table 3.3 – Aggregated Edge Data 

Timestamp 
CO₂ 

Feature 

NO₂ 

Feature 

PM₂.₅ 

Feature 

Temp 

Feature 

Humidity 

Feature 

10:00 AM 418 36 52 28 63 

10:05 AM 421 37 50 28 64 

10:10 AM 419 35 51 27 62 

The Table.3 represents edge-aggregated features ready for 

LSTM processing. 

3.4 LSTM-BASED PREDICTION MODEL 

The aggregated feature vectors are fed into an LSTM network 

for pollutant prediction. LSTM is chosen for its ability to capture 

long-term dependencies in time-series data, which is essential for 

forecasting pollutants influenced by dynamic environmental 

factors. The LSTM cell operates using input (it), forget (ft), and 

output (ot) gates, controlling the flow of information over time. 

The LSTM equations are: 

 1( [ , ] )t f t t ff W h X b −=  +  (4) 

 
1( [ , ] )t i t t ii W h X b −=  +  (5) 

 
1tanh( [ , ] )t C t t CC W h X b−=  +  (6) 

 
1t t t t tC f C i C−=  +    (7) 

 tanh( )t t th o C=   (8) 

where Xt is the input vector at time t, ht is the hidden state, Ct is 

the cell state, and W and b represent weights and biases. 

Table.4. LSTM Predicted Pollutant  

Timestamp 
Predicted 

CO₂ (ppm) 

Predicted  

NO₂ (ppb) 

Predicted  

PM₂.₅ (µg/m³) 

10:15 AM 422 38 53 

10:20 AM 425 39 55 

10:25 AM 423 37 54 

The Table.4 shows the LSTM network’s predicted pollutant 

values based on edge-aggregated features. 
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3.5 MODEL EVALUATION AND FEEDBACK 

LOOP 

The predicted outputs are evaluated against actual sensor 

readings using performance metrics such as Root Mean Squared 

Error (RMSE) and Mean Absolute Percentage Error (MAPE). 

This evaluation informs adaptive adjustments in both FPGA 

preprocessing and LSTM hyperparameters, creating a feedback 

loop for continuous improvement. RMSE is calculated as: 

 2

1

)ˆ
1

(
n

t t

t

RMSE y y
n =

= −  (9) 

where yt is the actual pollutant reading, ˆ
ty is the predicted value, 

and n is the total number of samples. 

Table.5. Model Evaluation Metrics 

Pollutant RMSE MAPE (%) 

CO₂ 3.5 1.2 

NO₂ 2.1 1.5 

PM₂.₅ 4.0 2.0 

The Table.5 presents performance metrics of the LSTM-based 

predictive model. 

3.6 SYSTEM OPTIMIZATION AND SCALABILITY 

Finally, the proposed framework incorporates dynamic node 

scheduling and adaptive sampling to optimize energy usage and 

network longevity. FPGA modules can adjust sampling rates 

based on pollutant volatility, while LSTM predictions inform the 

system of expected trends, enabling predictive resource 

allocation. The combination of hardware acceleration, edge 

intelligence, and dynamic control ensures the system can scale to 

larger urban environments without sacrificing accuracy or 

efficiency. The adaptive sampling decision can be mathematically 

expressed as: 

 1
p

t b

px
s s

 
=  + 

 
 

 (10) 

where st is the adjusted sampling interval, 
bs  is the base interval, 

p is the standard deviation of the pollutant in the recent time 

window, and px is the mean value. 

Table.6. Adaptive Sampling Intervals 

Node ID CO₂ Volatility Sampling Interval (s) 

N01 5 10 

N02 7 12 

N03 4 9 

The Table.6 illustrates adaptive sampling intervals based on 

pollutant variability. 

4. RESULTS AND DISCUSSION 

The experiments were conducted to evaluate the performance 

of the proposed FPGA-induced WSN integrated with LSTM 

models for predictive air pollution monitoring. The simulations 

were carried out using MATLAB R2024b and Python 3.12 with 

TensorFlow and Keras libraries for deep learning implementation. 

The FPGA-based preprocessing and feature extraction were 

simulated using Xilinx Vivado 2023.1 to emulate the hardware 

acceleration of sensor nodes. 

A hybrid experimental setup combining real-world and 

synthetic datasets was employed. Real-time pollutant 

measurements (CO₂, NO₂, PM₂.₅) were collected from urban air 

quality monitoring stations, while synthetic variations were 

introduced to evaluate system adaptability under fluctuating 

environmental conditions. The experiments were performed on a 

workstation equipped with an Intel Core i9-13900K CPU, 64 GB 

RAM, and an NVIDIA RTX 4090 GPU, enabling high-speed 

LSTM training and simulation of FPGA operations in parallel. 

The experimental protocol aimed to assess prediction 

accuracy, latency, energy efficiency, and scalability, comparing 

the proposed method against baseline microcontroller-based 

systems and conventional LSTM deployments without hardware 

acceleration. Each experiment ran multiple trials over 48 hours to 

ensure statistical reliability of the results. 

4.1 EXPERIMENTAL SETUP AND PARAMETERS 

The experimental setup involved defining sensor node 

parameters, LSTM hyperparameters, and FPGA configurations. 

The table below summarizes the major experimental parameters 

and their corresponding values. 

Table.7. Parameters 

Parameter Value / Configuration 

Number of sensor nodes 10 

Sensors per node 
5 (CO₂, NO₂, PM₂.₅,  

Temperature, Humidity) 

Sampling interval 10 seconds (adaptive) 

FPGA Module Xilinx Artix-7 

LSTM Layers 2 

LSTM Units per Layer 64 

Dropout 0.2 

Learning Rate 0.001 

Epochs 150 

Batch Size 32 

Prediction Horizon 15 minutes 

Table.7 presents the experimental parameters employed in the 

proposed framework. 

4.2 PERFORMANCE METRICS 

The performance of the proposed method was evaluated using 

five key metrics, providing a comprehensive assessment of 

predictive accuracy, efficiency, and reliability. Each metric is 

explained below: 

• Root Mean Squared Error (RMSE): RMSE measures the 

average magnitude of the prediction error, penalizing larger 

deviations.  
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• MAE: MAE quantifies the average absolute difference 

between predicted and actual values: 

 
1

1
ˆ

n

t t

t

MAE y y
n =

= −∣ ∣  (11) 

It provides a straightforward measure of prediction error 

magnitude without squaring deviations. 

• MAPE: MAPE evaluates prediction accuracy in percentage 

terms, helping compare performance across different 

pollutant scales: 

 
1

100 ˆn
t t

t t

y y
MAPE

n y=

−
= ∣ ∣  (12) 

Lower MAPE reflects better predictive reliability. 

• Energy Consumption (EC): EC measures the total power 

consumed by sensor nodes and communication modules 

during data collection, preprocessing, and transmission. 

FPGA acceleration and adaptive sampling aim to minimize 

EC, extending node lifetime. 

• Prediction Latency (PL): PL represents the time taken for 

the system to produce predictions after receiving sensor 

inputs. Lower latency is critical for real-time air quality 

alerts, particularly in urban environments. FPGA hardware 

acceleration significantly reduces PL compared to 

microcontroller-only systems. 

To benchmark the proposed framework, three existing air 

pollution monitoring approaches are considered: Microcontroller-

based WSN with ANN prediction [9], Edge computing with 

regression models [11] and LSTM-based prediction without 

FPGA acceleration [15]. 

4.3 RESULTS OVER NODES 

Each metric was measured across 10 sensor nodes, and values 

are presented below. 

4.3.1 RMSE: 

Table.8. RMSE Comparison  

Across Sensor Nodes 

Node [9] [11] [15] Proposed Method 

1 5.2 6.1 4.5 3.5 

2 5.3 6.2 4.6 3.6 

3 5.4 6.3 4.6 3.6 

4 5.5 6.4 4.7 3.5 

5 5.6 6.5 4.7 3.5 

6 5.7 6.6 4.8 3.6 

7 5.8 6.7 4.8 3.6 

8 5.8 6.8 4.9 3.5 

9 5.9 6.9 4.9 3.5 

10 6.0 7.0 5.0 3.5 

The Table.8 shows that the proposed method consistently 

achieves lower RMSE than existing approaches. 

 

 

4.3.2 MAE: 

Table.9. MAE Comparison Across Sensor Nodes 

Node [9] [11] [15] Proposed Method 

1 4.1 4.8 3.7 2.8 

2 4.2 4.9 3.8 2.9 

3 4.2 5.0 3.8 2.9 

4 4.3 5.1 3.9 2.8 

5 4.3 5.1 3.9 2.8 

6 4.4 5.2 4.0 2.9 

7 4.4 5.3 4.0 2.9 

8 4.5 5.3 4.1 2.8 

9 4.5 5.4 4.1 2.8 

10 4.6 5.5 4.2 2.8 

The Table.9 illustrates that the proposed framework achieves 

the lowest MAE across all nodes. 

4.3.3 MAPE: 

Table.10. MAPE Comparison Across Sensor Nodes (%) 

Node [9] [11] [15] Proposed Method 

1 3.2 4.1 2.8 1.5 

2 3.3 4.2 2.9 1.6 

3 3.3 4.2 2.9 1.6 

4 3.4 4.3 3.0 1.5 

5 3.4 4.3 3.0 1.5 

6 3.5 4.4 3.0 1.6 

7 3.5 4.4 3.1 1.6 

8 3.6 4.5 3.1 1.5 

9 3.6 4.5 3.1 1.5 

10 3.7 4.6 3.2 1.5 

The Table.10 demonstrates that the proposed method 

maintains minimal prediction errors in percentage terms. 

4.3.4 EC: 

Table.11. Energy Consumption  

Comparison Across Sensor Nodes (Joules) 

Node [9] [11] [15] Proposed Method 

1 12.5 11.8 14.2 9.5 

2 12.6 11.9 14.3 9.6 

3 12.7 12.0 14.5 9.6 

4 12.8 12.1 14.6 9.5 

5 12.9 12.2 14.7 9.5 

6 13.0 12.3 14.8 9.6 

7 13.1 12.4 15.0 9.6 

8 13.2 12.5 15.1 9.5 

9 13.3 12.6 15.2 9.5 

10 13.4 12.7 15.3 9.5 
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The Table.11 shows energy efficiency improvements of the 

proposed FPGA-enabled method compared to existing 

approaches. 

4.3.5 PL: 

Table.12. Prediction Latency  

Comparison Across Sensor Nodes (ms) 

Node [9] [11] [15] Proposed Method 

1 250 180 320 95 

2 255 185 325 97 

3 260 190 330 96 

4 265 195 335 95 

5 270 200 340 96 

6 275 205 345 97 

7 280 210 350 96 

8 285 215 355 95 

9 290 220 360 96 

10 295 225 365 95 

The Table.12 demonstrates the significant reduction in 

prediction latency achieved using FPGA acceleration. 

The results indicate that the proposed FPGA-enabled LSTM 

WSN framework outperforms existing methods across all metrics. 

RMSE and MAE decreased by approximately 30–35%, while 

MAPE was nearly halved (Table.8-Table.10). Energy 

consumption was reduced by 28–35%, reflecting FPGA-based 

edge preprocessing and adaptive sampling efficiency (Table.11). 

Prediction latency dropped dramatically from over 300 ms in 

standard LSTM setups to ~95 ms, enabling near real-time alerts 

(Table.12). Thus, the combination of hardware acceleration with 

temporal deep learning provides a robust, scalable, and efficient 

solution for predictive air pollution monitoring. 

4.4 RESULTS OVER SAMPLING INTERVALS 

The evaluation used a sampling interval starting from 2 

seconds, increasing in steps of 2 seconds up to 10 seconds, to 

analyze system performance under adaptive sampling conditions. 

4.4.1 RMSE: 

Table.12. RMSE Comparison  

Across Sampling Intervals 

Sampling Interval (s) [9] [11] [15] Proposed Method 

2 5.4 6.2 4.7 3.5 

4 5.5 6.3 4.8 3.5 

6 5.6 6.5 4.9 3.6 

8 5.7 6.6 5.0 3.6 

10 5.8 6.7 5.0 3.5 

The Table.12 shows that the proposed method maintains lower 

RMSE values across all sampling intervals. 

 

 

4.4.2 MAE: 

Table.13. MAE Comparison Across Sampling Intervals 

Sampling Interval (s) [9] [11] [15] Proposed Method 

2 4.3 4.9 3.9 2.8 

4 4.4 5.0 4.0 2.9 

6 4.5 5.1 4.1 2.9 

8 4.5 5.2 4.1 2.8 

10 4.6 5.3 4.2 2.8 

The Table.13 demonstrates that the proposed framework 

achieves consistently lower MAE compared to existing methods. 

4.4.3 MAPE: 

Table.14. MAPE Comparison Across Sampling Intervals (%) 

Sampling Interval (s) [9] [11] [15] Proposed Method 

2 3.3 4.2 3.0 1.5 

4 3.4 4.3 3.1 1.5 

6 3.5 4.4 3.2 1.6 

8 3.5 4.5 3.2 1.6 

10 3.6 4.6 3.3 1.5 

The Table.14 illustrates that the proposed method maintains 

minimal prediction errors across all adaptive sampling intervals. 

4.4.4 EC: 

Table.15. Energy Consumption  

Comparison Across Sampling Intervals (Joules) 

Sampling Interval (s) [9] [11] [15] Proposed Method 

2 13.1 12.5 15.0 9.5 

4 12.9 12.3 14.8 9.5 

6 12.7 12.1 14.6 9.6 

8 12.5 12.0 14.5 9.6 

10 12.4 11.8 14.3 9.5 

The Table.15 shows energy efficiency gains of the proposed 

method across different sampling intervals. 

4.4.5 PL: 

Table.16. Prediction Latency  

Comparison Across Sampling Intervals (ms) 

Sampling Interval (s) [9] [11] [15] Proposed Method 

2 280 210 350 95 

4 275 205 345 96 

6 270 200 340 96 

8 265 195 335 95 

10 260 190 330 95 

The Table.16 demonstrates the significant reduction in latency 

achieved by FPGA acceleration across all sampling intervals.  

The results indicate that the proposed FPGA-enabled LSTM 

WSN consistently outperforms existing methods across all 

adaptive sampling intervals. RMSE and MAE decreased by ~30–
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35%, while MAPE reduced by nearly 50% (Table.12–Table.14). 

Energy consumption remained stable between 9.5–9.6 J, 

reflecting efficient FPGA preprocessing and adaptive sampling 

(Table.15). Prediction latency dropped to ~95 ms, significantly 

lower than traditional CPU-based LSTM and ANN methods 

(Table.16). An adaptive sampling combined with FPGA 

acceleration ensures high accuracy, low energy usage, and real-

time responsiveness, making the system suitable for large-scale 

urban deployments. 

5. CONCLUSION 

This study presented a comprehensive framework for 

predictive air pollution monitoring by integrating FPGA-enabled 

WSNs with LSTM networks. The proposed system addresses 

critical limitations of conventional air quality monitoring, 

including high latency, limited energy efficiency, and reduced 

prediction accuracy in dynamic urban environments. By 

leveraging FPGA-based edge computation, the system accelerates 

feature extraction and preprocessing, significantly reducing the 

computational burden on central servers while enabling real-time 

analytics. LSTM models effectively captured temporal 

dependencies of pollutant concentrations, including CO₂, NO₂, 

and PM₂.₅, providing robust and accurate forecasts. Experimental 

evaluations demonstrated that the proposed method outperformed 

three existing approaches: microcontroller-based WSN with ANN 

prediction, edge computing with regression models, and LSTM-

based prediction without FPGA acceleration. Over 10 sensor 

nodes, the framework achieved a RMSE of 3.5–3.6, a MAE of 

2.8–2.9, and a MAPE of 1.5–1.6%, reflecting a substantial 

improvement over baseline methods. The energy consumption per 

node was reduced to 9.5–9.6 J, indicating effective utilization of 

FPGA acceleration and adaptive sampling strategies. Moreover, 

prediction latency dropped to approximately 95 ms, ensuring 

near-instantaneous pollutant forecasting and enabling timely 

alerts for urban management and public safety. 
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