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Abstract 

Rapid urbanization has intensified air pollution levels, creating an 

urgent need for intelligent, real-time monitoring systems that can 

effectively track and analyze pollutants across dynamic city 

environments. Conventional Internet of Things (IoT)-based sensing 

frameworks often face challenges such as latency, limited processing 

power, and inefficient data management when deployed at large scales. 

Recent advances in quantum communication and edge artificial 

intelligence (Edge AI) have opened new avenues for developing highly 

adaptive and secure environmental monitoring architectures. Despite 

the proliferation of drone-assisted monitoring systems, most existing 

models rely on centralized cloud computing, resulting in network 

bottlenecks and delayed responses. Furthermore, data collected from 

heterogeneous sensors often lack accuracy due to noise interference 

and spatial inconsistencies, limiting the reliability of real-time pollution 

detection and source localization. This study proposes an Edge-

Enabled Quantum Drone Sensor Network (Q-DSN) integrated with 

Convolutional Neural Networks (CNNs) to perform decentralized 

pollution detection and classification. Quantum key distribution (QKD) 

enhances communication security among drones, while CNN-based 

feature extraction processes multispectral data from gas sensors and 

high-resolution cameras. The edge layer employs a lightweight AI 

model for on-site prediction, reducing latency and dependence on cloud 

computation. In addition, an adaptive routing protocol optimizes data 

transmission between drones and ground stations. Simulation and 

field-level evaluations demonstrated that the proposed Q-DSN achieved 

a detection accuracy of 81–84%, a latency reduction to 2.1–2.7 seconds, 

and an energy efficiency improvement of 20–35% compared to 

conventional IoT-based and drone-assisted monitoring systems. 

Communication reliability reached 92% through quantum-secured 

channels, while edge-level inference enabled real-time classification of 

pollutants such as CO₂, NO₂, PM2.5, and VOCs across a 2 km² urban 

testbed. 
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1. INTRODUCTION 

Rapid urbanization and industrial expansion have 

dramatically increased the concentration of airborne pollutants in 

metropolitan regions, adversely affecting both environmental 

quality and human health [1]. According to global environmental 

studies, fine particulate matter (PM2.5), nitrogen dioxide (NO₂), 

carbon monoxide (CO), and volatile organic compounds (VOCs) 

are the primary contributors to deteriorating air quality, leading to 

respiratory and cardiovascular complications among urban 

populations [2]. To mitigate these risks, the deployment of 

intelligent monitoring systems capable of real-time pollutant 

detection and spatial mapping has become essential. Conventional 

fixed-station monitoring systems, however, suffer from limited 

spatial coverage and high operational costs, making them 

insufficient for dynamic urban environments [3]. 

The combination of drone-based sensor networks with 

Artificial Intelligence (AI) has emerged as a promising alternative 

for scalable and flexible air quality monitoring. Drones equipped 

with multi-sensor arrays can collect data across various altitudes 

and locations, thereby offering a three-dimensional understanding 

of pollution dispersion patterns. When combined with Edge AI 

and Convolutional Neural Networks (CNNs), these platforms can 

perform real-time analysis and classification of pollutants, 

significantly enhancing decision-making capabilities for urban 

environmental management. 

Despite their potential, drone-based sensor networks face 

several technical and operational challenges that hinder their 

practical deployment. First, the continuous transmission of high-

resolution sensor data to centralized cloud servers introduces 

significant latency and bandwidth overhead [4]. This becomes 

critical in time-sensitive pollution detection tasks where 

immediate response is required. Second, ensuring the reliability 

and security of communication between drones and base stations 

remains a major concern. Existing wireless networks are 

vulnerable to interference and unauthorized access, which may 

compromise the integrity of environmental data [5]. Moreover, 

data heterogeneity from different sensors often leads to 

inconsistencies and inaccuracies in pollutant detection, 

particularly in varying meteorological conditions. 

Although existing IoT-based and drone-assisted air quality 

monitoring frameworks have demonstrated considerable 

progress, they are often constrained by centralized architectures 

that limit scalability and computational efficiency. The heavy 

reliance on cloud processing results in increased latency, reduced 

energy efficiency, and susceptibility to communication failures 

during real-time operations [6]. Therefore, there is a pressing need 

for a decentralized, secure, and intelligent sensing framework that 

can perform localized processing while maintaining reliable 

communication and high data fidelity. 

The primary objective of this research is to design and 

implement an Edge-Enabled Quantum Drone Sensor Network (Q-

DSN) that combines the advantages of quantum-secure 

communication, edge computing, and deep learning for efficient 

urban pollution monitoring. Specifically, the study aims to: 

develop a CNN-based model for accurate pollutant detection and 

classification from multispectral and sensor data. Integrate 

quantum communication protocols, such as Quantum Key 

Distribution (QKD), to ensure data security and privacy in drone-

to-drone and drone-to-ground transmissions. Deploy edge 

computing mechanisms to enable low-latency inference and 

energy-efficient data processing. Validate the system’s 

performance through simulation and field-level testing in 

dynamic urban environments. 

The novelty of this work lies in its fusion of quantum 

communication and Edge AI within drone-based environmental 

monitoring. Unlike traditional drone networks that depend on 
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cloud-centric processing, the proposed Q-DSN performs 

localized inference at the edge layer, reducing latency and 

bandwidth consumption. In addition, the inclusion of quantum-

secure data transmission enhances trust and resilience against 

cyber threats, a feature rarely explored in environmental sensing 

frameworks. The proposed CNN architecture is optimized for 

lightweight deployment, ensuring compatibility with energy-

constrained drone hardware.  

The study introduces a hybrid drone-based architecture that 

integrates CNN-driven pollutant detection with quantum 

encryption protocols, enabling real-time, secure, and 

decentralized air quality assessment. 

2. RELATED WORKS 

Recent years have witnessed substantial research efforts 

toward developing intelligent pollution monitoring systems 

leveraging IoT, drones, and AI-based techniques [6–12]. The 

convergence of these technologies has enabled high-resolution 

spatial and temporal pollution mapping, yet several limitations 

persist in scalability, energy consumption, and communication 

reliability. 

Early IoT-based pollution monitoring systems primarily relied 

on static sensor nodes integrated with cloud platforms for data 

storage and analytics [6]. While such systems provided consistent 

data collection, they suffered from limited spatial mobility and 

high deployment costs. To overcome these limitations, 

researchers began employing Unmanned Aerial Vehicles (UAVs) 

or drones for airborne pollution sensing [7]. These systems 

facilitated flexible monitoring over large urban areas, offering 

dynamic adaptability to environmental changes. However, the 

heavy data transmission between drones and remote servers often 

led to increased latency and energy consumption. 

Machine learning and deep learning models, particularly 

CNNs and Recurrent Neural Networks (RNNs), have been widely 

used to enhance pollution prediction accuracy [8]. CNNs excel in 

processing multispectral and spatial datasets, enabling effective 

classification of pollutants such as PM2.5 and NO₂. However, 

most CNN-based systems rely heavily on cloud computation, 

which introduces significant delays in real-time applications. To 

address this issue, Edge AI frameworks have been proposed to 

enable on-site inference, minimizing latency and reducing 

dependence on centralized infrastructures [9]. 

Quantum computing and communication have recently gained 

traction as enablers for secure and efficient environmental 

monitoring [10]. Quantum Key Distribution (QKD) offers 

unbreakable encryption for sensor-to-sensor and drone-to-ground 

communication, ensuring data confidentiality in hostile or 

congested network environments. Integrating such protocols with 

Edge AI architectures provides a pathway toward achieving both 

security and computational efficiency. Nevertheless, few studies 

have explored this hybridization in environmental sensing 

scenarios. 

Some researchers have focused on developing drone-based 

multi-sensor fusion frameworks that combine gas sensors, optical 

cameras, and LiDAR systems for accurate spatial mapping [11]. 

These multi-modal datasets enhance pollutant identification but 

introduce new challenges in synchronization and real-time data 

fusion. Edge computing has been proposed as a viable solution to 

handle the high data throughput locally, significantly improving 

system responsiveness. 

In recent advancements, edge-assisted UAV networks 

employing federated or distributed learning have been introduced 

to support collaborative model training across multiple drones 

[12]. Such systems reduce the need for data centralization while 

improving generalization accuracy in diverse urban conditions. 

However, the security and integrity of communication links 

remain open research challenges. 

3. QUANTUM DRONE SENSOR 

DEPLOYMENT 

The first step in the proposed system involves deploying a 

network of drones equipped with multi-sensor modules capable 

of detecting pollutants such as CO₂, NO₂, PM2.5, and VOCs. The 

drones are strategically positioned across the urban landscape to 

ensure optimal spatial coverage and minimal sensing overlap. 

Each drone incorporates a gas sensor array, multispectral camera, 

and onboard processing unit to perform preliminary data filtering. 

The drones are programmed to follow a pre-defined path while 

dynamically adjusting altitude based on local environmental 

conditions. This adaptive path planning ensures efficient 

sampling across vertical and horizontal spatial dimensions. 

Communication between drones is secured through Quantum Key 

Distribution (QKD), providing a robust defense against potential 

cyber threats. 

The pollutant concentration estimation at drone 𝑖is modeled 

as: 

 
1
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N
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where ( )iC t is the estimated concentration at time t, Sij(t) 

represents the sensor reading from sensor j on drone i, wj is the 

weighting factor for sensor accuracy, and ϵi(t) is the measurement 

noise. 

The communication reliability with quantum encryption is 

represented by: 

 QKD

s 1
K

P e
− 

= −  (2) 

where  

Ps is the probability of secure data transmission,  

λ represents the channel quality, and  

KQKD is the quantum key length. 

Table.1. Drone Sensor Deployment Parameters 

Drone 

ID 
Sensor Type 

Altitude 

(m) 

Coverage 

Area (km²) 

Quantum Key 

Length (bits) 

D1 Gas + Optical 50 0.8 1024 

D2 
Gas + 

Multispectral 
60 1.0 1024 

D3 Gas + Optical 45 0.7 1024 
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3.1 DATA ACQUISITION AND PREPROCESSING 

Once the drones are deployed, sensor readings are collected 

continuously and preprocessed at the edge layer. Preprocessing 

involves noise reduction, normalization, and feature extraction to 

ensure the CNN model receives high-quality input data. Noise is 

filtered using adaptive Kalman filtering techniques, which 

dynamically adjust to temporal variations in sensor signals. The 

preprocessed data is then normalized using min-max scaling: 
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Where ( )ijS t is the normalized reading, and 
minS , 

maxS are the 

minimum and maximum values for sensor 𝑗. 

The Feature extraction via Principal Component Analysis 

(PCA) is defined as: 

 Z X W=   (4) 

where X is the preprocessed sensor data matrix, W is the 

eigenvector matrix of the covariance of X, and Z is the 

transformed feature vector. 

The Adaptive Kalman filtering for time-series noise reduction: 

 
1 1)ˆ ˆ ˆ(k k k k kx x K y Hx− −= + −  (5) 

where ˆ
kx  is the filtered estimate at time k, yk is the sensor 

measurement, Kk is the Kalman gain, and H is the measurement 

matrix. 

Table.2. Preprocessed Sensor Data Features 

Drone  

ID 

Sensor  

Type 

CO₂  

(ppm) 

NO₂  

(ppm) 

PM2.5  

(µg/m³) 

Feature Vector  

(PCA) 

D1 
Gas +  

Optical 
410 35 55 [0.71, -0.32, 0.59] 

D2 
Gas +  

Multispectral 
420 38 48 [0.68, -0.29, 0.62] 

D3 
Gas +  

Optical 
405 32 60 [0.72, -0.30, 0.57] 

3.2 CNN-BASED POLLUTANT CLASSIFICATION 

After preprocessing, the feature vectors are input to a CNN 

deployed at the edge for pollutant classification. The CNN 

comprises convolutional layers for spatial feature extraction, 

pooling layers for dimensionality reduction, and fully connected 

layers for classification. The CNN is trained on labeled datasets 

to recognize pollutant types and concentration ranges. 

The convolution operation for feature map extraction: 

 ,

1

1

M
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 
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where k

lF is the output of the kth filter at layer l, 
1

m

lX −
is the input 

feature map, ,k m

lW is the filter weight, k

lb is the bias, and f (⋅) is the 

activation function. 

The softmax-based classification output: 
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where ( )P y c X= ∣ is the probability of class c given input X, zc is 

the class score, and C is the total number of classes. 

Table.3. CNN Classification Output  

Drone  

ID 

Feature  

Vector 

Predicted  

Pollutant 

Concentration  

(ppm/µg/m³) 

Confidence  

(%) 

D1 
[0.71, -0.32,  

0.59] 
CO₂ 410 92 

D2 
[0.68, -0.29,  

0.62] 
NO₂ 38 88 

D3 
[0.72, -0.30,  

0.57] 
PM2.5 60 90 

3.3 EDGE AI INFERENCE AND DECISION 

MAKING 

Edge computing enables real-time processing of drone-

collected data without relying on cloud infrastructure. The edge 

layer executes the CNN model, aggregates results from multiple 

drones, and applies decision logic to detect hotspots and 

recommend corrective actions. Edge AI also dynamically adapts 

the drones’ flight paths based on detected pollutant 

concentrations, ensuring targeted monitoring. The edge-level 

aggregation of predictions: 

 
1

1 N

a i i

i

C w C
N =
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where 
aC  is the combined concentration estimate, 

iC is the local 

prediction from drone i, wi is a reliability weight, and N is the 

number of drones. The flight path adjustment optimization using 

gradient-based  

 
1 ( , )t t p a tp p L C C + = −  


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where 
1tp +


is the updated position vector, η is the learning rate, 

and L(⋅) is the loss between predicted and target concentrations. 

Table.4. Edge AI Aggregated Results  

Drone  

Cluster 

Aggregated  

Pollutant 

Avg.  

Con. 

Hotspot  

Detected 
Action 

1 CO₂ 415 Yes 
Increase  

monitoring 

2 NO₂ 37 No Maintain path 

3 PM2.5 58 Yes 
Deploy  

mitigation drone 

4. QUANTUM-SECURE COMMUNICATION 

QKD ensures secure data transmission among drones and 

from drones to the base station. Each drone exchanges encryption 

keys using quantum entanglement, preventing eavesdropping and 

tampering. This step guarantees data integrity, especially for high-

resolution sensor data critical for accurate pollution detection. The 

quantum-secured channel capacity: 

 
2log (1 SNR) (1 )q eC P= +  −  (10) 
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where Cq is the channel capacity, SNR is the signal-to-noise ratio, 

and Pe is the probability of eavesdropping detection. 

The QKD key generation rate: 

 
rep [1 ( )]kR f Q H e=   −  (11) 

where 
kR  is the secure key rate, 

repf is the pulse repetition 

frequency, Q is the detection probability, ( )H e is the binary 

entropy function, and e is the quantum bit error rate (QBER). 

Table.5. Quantum Communication Metrics  

Drone  

ID 

Channel  

SNR 

Key Length  

(bits) 

QBER  

(%) 

Secure Data  

Rate (kbps) 

D1 18 dB 1024 2.1 512 

D2 20 dB 1024 1.8 540 

D3 17 dB 1024 2.3 498 

5. RESULTS AND DISCUSSION 

The proposed Quantum Drone Sensor Network (Q-DSN) was 

evaluated using a combination of simulation and field-level 

experiments. The simulations were conducted using MATLAB 

R2025b and NS-3 network simulator to model drone mobility, 

sensor data acquisition, and communication behavior. The 

MATLAB environment facilitated the development and testing of 

the CNN-based pollutant classification model, while NS-3 was 

employed to simulate quantum-secure communication protocols 

and edge-based data aggregation. 

The field experiments involved three custom-built drones, 

each equipped with multi-gas sensors, multispectral cameras, and 

embedded NVIDIA Jetson Nano boards for onboard edge AI 

inference. These drones operated in a controlled urban testbed 

environment of approximately 2 km², capturing real-time 

pollutant data under varying environmental conditions. 

Computational resources for simulation included a 

workstation with Intel Core i9-13900K CPU, 64 GB RAM, and 

NVIDIA RTX 4090 GPU, which was used for both CNN training 

and large-scale simulation of drone deployments. The Jetson 

Nano boards onboard drones performed edge-level inference with 

minimal latency, which shows the feasibility of real-time 

processing in practical scenarios. Data collected from field 

experiments were logged for post-processing and validation 

against simulation results. 

Table.6. Experimental Setup and Parameters  

Parameter Value / Setting 

Number of drones 3 

Drone altitude 45–60 m 

Drone speed 5–12 m/s 

Gas sensors CO₂, NO₂, PM2.5, VOCs 

Sampling rate 1 Hz 

Edge processor NVIDIA Jetson Nano 

CNN input size 32 × 32 × 3 

Quantum key length 1024 bits 

Communication protocol Quantum-secure & Wi-Fi 6 

Testbed area 2 km² 

5.1 PERFORMANCE METRICS 

The proposed framework was evaluated using the metrics, 

which quantify detection accuracy, latency, energy efficiency, 

communication reliability, and system scalability. 

• Detection Accuracy (DA): Detection accuracy measures 

the percentage of correctly classified pollutants by the CNN 

model. It was computed as: 

 correct

total

100
N

DA
N

=   (12) 

where Ncorrect is the number of correct predictions, and Ntotal is the 

total number of predictions. Both simulation and field 

experiments showed an improvement of approximately 37% over 

baseline IoT-based methods. 

• Latency (L): Latency represents the total time between 

sensor data acquisition and pollutant classification at the 

edge. Lower latency ensures timely environmental 

monitoring. It was measured as: 

 
in trL t t= +  (13) 

The proposed edge-based architecture reduced latency by 42% 

compared to cloud-dependent models. 

• Energy Efficiency (EE): Energy efficiency reflects the ratio 

of computational tasks completed to the total energy 

consumed by the drones. It was defined as: 

 
Operations completed

Total energy consumed (J)
EE =  (14) 

The use of edge AI inference allowed energy savings of 35%, 

extending drone operational time. 

• Communication Reliability (CR): Communication 

reliability quantifies successful data transmissions without 

loss or interference, especially under quantum-secured 

channels. It was calculated as: 

 100s

tx

N
CR

N
=   (15) 

• System Scalability (SS): System scalability measures the 

framework’s ability to maintain performance when the 

number of drones or sensing nodes increases. Performance 

trends were analyzed using: 

 dronesPerformance metric with 

Performance metric with baseline drones

N
SS =  (16) 

5.2 COMPARISON WITH STATIC IOT SENSOR 

NETWORK 

Table.7. Performance of Static IoT Sensor Network vs Proposed 

Q-DSN 

Area Covered (km²) Method 
DA  

(%) 
L  

(s) 
EE  

(Ops/J) 
CR  

(%) 
SI 

0.5 
Static IoT 62 4.5 0.85 88 0.7 

Proposed 84 2.1 1.15 95 1.0 
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1.0 
Static IoT 60 5.0 0.82 85 0.68 

Proposed 83 2.3 1.12 94 1.0 

1.5 
Static IoT 58 5.5 0.80 83 0.65 

Proposed 82 2.5 1.10 93 1.0 

2.0 
Static IoT 55 6.0 0.78 80 0.63 

Proposed 81 2.7 1.08 92 1.0 

5.3 COMPARISON WITH DRONE-BASED AIR 

QUALITY MONITORING 

Table.8. Performance of Drone-Based Monitoring vs Proposed 

Q-DSN  

Area  

Covered (km²) 
Method 

DA  

(%) 
L  

(s) 
EE  

(Ops/J) 
CR  

(%) 
SI 

0.5 
Drone-Based 70 3.8 0.92 90 0.8 

Proposed 84 2.1 1.15 95 1.0 

1.0 
Drone-Based 68 4.2 0.89 88 0.78 

Proposed 83 2.3 1.12 94 1.0 

1.5 
Drone-Based 65 4.8 0.85 85 0.75 

Proposed 82 2.5 1.10 93 1.0 

2.0 
Drone-Based 62 5.2 0.82 83 0.72 

Proposed 81 2.7 1.08 92 1.0 

5.4 COMPARISON WITH EDGE-ASSISTED 

POLLUTION DETECTION 

Table.9. Performance of Edge-Assisted Detection vs Proposed 

Q-DSN 

Area  

Covered (km²) 
Method 

DA  

(%) 
L  

(s) 
EE  

(Ops/J) 
CR  

(%) 
SI 

0.5 
Edge-Assisted 75 2.9 1.05 91 0.85 

Proposed 84 2.1 1.15 95 1.0 

1.0 
Edge-Assisted 73 3.2 1.02 90 0.82 

Proposed 83 2.3 1.12 94 1.0 

1.5 
Edge-Assisted 70 3.6 0.98 88 0.80 

Proposed 82 2.5 1.10 93 1.0 

2.0 
Edge-Assisted 68 4.0 0.95 86 0.78 

Proposed 81 2.7 1.08 92 1.0 

From Table.7–Table.9, it is evident that the proposed Q-DSN 

consistently outperforms all existing methods across the 2 km² 

testbed. Detection accuracy remains above 81%, compared to 55–

75% for baseline methods. Latency is reduced significantly, from 

2.9–6.0 s to 2.1–2.7 s, which shows the advantage of edge AI 

inference. Energy efficiency improves by approximately 20–35%, 

and communication reliability exceeds 92% due to quantum-

secured channels. The scalability index remains constant at 1.0 for 

Q-DSN, highlighting its ability to maintain performance when the 

monitoring area expands, unlike traditional methods whose 

metrics degrade progressively with area increase. 

5.5 COMPARISON WITH STATIC IOT SENSOR 

NETWORK 

Table.10. Performance of Static IoT Sensor Network vs 

Proposed Q-DSN under Varying Key Lengths 

Key Length  

(bits) 
Method 

DA  

(%) 
L  

(s) 
EE  

(Ops/J) 
CR  

(%) 
SI 

256 
Static IoT 58 5.8 0.78 82 0.62 

Proposed 80 2.5 1.10 92 1.0 

512 
Static IoT 56 6.0 0.76 80 0.60 

Proposed 81 2.6 1.09 92 1.0 

768 
Static IoT 55 6.2 0.74 78 0.58 

Proposed 82 2.6 1.08 92 1.0 

1024 
Static IoT 55 6.3 0.73 77 0.57 

Proposed 83 2.7 1.08 92 1.0 

5.6 COMPARISON WITH DRONE-BASED AIR 

QUALITY MONITORING 

Table.11. Performance of Drone-Based Monitoring vs Proposed 

Q-DSN under Varying Key Lengths (Table 11) 

Key Length  

(bits) 
Method 

DA  

(%) 
L (s) 

EE  

(Ops/J) 
CR  

(%) 
SI 

256 
Drone-Based 64 5.0 0.84 86 0.72 

Proposed 80 2.5 1.10 92 1.0 

512 
Drone-Based 63 5.2 0.82 85 0.70 

Proposed 81 2.6 1.09 92 1.0 

768 
Drone-Based 62 5.4 0.80 84 0.68 

Proposed 82 2.6 1.08 92 1.0 

1024 
Drone-Based 61 5.6 0.78 83 0.67 

Proposed 83 2.7 1.08 92 1.0 

5.7 COMPARISON WITH EDGE-ASSISTED 

POLLUTION DETECTION 

Table.12. Performance of Edge-Assisted Detection vs Proposed 

Q-DSN under Varying Key Lengths  

Key  

Length (bits) 
Method 

DA  

(%) 

L  

(s) 

EE  

(Ops/J) 

CR  

(%) 
SI 

256 
Edge-Assisted 72 3.5 1.00 89 0.82 

Proposed 80 2.5 1.10 92 1.0 

512 
Edge-Assisted 71 3.7 0.98 88 0.80 

Proposed 81 2.6 1.09 92 1.0 

768 
Edge-Assisted 70 3.9 0.96 87 0.78 

Proposed 82 2.6 1.08 92 1.0 

1024 
Edge-Assisted 68 4.0 0.95 86 0.77 

Proposed 83 2.7 1.08 92 1.0 

From Table.10–Table.12, the proposed Q-DSN consistently 

outperforms all existing methods across different quantum key 

lengths. Detection accuracy improved by 8–28% compared to 

existing methods, remaining above 80% even at 1024 bits. 
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Latency decreased from 3.5–6.3 s to 2.5–2.7 s due to edge AI 

processing, while energy efficiency improved by 10–35%, 

reflecting optimized computation at drones. Communication 

reliability stabilized at 92% because of quantum-secured 

channels, whereas baseline methods degraded as key length 

increased. The scalability index of 1.0 confirms the Q-DSN 

maintains robust performance under secure communication 

constraints, unlike traditional approaches whose metrics decline 

progressively. 

6. CONCLUSION 

This study presents a Q-DSN with CNNs and Edge AI for 

intelligent urban pollution detection. The proposed framework 

effectively combines multi-sensor drone deployments, edge-level 

processing, and quantum-secured communication to address the 

limitations of existing IoT- and drone-based monitoring systems. 

Simulation and field experiments over a 2 km² urban testbed 

demonstrated that Q-DSN consistently outperformed baseline 

methods in all critical performance metrics. Detection accuracy 

remained above 81%, representing an improvement of up to 28% 

over traditional static IoT sensors, drone-only monitoring, and 

edge-assisted frameworks. Latency was significantly reduced to 

2.1–2.7 seconds, enabling real-time pollutant detection, while 

energy efficiency improved by 20–35%, extending drone 

operational time. Communication reliability stabilized at 92%, 

benefiting from quantum key distribution, and the system 

maintained robust scalability even as area coverage and quantum 

key lengths increased. The combination of CNN-based feature 

extraction with edge inference allowed accurate classification of 

CO₂, NO₂, PM2.5, and VOCs under dynamic environmental 

conditions. 
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