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Abstract

Rapid urbanization has intensified air pollution levels, creating an
urgent need for intelligent, real-time monitoring systems that can
effectively track and analyze pollutants across dynamic city
environments. Conventional Internet of Things (loT)-based sensing
frameworks often face challenges such as latency, limited processing
power, and inefficient data management when deployed at large scales.
Recent advances in quantum communication and edge artificial
intelligence (Edge AI) have opened new avenues for developing highly
adaptive and secure environmental monitoring architectures. Despite
the proliferation of drone-assisted monitoring systems, most existing
models rely on centralized cloud computing, resulting in network
bottlenecks and delayed responses. Furthermore, data collected from
heterogeneous sensors often lack accuracy due to noise interference
and spatial inconsistencies, limiting the reliability of real-time pollution
detection and source localization. This study proposes an Edge-
Enabled Quantum Drone Sensor Network (Q-DSN) integrated with
Convolutional Neural Networks (CNNs) to perform decentralized
pollution detection and classification. Quantum key distribution (QKD)
enhances communication security among drones, while CNN-based
feature extraction processes multispectral data from gas sensors and
high-resolution cameras. The edge layer employs a lightweight Al
model for on-site prediction, reducing latency and dependence on cloud
computation. In addition, an adaptive routing protocol optimizes data
transmission between drones and ground stations. Simulation and
field-level evaluations demonstrated that the proposed Q-DSN achieved
a detection accuracy of 81-84%, a latency reduction to 2.1-2.7 seconds,
and an energy efficiency improvement of 20-35% compared to
conventional loT-based and drone-assisted monitoring systems.
Communication reliability reached 92% through quantum-secured
channels, while edge-level inference enabled real-time classification of
pollutants such as CO:, NO:, PM2.5, and VOCs across a 2 km? urban
testbed.
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1. INTRODUCTION

Rapid urbanization and industrial expansion have
dramatically increased the concentration of airborne pollutants in
metropolitan regions, adversely affecting both environmental
quality and human health [1]. According to global environmental
studies, fine particulate matter (PM2.5), nitrogen dioxide (NO2),
carbon monoxide (CO), and volatile organic compounds (VOCs)
are the primary contributors to deteriorating air quality, leading to
respiratory and cardiovascular complications among urban
populations [2]. To mitigate these risks, the deployment of
intelligent monitoring systems capable of real-time pollutant
detection and spatial mapping has become essential. Conventional
fixed-station monitoring systems, however, suffer from limited
spatial coverage and high operational costs, making them
insufficient for dynamic urban environments [3].
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The combination of drone-based sensor networks with
Artificial Intelligence (AI) has emerged as a promising alternative
for scalable and flexible air quality monitoring. Drones equipped
with multi-sensor arrays can collect data across various altitudes
and locations, thereby offering a three-dimensional understanding
of pollution dispersion patterns. When combined with Edge Al
and Convolutional Neural Networks (CNNs), these platforms can
perform real-time analysis and classification of pollutants,
significantly enhancing decision-making capabilities for urban
environmental management.

Despite their potential, drone-based sensor networks face
several technical and operational challenges that hinder their
practical deployment. First, the continuous transmission of high-
resolution sensor data to centralized cloud servers introduces
significant latency and bandwidth overhead [4]. This becomes
critical in time-sensitive pollution detection tasks where
immediate response is required. Second, ensuring the reliability
and security of communication between drones and base stations
remains a major concern. Existing wireless networks are
vulnerable to interference and unauthorized access, which may
compromise the integrity of environmental data [5]. Moreover,
data heterogeneity from different sensors often leads to
inconsistencies and inaccuracies in pollutant detection,
particularly in varying meteorological conditions.

Although existing IoT-based and drone-assisted air quality
monitoring  frameworks have demonstrated considerable
progress, they are often constrained by centralized architectures
that limit scalability and computational efficiency. The heavy
reliance on cloud processing results in increased latency, reduced
energy efficiency, and susceptibility to communication failures
during real-time operations [6]. Therefore, there is a pressing need
for a decentralized, secure, and intelligent sensing framework that
can perform localized processing while maintaining reliable
communication and high data fidelity.

The primary objective of this research is to design and
implement an Edge-Enabled Quantum Drone Sensor Network (Q-
DSN) that combines the advantages of quantum-secure
communication, edge computing, and deep learning for efficient
urban pollution monitoring. Specifically, the study aims to:
develop a CNN-based model for accurate pollutant detection and
classification from multispectral and sensor data. Integrate
quantum communication protocols, such as Quantum Key
Distribution (QKD), to ensure data security and privacy in drone-
to-drone and drone-to-ground transmissions. Deploy edge
computing mechanisms to enable low-latency inference and
energy-efficient data processing. Validate the system’s
performance through simulation and field-level testing in
dynamic urban environments.

The novelty of this work lies in its fusion of quantum
communication and Edge Al within drone-based environmental
monitoring. Unlike traditional drone networks that depend on
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cloud-centric processing, the proposed Q-DSN performs
localized inference at the edge layer, reducing latency and
bandwidth consumption. In addition, the inclusion of quantum-
secure data transmission enhances trust and resilience against
cyber threats, a feature rarely explored in environmental sensing
frameworks. The proposed CNN architecture is optimized for
lightweight deployment, ensuring compatibility with energy-
constrained drone hardware.

The study introduces a hybrid drone-based architecture that
integrates CNN-driven pollutant detection with quantum
encryption protocols, enabling real-time, secure, and
decentralized air quality assessment.

2. RELATED WORKS

Recent years have witnessed substantial research efforts
toward developing intelligent pollution monitoring systems
leveraging IoT, drones, and Al-based techniques [6—12]. The
convergence of these technologies has enabled high-resolution
spatial and temporal pollution mapping, yet several limitations
persist in scalability, energy consumption, and communication
reliability.

Early loT-based pollution monitoring systems primarily relied
on static sensor nodes integrated with cloud platforms for data
storage and analytics [6]. While such systems provided consistent
data collection, they suffered from limited spatial mobility and
high deployment costs. To overcome these limitations,
researchers began employing Unmanned Aerial Vehicles (UAVs)
or drones for airborne pollution sensing [7]. These systems
facilitated flexible monitoring over large urban areas, offering
dynamic adaptability to environmental changes. However, the
heavy data transmission between drones and remote servers often
led to increased latency and energy consumption.

Machine learning and deep learning models, particularly
CNNs and Recurrent Neural Networks (RNNs), have been widely
used to enhance pollution prediction accuracy [8]. CNNs excel in
processing multispectral and spatial datasets, enabling effective
classification of pollutants such as PM2.5 and NO.. However,
most CNN-based systems rely heavily on cloud computation,
which introduces significant delays in real-time applications. To
address this issue, Edge Al frameworks have been proposed to
enable on-site inference, minimizing latency and reducing
dependence on centralized infrastructures [9].

Quantum computing and communication have recently gained
traction as enablers for secure and efficient environmental
monitoring [10]. Quantum Key Distribution (QKD) offers
unbreakable encryption for sensor-to-sensor and drone-to-ground
communication, ensuring data confidentiality in hostile or
congested network environments. Integrating such protocols with
Edge Al architectures provides a pathway toward achieving both
security and computational efficiency. Nevertheless, few studies
have explored this hybridization in environmental sensing
scenarios.

Some researchers have focused on developing drone-based
multi-sensor fusion frameworks that combine gas sensors, optical
cameras, and LiDAR systems for accurate spatial mapping [11].
These multi-modal datasets enhance pollutant identification but
introduce new challenges in synchronization and real-time data
fusion. Edge computing has been proposed as a viable solution to
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handle the high data throughput locally, significantly improving
system responsiveness.

In recent advancements, edge-assisted UAV networks
employing federated or distributed learning have been introduced
to support collaborative model training across multiple drones
[12]. Such systems reduce the need for data centralization while
improving generalization accuracy in diverse urban conditions.
However, the security and integrity of communication links
remain open research challenges.

3. QUANTUM
DEPLOYMENT

DRONE SENSOR

The first step in the proposed system involves deploying a
network of drones equipped with multi-sensor modules capable
of detecting pollutants such as CO2, NO2, PM2.5, and VOCs. The
drones are strategically positioned across the urban landscape to
ensure optimal spatial coverage and minimal sensing overlap.
Each drone incorporates a gas sensor array, multispectral camera,
and onboard processing unit to perform preliminary data filtering.

The drones are programmed to follow a pre-defined path while
dynamically adjusting altitude based on local environmental
conditions. This adaptive path planning ensures -efficient
sampling across vertical and horizontal spatial dimensions.
Communication between drones is secured through Quantum Key
Distribution (QKD), providing a robust defense against potential
cyber threats.

The pollutant concentration estimation at drone iis modeled
as:

N
Ci(t):ZW/'Sg/(t)+di(t) (1)
=
where C,(¢)is the estimated concentration at time ¢, Siy(f)

represents the sensor reading from sensor j on drone i, w; is the
weighting factor for sensor accuracy, and €(¢) is the measurement
noise.

The communication reliability with quantum encryption is
represented by:

R=1-e" @
where
P; is the probability of secure data transmission,
A represents the channel quality, and
Kokp is the quantum key length.
Table.1. Drone Sensor Deployment Parameters
Drone Altitude | Coverage |[Quantum Key
m | Semsor Type | = | Area (km?) | Length (bits)
D1 | Gas + Optical 50 0.8 1024
Gas +
b2 Multispectral 60 1.0 1024
D3 | Gas + Optical 45 0.7 1024
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3.1 DATA ACQUISITION AND PREPROCESSING

Once the drones are deployed, sensor readings are collected
continuously and preprocessed at the edge layer. Preprocessing
involves noise reduction, normalization, and feature extraction to
ensure the CNN model receives high-quality input data. Noise is
filtered using adaptive Kalman filtering techniques, which
dynamically adjust to temporal variations in sensor signals. The
preprocessed data is then normalized using min-max scaling:

S, ()-8,

in 3
3 5 3

max min

S,(1)=

Where S,(t)is the normalized reading, and S S .. are the

min 2 ma

minimum and maximum values for sensor j.

The Feature extraction via Principal Component Analysis
(PCA) is defined as:

Z=X-W 4
where X is the preprocessed sensor data matrix, W is the

eigenvector matrix of the covariance of X, and Z is the
transformed feature vector.

The Adaptive Kalman filtering for time-series noise reduction:
6))

where X, is the filtered estimate at time k, yx is the sensor

X, =X, +K (v, —Hx )

measurement, Ky is the Kalman gain, and H is the measurement
matrix.

Table.2. Preprocessed Sensor Data Features

Drone| Sensor CO: | NO: | PM2.5 | Feature Vector

ID Type  |(ppm)|(ppm)|(ng/m*) (PCA)
Gas +

DI | ontical | 410 | 35 | 55 [[0.71,-032,059)
Gas +

D2 |\ putispectrat] 420 | 38 | 48 |[0.68,-029,0.62]

D3 | O 1405 | 32 | 60 [[0.72,-0.30,0.57]
Optical .12, -0.30, 0.

3.2 CNN-BASED POLLUTANT CLASSIFICATION

After preprocessing, the feature vectors are input to a CNN
deployed at the edge for pollutant classification. The CNN
comprises convolutional layers for spatial feature extraction,
pooling layers for dimensionality reduction, and fully connected
layers for classification. The CNN is trained on labeled datasets
to recognize pollutant types and concentration ranges.

The convolution operation for feature map extraction:

M
Fi = f[ZWﬁ*m . X7, +bfj

m=1

Q)

where E" is the output of the k™ filter at layer /, X /" 1s the input
feature map, ;" is the filter weight, b/ is the bias, and f(-) is the
activation function.

The softmax-based classification output:
e
c

e’
Jj=1

P(y=cl X)= O]
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where P(y=c| X)is the probability of class ¢ given input X, z. is
the class score, and C is the total number of classes.

Table.3. CNN Classification Output

Drone| Feature |Predicted|Concentration/Confidence
ID Vector |Pollutant| (ppm/png/m?) (%)
D1 [0'701.’5_90]'32’ CO: 410 92
D2 [0'63’6'20]'29’ NO: 38 88
D3 [0'702"5‘70]'30’ PM2.5 60 90

3.3 EDGE Al
MAKING

INFERENCE AND DECISION

Edge computing enables real-time processing of drone-
collected data without relying on cloud infrastructure. The edge
layer executes the CNN model, aggregates results from multiple
drones, and applies decision logic to detect hotspots and
recommend corrective actions. Edge Al also dynamically adapts
the drones’ flight paths based on detected pollutant
concentrations, ensuring targeted monitoring. The edge-level
aggregation of predictions:

1 N
C, NZW" C

i=1

®)

where C, is the combined concentration estimate, C, is the local

prediction from drone i, w; is a reliability weight, and N is the
number of drones. The flight path adjustment optimization using
gradient-based

ﬁ/ﬂ :ﬁl _U'V[)L(Ca’q) (9)
where p,,, is the updated position vector, # is the learning rate,

and L() is the loss between predicted and target concentrations.

Table.4. Edge Al Aggregated Results

Drone |[Aggregated|Avg.| Hotspot Action
Cluster| Pollutant |Con.|Detected
1 CO. |415| Yes | nerease
monitoring
2 NO: 37 No Maintain path
3| pm2s | 58| ves | . Deploy
mitigation drone

4. QUANTUM-SECURE COMMUNICATION

QKD ensures secure data transmission among drones and
from drones to the base station. Each drone exchanges encryption
keys using quantum entanglement, preventing eavesdropping and
tampering. This step guarantees data integrity, especially for high-
resolution sensor data critical for accurate pollution detection. The
quantum-secured channel capacity:

C, =log,(1+SNR)-(1-P) (10)
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where C, is the channel capacity, SNR is the signal-to-noise ratio,
and P, is the probability of eavesdropping detection.

The QKD key generation rate:
Ry = fop - Q-[1-H(e)] an

is the secure key rate, f_is the pulse repetition

rep

where R,
frequency, Q is the detection probability, H(e)is the binary
entropy function, and e is the quantum bit error rate (QBER).

Table.5. Quantum Communication Metrics

Drone|Channel| Key Length| QBER [Secure Data
ID SNR (bits) (%) |Rate (kbps)
D1 | 18dB 1024 2.1 512
D2 | 20dB 1024 1.8 540
D3 | 17dB 1024 2.3 498

5. RESULTS AND DISCUSSION

The proposed Quantum Drone Sensor Network (Q-DSN) was
evaluated using a combination of simulation and field-level
experiments. The simulations were conducted using MATLAB
R2025b and NS-3 network simulator to model drone mobility,
sensor data acquisition, and communication behavior. The
MATLAB environment facilitated the development and testing of
the CNN-based pollutant classification model, while NS-3 was
employed to simulate quantum-secure communication protocols
and edge-based data aggregation.

The field experiments involved three custom-built drones,
each equipped with multi-gas sensors, multispectral cameras, and
embedded NVIDIA Jetson Nano boards for onboard edge Al
inference. These drones operated in a controlled urban testbed
environment of approximately 2 km? capturing real-time
pollutant data under varying environmental conditions.

Computational resources for simulation included a
workstation with Intel Core 19-13900K CPU, 64 GB RAM, and
NVIDIA RTX 4090 GPU, which was used for both CNN training
and large-scale simulation of drone deployments. The Jetson
Nano boards onboard drones performed edge-level inference with
minimal latency, which shows the feasibility of real-time
processing in practical scenarios. Data collected from field
experiments were logged for post-processing and validation
against simulation results.

Table.6. Experimental Setup and Parameters

Parameter Value / Setting
Number of drones 3
Drone altitude 45-60 m
Drone speed 5-12 m/s
Gas sensors CO2, NO., PM2.5, VOCs
Sampling rate 1 Hz
Edge processor NVIDIA Jetson Nano
CNN input size 32x32x3
Quantum key length 1024 bits
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Communication protocol|Quantum-secure & Wi-Fi 6

2 km?

Testbed area

5.1 PERFORMANCE METRICS

The proposed framework was evaluated using the metrics,
which quantify detection accuracy, latency, energy efficiency,
communication reliability, and system scalability.

* Detection Accuracy (DA): Detection accuracy measures
the percentage of correctly classified pollutants by the CNN
model. It was computed as:

DA: Ncorrect ><100

total

(12)

where Ncorrecr 1s the number of correct predictions, and Ny is the
total number of predictions. Both simulation and field
experiments showed an improvement of approximately 37% over
baseline IoT-based methods.

* Latency (L): Latency represents the total time between
sensor data acquisition and pollutant classification at the
edge. Lower latency ensures timely environmental
monitoring. It was measured as:

(13)

The proposed edge-based architecture reduced latency by 42%
compared to cloud-dependent models.

L = tin +ttr

* Energy Efficiency (EE): Energy efficiency reflects the ratio
of computational tasks completed to the total energy
consumed by the drones. It was defined as:

Operations completed

= (14)

Total energy consumed (J)

The use of edge Al inference allowed energy savings of 35%,
extending drone operational time.

* Communication Reliability (CR): Communication
reliability quantifies successful data transmissions without
loss or interference, especially under quantum-secured
channels. It was calculated as:

cr=2 1100

tx

(15)

» System Scalability (SS): System scalability measures the
framework’s ability to maintain performance when the
number of drones or sensing nodes increases. Performance
trends were analyzed using:

Performance metric with N .

SS =
Performance metric with baseline drones

(16)

5.2 COMPARISON WITH STATIC 10T SENSOR
NETWORK

Table.7. Performance of Static [oT Sensor Network vs Proposed

Q-DSN
DA| L EE |CR
Area Covered (km?)| Method )| (s) [(Opsi)| (%) SI
0.5 Static [oT| 62 |4.5| 0.85 |88 0.7
' Proposed | 84 2.1| 1.15 | 95| 1.0
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10 Static IoT| 60 |5.0] 0.82 | 850.68
Proposed | 83 |12.3| 1.12 {94 | 1.0
Is Static IoT| 58 |5.5| 0.80 | 83 (0.65
Proposed | 82 (2.5 1.10 | 93| 1.0
Static IoT| 55 |16.0| 0.78 | 80 |0.63
20 Proposed | 81 [2.7| 1.08 |92 1.0
5.3 COMPARISON WITH DRONE-BASED AIR
QUALITY MONITORING
Table.8. Performance of Drone-Based Monitoring vs Proposed
Q-DSN
Cove?:(;?km’) Method (]zA;A) (I;) (O];:)]silJ) (C%R) S
0.5 Drone-Based| 70 (3.8 0.92 |90 0.8
Proposed |84 (2.1| 1.15 |95| 1.0
L0 Drone-Based| 68 (4.2| 0.89 | 88 (0.78
Proposed |83 (23] 1.12 | 94| 1.0
Drone-Based| 65 [4.8| 0.85 | 85 (0.75
13 Proposed |82 (2.5 1.10 |93 | 1.0
20 Drone-Based| 62 (5.2 0.82 | 830.72
Proposed |81 (2.7| 1.08 |92 1.0
5.4 COMPARISON WITH EDGE-ASSISTED
POLLUTION DETECTION
Table.9. Performance of Edge-Assisted Detection vs Proposed
Q-DSN
Cove?erﬁka) Method (]2/?) (IQ) (OP;JEJ) (C/R) St
0.5 Edge-Assisted| 75 |2.9| 1.05 |91 (0.85
Proposed |84 2.1| 1.15 [95]1.0
L0 Edge-Assisted| 73 {3.2| 1.02 |90 [0.82
Proposed |83 (2.3] 1.12 |94 1.0
15 Edge-Assisted| 70 [3.6| 0.98 | 88 (0.80
Proposed |822.5| 1.10 |93 | 1.0
20 Edge-Assisted| 68 |4.0| 0.95 | 86(0.78
Proposed |81 (2.7| 1.08 |92 1.0

From Table.7-Table.9, it is evident that the proposed Q-DSN
consistently outperforms all existing methods across the 2 km?
testbed. Detection accuracy remains above 81%, compared to 55—
75% for baseline methods. Latency is reduced significantly, from
2.9-6.0 s to 2.1-2.7 s, which shows the advantage of edge Al
inference. Energy efficiency improves by approximately 20—35%,
and communication reliability exceeds 92% due to quantum-
secured channels. The scalability index remains constant at 1.0 for
Q-DSN, highlighting its ability to maintain performance when the
monitoring area expands, unlike traditional methods whose
metrics degrade progressively with area increase.
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5.5 COMPARISON WITH STATIC IOT SENSOR
NETWORK

Table.10. Performance of Static loT Sensor Network vs
Proposed Q-DSN under Varying Key Lengths

ity | Method |05l 6 opin| |
Static IoT| 58 |5.8| 0.78 | 82 ]0.62

236 Proposed | 80 |2.5| 1.10 {92 1.0
512 Static [oT| 56 |6.0| 0.76 |80 |0.60
Proposed | 81 |2.6] 1.09 {92 |1.0

768 Static IoT| 55 |6.2| 0.74 |78 |0.58
Proposed | 82 (2.6] 1.08 |92 1.0

1024 Static IoT| 55 |6.3| 0.73 |77 |0.57
Proposed | 83 |2.7| 1.08 {92 1.0

5.6 COMPARISON WITH DRONE-BASED AIR
QUALITY MONITORING

Table.11. Performance of Drone-Based Monitoring vs Proposed
Q-DSN under Varying Key Lengths (Table 11)

Ke%)List;gth Method | 30IL ) o)

256 Drone-Based| 64 | 5.0 | 0.84 |86 (0.72

Proposed |80 (25| 1.10 |92 1.0

Drone-Based| 63| 5.2 | 0.82 |8510.70

>12 Proposed |81 2.6 1.09 [921.0

768 Drone-Based| 62| 5.4 | 0.80 | 84 |0.68

Proposed |82(2.6| 1.08 |92|1.0

1004 Drone-Based| 61 | 5.6 | 0.78 | 83(0.67

Proposed |83 (27| 1.08 [921.0

5.7 COMPARISON WITH EDGE-ASSISTED

POLLUTION DETECTION

Table.12. Performance of Edge-Assisted Detection vs Proposed
Q-DSN under Varying Key Lengths

Leng]flfy(bits) Method (le;A) (];) (01;:)15“) (C°/?) St
956 Edge-Assisted| 72 (3.5 1.00 | 89 |0.82
Proposed | 80 |2.5| 1.10 |92 | 1.0

512 Edge-Assisted| 71 (3.7| 0.98 | 88 [0.80
Proposed | 81 |2.6| 1.09 |92 | 1.0

Edge-Assisted| 70 [3.9] 0.96 | 87 |0.78

768 Proposed | 82 (2.6] 1.08 |92 |1.0
1024 Edge-Assisted| 68 (4.0 0.95 | 86 |0.77
Proposed | 83 (2.7 1.08 |92 |1.0

From Table.10-Table.12, the proposed Q-DSN consistently
outperforms all existing methods across different quantum key
lengths. Detection accuracy improved by 8-28% compared to
existing methods, remaining above 80% even at 1024 bits.
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Latency decreased from 3.5-6.3 s to 2.5-2.7 s due to edge Al
processing, while energy efficiency improved by 10-35%,
reflecting optimized computation at drones. Communication
reliability stabilized at 92% because of quantum-secured
channels, whereas baseline methods degraded as key length
increased. The scalability index of 1.0 confirms the Q-DSN
maintains robust performance under secure communication
constraints, unlike traditional approaches whose metrics decline
progressively.

6. CONCLUSION

This study presents a Q-DSN with CNNs and Edge Al for
intelligent urban pollution detection. The proposed framework
effectively combines multi-sensor drone deployments, edge-level
processing, and quantum-secured communication to address the
limitations of existing [oT- and drone-based monitoring systems.
Simulation and field experiments over a 2 km? urban testbed
demonstrated that Q-DSN consistently outperformed baseline
methods in all critical performance metrics. Detection accuracy
remained above 81%, representing an improvement of up to 28%
over traditional static IoT sensors, drone-only monitoring, and
edge-assisted frameworks. Latency was significantly reduced to
2.1-2.7 seconds, enabling real-time pollutant detection, while
energy efficiency improved by 20-35%, extending drone
operational time. Communication reliability stabilized at 92%,
benefiting from quantum key distribution, and the system
maintained robust scalability even as area coverage and quantum
key lengths increased. The combination of CNN-based feature
extraction with edge inference allowed accurate classification of
CO2, NO2, PM2.5, and VOCs under dynamic environmental
conditions.
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