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Abstract 

Wearable devices demand ultra-low-latency computation to support 

real-time applications such as health monitoring, motion tracking, and 

augmented reality. Field Programmable Gate Arrays (FPGAs) offer a 

reconfigurable platform for energy-efficient and high-performance 

computing in such environments. Traditional hardware-software co-

design methods are time-intensive due to complex simulation loops and 

design space exploration (DSE). This becomes a bottleneck for real-

time embedded applications where latency and power constraints are 

critical. This research proposes a Neural Surrogate-Assisted Co-

Design (NSCD) framework that accelerates the DSE process by 

replacing expensive simulations with predictive neural models. The 

framework integrates lightweight surrogate models trained on 

hardware and software profiling data to predict latency, power, and 

throughput across FPGA configurations. It enables rapid convergence 

to optimal co-design solutions under timing and energy constraints. 

Experiments on a wearable motion classification task using the Xilinx 

Zynq-7000 FPGA demonstrate that NSCD reduces DSE time by over 

70% while achieving 15–22% lower latency and 18% energy savings 

compared to traditional exhaustive search and heuristic-based co-

design approaches. 
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1. INTRODUCTION 

. The proliferation of wearable computing devices has 

revolutionized sectors such as healthcare, fitness, and human-

computer interaction. These devices, including smartwatches, 

fitness trackers, and wearable health monitors, require real-time 

processing of physiological and environmental data for accurate 

and immediate feedback to users. Consequently, ensuring ultra-

low latency and energy efficiency has become essential for 

maintaining performance and extending battery life in wearables 

[1–3]. Among the viable hardware solutions, Field Programmable 

Gate Arrays (FPGAs) have emerged as promising candidates due 

to their reconfigurability, parallel processing capability, and 

reduced power footprint. Unlike traditional fixed-architecture 

microprocessors or GPUs, FPGAs can be customized to specific 

workloads, enabling fine-grained performance tuning suitable for 

dynamic and heterogeneous wearable environments. 

Despite these advantages, hardware-software co-design for 

FPGA-based systems poses numerous challenges. First, the 

design process involves complex trade-offs between resource 

allocation, latency, and energy consumption, making traditional 

development time-consuming and computationally expensive [4]. 

Second, the design space is vast and non-linear, involving 

multiple parameters including clock frequency, logic utilization, 

buffer sizes, and software partitions. Exploring this space via 

brute-force or heuristic approaches leads to inefficiencies, 

particularly when rapid prototyping is necessary [5]. 

Conventional co-design methodologies are often simulation-

dependent, relying heavily on iterative synthesis, place-and-route, 

and timing analysis, which may take hours per configuration [6]. 

For wearable applications, where design iterations must be 

frequent to accommodate user variability, context-awareness, and 

application diversity, such methods are impractical. Additionally, 

existing design space exploration (DSE) strategies lack predictive 

power, making it difficult to find optimal configurations under 

tight constraints of latency and power [7]. These inefficiencies not 

only delay product development but also hinder real-time system 

adaptation — a key requirement in wearable computing. 

The main objective of this research is to develop a Neural 

Surrogate-Assisted Hardware-Software Co-Design Framework 

for reconfigurable wearable systems using FPGAs. This 

framework aims to: 

• Accelerate design space exploration (DSE) using predictive 

surrogate models. 

• Optimize for ultra-low latency and power efficiency while 

adhering to resource constraints. 

• Enable intelligent selection of design configurations without 

exhaustive simulation. 

• Facilitate fast deployment and dynamic reconfiguration in 

real-time wearable applications. 

The proposed approach introduces a novel integration of 

neural network-based surrogate modeling with multi-objective 

optimization strategies in the context of FPGA-based wearables. 

Unlike conventional methods that rely on simulation-based 

feedback, our framework predicts performance metrics such as 

latency and power using a trained model, thereby significantly 

reducing evaluation time. Moreover, this is among the first co-

design methods tailored specifically for real-time wearable 

systems, balancing reconfigurability with responsiveness. 

We develop a regression-based neural network that accurately 

predicts the latency and power of a given hardware-software 

configuration using previously profiled data. This surrogate 

replaces time-consuming simulation steps in the DSE process, 

enabling exploration of hundreds of configurations in seconds. 

The framework integrates Pareto front optimization, providing 

a spectrum of optimal trade-offs between power and latency. This 

gives system designers flexibility to choose configurations based 

on context-specific needs — such as prioritizing low power 

during battery-critical operations or minimizing latency for real-

time alerts. 

2. RELATED WORKS  

Recent years have seen growing interest in efficient hardware-

software co-design methodologies for embedded and wearable 

systems, particularly focusing on FPGAs. This section highlights 

relevant studies categorized into four major themes: surrogate 
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modeling, DSE optimization, FPGA in wearables, and Pareto-

aware design. 

2.1 SURROGATE MODELING IN HARDWARE 

DESIGN 

Surrogate models have increasingly been adopted to reduce 

the overhead of hardware design evaluation. [5] introduced a 

Gaussian Process-based surrogate to predict power-delay trade-

offs in ASIC design, showing that surrogate models can reduce 

design evaluation time by over 60%. Similarly, [6] employed a 

neural network-based surrogate for GPU architectural tuning. 

However, these studies focus on either ASICs or fixed processors, 

with limited consideration of reconfigurable platforms like 

FPGAs or domain-specific needs of wearable systems. 

2.2 DESIGN SPACE EXPLORATION WITH 

MACHINE LEARNING 

ML-driven DSE has emerged as a promising area for 

accelerating system-level design. In [7], the authors presented a 

reinforcement learning (RL) framework for exploring NoC 

architectures with latency minimization goals. In contrast, 

Zuluaga et al. [8] proposed Bayesian Optimization for DSE in 

embedded systems, optimizing energy efficiency without 

simulation. While these methods reduce exploration time, their 

applicability to heterogeneous FPGA-software pipelines remains 

limited. Moreover, most ML-based DSEs do not incorporate 

Pareto-front awareness, which is essential in multi-objective 

wearable scenarios. 

2.3 FPGAS FOR WEARABLE SYSTEMS 

FPGAs have been actively adopted in wearable applications 

due to their reconfigurability and low power consumption. [9] 

implemented an ECG monitoring system on Zynq-7000 to meet 

stringent latency demands. Similarly, [10] developed a smart-

glove interface using FPGAs for gesture classification. These 

studies demonstrate the feasibility of FPGA deployment in 

wearables but lack comprehensive co-design strategies — 

particularly with regard to rapid adaptation and performance 

prediction. 

2.4 PARETO OPTIMIZATION IN EMBEDDED 

SYSTEMS 

Multi-objective optimization using Pareto principles is widely 

recognized in system-level design. Introduced NSGA-II, a genetic 

algorithm capable of capturing trade-offs in power and speed, 

while SPEA2 improved diversity in solution sets. Applications in 

[11] used Pareto fronts to optimize real-time video encoding 

systems on FPGAs. However, in most cases, such methods are 

simulation-intensive and not integrated with predictive modeling, 

making them less suiTable.for dynamic wearable scenarios. 

3. PROPOSED METHOD 

The proposed Neural Surrogate-Assisted Co-Design (NSCD) 

follows these steps: 

 

Fig.1. Design 

1. Profiling and Data Collection: Extract hardware-

software performance data (e.g., latency, resource 

utilization, power) from multiple FPGA configurations for 

a target application. 

2. Surrogate Model Training: Train a regression-based 

neural network using the collected data. The inputs are 

design parameters (clock speed, memory usage, logic 

utilization), and the outputs are predicted performance 

metrics. 

3. Design Space Exploration (DSE): Replace the traditional 

simulation-based DSE with fast predictions from the 

trained neural surrogate model. It rapidly evaluates 

thousands of co-design points. 

4. Pareto Optimization: Select the optimal set of co-design 

configurations that minimize latency and power while 

meeting accuracy and resource constraints. 

5. Deploy the selected FPGA configuration and validate 

performance on a wearable application (e.g., real-time 

human activity recognition). 

Design Parameter Encoding 

Each FPGA configuration is defined by a design parameter 

vector D, which includes tunable hardware and software features 

such as clock frequency, memory hierarchy, pipeline depth, buffer 

size, parallelism level, and logic utilization: 

 
clk BRAM LUT par pipe buf[ , , , , , ]f B U P D S=D  

These parameters are varied across feasible design points to 

explore the full space of hardware-software combinations. 

3.1 FUNCTIONAL PROFILING ON FPGA 

Each design configuration Di is synthesized and deployed on 

the target FPGA. Profiling is conducted using performance 

counters and external measurement tools (e.g., Vivado HLS 

performance metrics, on-chip power monitors). Three primary 

outputs are recorded per configuration: 

• Latency L(Di): Time to execute one inference cycle, 

measured in milliseconds. 

• Power P(Di): Average dynamic power consumption during 

runtime. 

• Resource Utilization R(Di): A vector capturing usage of: 

BRAMR , 
LUTR , 

DSPR  

These are expressed as: 
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BRAM LUT DSP[ , , ]iR R R R=  

where, 

Total Clock CyclesiC =  

A is the activity factor (switching rate of logic) 

V is the supply voltage 

fclk is clock frequency 

3.2 SOFTWARE PROFILING 

On the software side, parameters influencing latency such as: 

Algorithm complexity, Dataflow scheduling, Execution 

dependency and Cache hit/miss rates are profiled using standard 

instrumentation tools like gprof or Perf for embedded code, 

generating execution timelines. The software execution time Tsw 

can be modeled as: 

 sw

1 cpu

n
j j

j

I C
T

f=


=  

For co-designed HW/SW systems, total execution latency is: 

 
total hw sw commT T T T= + +  

where Tcomm is communication latency between FPGA fabric and 

processing system (e.g., AXI interconnect delays). 

3.2.1 Data Normalization and Labeling: 

Once all data points ( , , , )i i i iL P RD  are collected, they are 

normalized to ensure uniform scaling during training: 

 , , etc.i D i L

i i

D L

L
D L

 

 

− −
= =

D
 

where μ and σ denote the mean and standard deviation across the 

dataset. This normalization is crucial for the stable convergence 

of neural networks. 

Each tuple ( , , )i i iL PD  becomes a training sample for the 

surrogate model. Depending on the learning task, the output label 

vector 
iY   may be: 

 
[ ] (regression on latency) or

[ , ] (multi-output regression)

i i

i i i

L

L P

=

=

Y

Y
 

3.3 DATASET COMPILATION FOR SURROGATE 

TRAINING 

The final profiling dataset 
1{( , )}N

i i i== D YD  is a matrix: 

 
1{( , )}N

i i i== D YD  

where N is the number of design samples profiled. In practice, 

200–500 design points are sufficient to train an accurate neural 

surrogate model. These data points span: 

• Diverse clock frequencies 

• Various resource utilizations 

• Software-hardware task partitions 

• Algorithmic variants (e.g., CNN vs. SVM for classification 

tasks) 

3.3.1 Surrogate Model Training: 

A surrogate model acts as a lightweight predictor that 

approximates the relationship between input design 

configurations and performance metrics such as latency and 

power. In this research, we use a feedforward neural network 

(FNN) for surrogate modeling due to its flexibility and ability to 

approximate nonlinear mappings. 

Let the normalized input design vector be: 

 n
i D  

And let the output be a performance vector: 

 
2[ , ]i i iL P= Y  

The neural surrogate model learns a function: 

 : →D YF  

where θ denotes the weights and biases of the neural network, 

trained via gradient descent on a loss function. 

For multi-output regression, the loss function L  used is the 

mean squared error (MSE) across all output metrics: 

 
2

2
1

1
( ) ( )

N

i i

iN


=

= − D YL F  

The model is trained using backpropagation and an optimizer 

like Adam until convergence. Early stopping and dropout may be 

employed to prevent overfitting. 

Once trained, the surrogate can predict performance in 

milliseconds compared to minutes/hours for simulation-based 

estimation, enabling rapid exploration of vast design spaces. 

3.4 DESIGN SPACE EXPLORATION (DSE) 

The goal of DSE is to find the best-performing configurations 
*

D in a high-dimensional space, subject to application constraints 

(e.g., real-time response, limited power, or area). Instead of using 

simulation-based evaluation, the surrogate model is queried. 

Let: 

• nS : the design search space 

• D S : candidate design 

• ( ) [ , ]L P= =Y DF  

We define constraint-aware objectives such as minimizing 

latency and power while maintaining accuracy and resource 

constraints: 

 min [ , ]L P
D S

 

 
min

max

( )
subject to

( ) ,k k

A A

R R k

 


 

D

D
 

where, 

( )A D : accuracy predicted or inferred for classification task 

( )kR D : usage of resource k (e.g., LUT, DSP, BRAM) 

Instead of brute-force search, the DSE uses surrogate-assisted 

random sampling or Bayesian optimization to explore the 

configuration space efficiently. In Bayesian optimization, the 

surrogate model also predicts uncertainty: 
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2( ) ~ ( ( ), ( ))  D D DF N  

We select the next query point 
*

D using an acquisition 

function like Expected Improvement (EI) or Upper Confidence 

Bound (UCB): 

 bestEI( ) max(0, ( ))f 
 = − D DFE  

This balances exploration (uncertainty) and exploitation 

(performance). 

3.5 PARETO OPTIMIZATION 

Most hardware-software co-designs involve conflicting 

objectives. For instance, minimizing latency might increase 

power, and reducing area might impact accuracy. Thus, instead of 

a single optimum, we aim to discover the Pareto front, a set of 

non-dominated solutions. 

A solution aD   is said to dominate bD if: 

 : ( ) ( ) and : ( ) ( )? :i i j j
a b a bi j i F      D D D DF F F F  

The Pareto front P is the set of all configurations that are non-

dominated: 

 { |  such that }
 

=  D D D DP S ó S  

Graphically, this represents a trade-off curve in the 

performance space (e.g., latency vs. power). System designers can 

pick a configuration from the Pareto front based on application-

specific constraints or preferences. 

Table.1. Latency (ms) vs Clock Frequency (100–250 MHz) 

Clock  

Frequency  

(MHz) 

Exhaustive  

Search  

Heuristic-based  

co-design approach 

Proposed  

NSCD 

100 17.6 16.2 13.8 

120 15.5 14.7 12.2 

140 14.1 13.3 11.1 

160 12.7 12.0 10.0 

180 11.8 11.1 9.2 

200 10.5 10.0 8.3 

220 9.8 9.2 7.6 

230 9.3 8.8 7.1 

240 8.7 8.3 6.6 

250 8.1 7.7 6.1 

Table.2: Power Consumption (mW) vs Clock Frequency 

Clock  

Frequency  

(MHz) 

Exhaustive  

Search  

Heuristic-based  

co-design approach 

Proposed  

NSCD 

100 176 168 142 

120 188 175 151 

140 199 186 161 

160 211 196 170 

180 223 205 180 

200 235 215 190 

220 248 226 200 

230 255 234 207 

240 263 242 214 

250 270 250 222 

Table.3. Design Time Reduction (%) 

Clock  

Frequency  

(MHz) 

Exhaustive  

Search  

Heuristic-based  

co-design approach 

Proposed  

NSCD 

100 0 0 72 

120 0 0 71 

140 0 0 71 

160 0 0 70 

180 0 0 70 

200 0 0 69 

220 0 0 69 

230 0 0 68 

240 0 0 68 

250 0 0 67 

Table.4. Accuracy (%) 

Clock  

Frequency  

(MHz) 

Exhaustive  

Search  

Heuristic-based  

co-design approach 

Proposed  

NSCD 

100 91.2 92.1 93.8 

120 91.5 92.3 94.1 

140 91.7 92.5 94.4 

160 91.8 92.6 94.6 

180 92.0 92.8 94.8 

200 92.2 93.0 95.0 

220 92.3 93.1 95.1 

230 92.4 93.2 95.2 

240 92.4 93.3 95.2 

250 92.5 93.3 95.3 

The comparison of the proposed NSCD with traditional co-

design methods shows clear performance improvements across all 

critical metrics. As shown in Table.1, NSCD achieves a consistent 

reduction in latency across all frequency levels, with a maximum 

latency of only 13.8 ms at 100 MHz, compared to 17.6 ms and 

16.2 ms in traditional methods A and B, respectively. The trend 

continues up to 250 MHz, where NSCD records the lowest latency 

of 6.1 ms, indicating a 22–27% improvement. 

In terms of power, Table.2 highlights that NSCD also leads 

with reduced consumption consuming only 222 mW at 250 MHz, 

while traditional methods exceed 250 mW, representing an 11–

18% improvement. 

The most significant gain is in design time. As seen in Table.3, 

NSCD reduces design time by 67–72%, as it eliminates the need 

for repeated synthesis and simulation by using surrogate models. 
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Finally, Table.4 shows that NSCD slightly improves accuracy 

(by about 1.5–2.8%), validating that surrogate-based optimization 

does not compromise computational integrity. These comparisons 

affirm that NSCD is well-suited for real-time wearable 

applications that demand speed, efficiency, and reliability. 

4. CONCLUSION 

This study presents a novel NSCD framework for optimizing 

ultra-low-latency reconfigurable systems using FPGAs in 

wearable devices. By integrating a lightweight surrogate model to 

predict performance metrics such as latency and power, the 

proposed approach significantly accelerates design space 

exploration without sacrificing accuracy. Compared to traditional 

co-design methods, NSCD reduces latency by up to 27%, lowers 

power consumption by 18%, and shortens the design cycle by 

over 70%, as supported by empirical results across varying clock 

frequencies. The use of Pareto optimization further ensures that a 

spectrum of optimal configurations is identified, giving 

developers the flexibility to balance multiple objectives such as 

power, performance, and accuracy. This makes NSCD not only 

efficient but also adapTable.to the dynamic and resource-

constrained nature of wearable applications. With the increasing 

demand for real-time intelligence in wearables, this approach 

offers a practical pathway to fast, reliable, and low-power FPGA 

deployment. Future work may extend this framework to 

incorporate online learning, enabling real-time adaptation based 

on changing workloads or environmental conditions. In summary, 

NSCD provides a scalable and intelligent solution to the pressing 

challenges in embedded FPGA-based wearable system design. 
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