
ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2025, VOLUME: 11, ISSUE: 02

DOI: 10.21917/ijme.2025.0357

2119

NEURAL-SURROGATE-ASSISTED HARDWARE-SOFTWARE CO-DESIGN FOR

REAL-TIME RECONFIGURABLE FPGA SYSTEMS IN WEARABLE DEVICES

M. Parameswari, R. Jeya Malar, D.C. Jullie Josephine, S. Ramya Devi
Department of Computer Science and Engineering, Kings Engineering College, India

Abstract

Wearable devices demand ultra-low-latency computation to support

real-time applications such as health monitoring, motion tracking, and

augmented reality. Field Programmable Gate Arrays (FPGAs) offer a

reconfigurable platform for energy-efficient and high-performance

computing in such environments. Traditional hardware-software co-

design methods are time-intensive due to complex simulation loops and

design space exploration (DSE). This becomes a bottleneck for real-

time embedded applications where latency and power constraints are

critical. This research proposes a Neural Surrogate-Assisted Co-

Design (NSCD) framework that accelerates the DSE process by

replacing expensive simulations with predictive neural models. The

framework integrates lightweight surrogate models trained on

hardware and software profiling data to predict latency, power, and

throughput across FPGA configurations. It enables rapid convergence

to optimal co-design solutions under timing and energy constraints.

Experiments on a wearable motion classification task using the Xilinx

Zynq-7000 FPGA demonstrate that NSCD reduces DSE time by over

70% while achieving 15–22% lower latency and 18% energy savings

compared to traditional exhaustive search and heuristic-based co-

design approaches.

Keywords:

FPGAs, Wearable Devices, Co-Design, Neural Surrogates, Low-

Latency Systems

1. INTRODUCTION

. The proliferation of wearable computing devices has

revolutionized sectors such as healthcare, fitness, and human-

computer interaction. These devices, including smartwatches,

fitness trackers, and wearable health monitors, require real-time

processing of physiological and environmental data for accurate

and immediate feedback to users. Consequently, ensuring ultra-

low latency and energy efficiency has become essential for

maintaining performance and extending battery life in wearables

[1–3]. Among the viable hardware solutions, Field Programmable

Gate Arrays (FPGAs) have emerged as promising candidates due

to their reconfigurability, parallel processing capability, and

reduced power footprint. Unlike traditional fixed-architecture

microprocessors or GPUs, FPGAs can be customized to specific

workloads, enabling fine-grained performance tuning suitable for

dynamic and heterogeneous wearable environments.

Despite these advantages, hardware-software co-design for

FPGA-based systems poses numerous challenges. First, the

design process involves complex trade-offs between resource

allocation, latency, and energy consumption, making traditional

development time-consuming and computationally expensive [4].

Second, the design space is vast and non-linear, involving

multiple parameters including clock frequency, logic utilization,

buffer sizes, and software partitions. Exploring this space via

brute-force or heuristic approaches leads to inefficiencies,

particularly when rapid prototyping is necessary [5].

Conventional co-design methodologies are often simulation-

dependent, relying heavily on iterative synthesis, place-and-route,

and timing analysis, which may take hours per configuration [6].

For wearable applications, where design iterations must be

frequent to accommodate user variability, context-awareness, and

application diversity, such methods are impractical. Additionally,

existing design space exploration (DSE) strategies lack predictive

power, making it difficult to find optimal configurations under

tight constraints of latency and power [7]. These inefficiencies not

only delay product development but also hinder real-time system

adaptation — a key requirement in wearable computing.

The main objective of this research is to develop a Neural

Surrogate-Assisted Hardware-Software Co-Design Framework

for reconfigurable wearable systems using FPGAs. This

framework aims to:

• Accelerate design space exploration (DSE) using predictive

surrogate models.

• Optimize for ultra-low latency and power efficiency while

adhering to resource constraints.

• Enable intelligent selection of design configurations without

exhaustive simulation.

• Facilitate fast deployment and dynamic reconfiguration in

real-time wearable applications.

The proposed approach introduces a novel integration of

neural network-based surrogate modeling with multi-objective

optimization strategies in the context of FPGA-based wearables.

Unlike conventional methods that rely on simulation-based

feedback, our framework predicts performance metrics such as

latency and power using a trained model, thereby significantly

reducing evaluation time. Moreover, this is among the first co-

design methods tailored specifically for real-time wearable

systems, balancing reconfigurability with responsiveness.

We develop a regression-based neural network that accurately

predicts the latency and power of a given hardware-software

configuration using previously profiled data. This surrogate

replaces time-consuming simulation steps in the DSE process,

enabling exploration of hundreds of configurations in seconds.

The framework integrates Pareto front optimization, providing

a spectrum of optimal trade-offs between power and latency. This

gives system designers flexibility to choose configurations based

on context-specific needs — such as prioritizing low power

during battery-critical operations or minimizing latency for real-

time alerts.

2. RELATED WORKS

Recent years have seen growing interest in efficient hardware-

software co-design methodologies for embedded and wearable

systems, particularly focusing on FPGAs. This section highlights

relevant studies categorized into four major themes: surrogate

M PARAMESWARI XX et al.: NEURAL-SURROGATE-ASSISTED HARDWARE-SOFTWARE CO-DESIGN FOR REAL-TIME RECONFIGURABLE FPGA SYSTEMS IN WEARABLE

 DEVICES

2120

modeling, DSE optimization, FPGA in wearables, and Pareto-

aware design.

2.1 SURROGATE MODELING IN HARDWARE

DESIGN

Surrogate models have increasingly been adopted to reduce

the overhead of hardware design evaluation. [5] introduced a

Gaussian Process-based surrogate to predict power-delay trade-

offs in ASIC design, showing that surrogate models can reduce

design evaluation time by over 60%. Similarly, [6] employed a

neural network-based surrogate for GPU architectural tuning.

However, these studies focus on either ASICs or fixed processors,

with limited consideration of reconfigurable platforms like

FPGAs or domain-specific needs of wearable systems.

2.2 DESIGN SPACE EXPLORATION WITH

MACHINE LEARNING

ML-driven DSE has emerged as a promising area for

accelerating system-level design. In [7], the authors presented a

reinforcement learning (RL) framework for exploring NoC

architectures with latency minimization goals. In contrast,

Zuluaga et al. [8] proposed Bayesian Optimization for DSE in

embedded systems, optimizing energy efficiency without

simulation. While these methods reduce exploration time, their

applicability to heterogeneous FPGA-software pipelines remains

limited. Moreover, most ML-based DSEs do not incorporate

Pareto-front awareness, which is essential in multi-objective

wearable scenarios.

2.3 FPGAS FOR WEARABLE SYSTEMS

FPGAs have been actively adopted in wearable applications

due to their reconfigurability and low power consumption. [9]

implemented an ECG monitoring system on Zynq-7000 to meet

stringent latency demands. Similarly, [10] developed a smart-

glove interface using FPGAs for gesture classification. These

studies demonstrate the feasibility of FPGA deployment in

wearables but lack comprehensive co-design strategies —

particularly with regard to rapid adaptation and performance

prediction.

2.4 PARETO OPTIMIZATION IN EMBEDDED

SYSTEMS

Multi-objective optimization using Pareto principles is widely

recognized in system-level design. Introduced NSGA-II, a genetic

algorithm capable of capturing trade-offs in power and speed,

while SPEA2 improved diversity in solution sets. Applications in

[11] used Pareto fronts to optimize real-time video encoding

systems on FPGAs. However, in most cases, such methods are

simulation-intensive and not integrated with predictive modeling,

making them less suiTable.for dynamic wearable scenarios.

3. PROPOSED METHOD

The proposed Neural Surrogate-Assisted Co-Design (NSCD)

follows these steps:

Fig.1. Design

1. Profiling and Data Collection: Extract hardware-

software performance data (e.g., latency, resource

utilization, power) from multiple FPGA configurations for

a target application.

2. Surrogate Model Training: Train a regression-based

neural network using the collected data. The inputs are

design parameters (clock speed, memory usage, logic

utilization), and the outputs are predicted performance

metrics.

3. Design Space Exploration (DSE): Replace the traditional

simulation-based DSE with fast predictions from the

trained neural surrogate model. It rapidly evaluates

thousands of co-design points.

4. Pareto Optimization: Select the optimal set of co-design

configurations that minimize latency and power while

meeting accuracy and resource constraints.

5. Deploy the selected FPGA configuration and validate

performance on a wearable application (e.g., real-time

human activity recognition).

Design Parameter Encoding

Each FPGA configuration is defined by a design parameter

vector D, which includes tunable hardware and software features

such as clock frequency, memory hierarchy, pipeline depth, buffer

size, parallelism level, and logic utilization:

clk BRAM LUT par pipe buf[, , , , ,]f B U P D S=D

These parameters are varied across feasible design points to

explore the full space of hardware-software combinations.

3.1 FUNCTIONAL PROFILING ON FPGA

Each design configuration Di is synthesized and deployed on

the target FPGA. Profiling is conducted using performance

counters and external measurement tools (e.g., Vivado HLS

performance metrics, on-chip power monitors). Three primary

outputs are recorded per configuration:

• Latency L(Di): Time to execute one inference cycle,

measured in milliseconds.

• Power P(Di): Average dynamic power consumption during

runtime.

• Resource Utilization R(Di): A vector capturing usage of:

BRAMR ,
LUTR ,

DSPR

These are expressed as:

clk

i

i

C
L

f
=

static dynamic clk(, ,)iP P P f V A= +

Profiling and Data
Collection

Surrogate Model
Training

Design Space
Exploration (DSE)

Pareto Optimization

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2025, VOLUME: 11, ISSUE: 02

2121

BRAM LUT DSP[, ,]iR R R R=

where,

Total Clock CyclesiC =

A is the activity factor (switching rate of logic)

V is the supply voltage

fclk is clock frequency

3.2 SOFTWARE PROFILING

On the software side, parameters influencing latency such as:

Algorithm complexity, Dataflow scheduling, Execution

dependency and Cache hit/miss rates are profiled using standard

instrumentation tools like gprof or Perf for embedded code,

generating execution timelines. The software execution time Tsw

can be modeled as:

 sw

1 cpu

n
j j

j

I C
T

f=


=

For co-designed HW/SW systems, total execution latency is:

total hw sw commT T T T= + +

where Tcomm is communication latency between FPGA fabric and

processing system (e.g., AXI interconnect delays).

3.2.1 Data Normalization and Labeling:

Once all data points (, , ,)i i i iL P RD are collected, they are

normalized to ensure uniform scaling during training:

 , , etc.i D i L

i i

D L

L
D L

 

 

− −
= =

D

where μ and σ denote the mean and standard deviation across the

dataset. This normalization is crucial for the stable convergence

of neural networks.

Each tuple (, ,)i i iL PD becomes a training sample for the

surrogate model. Depending on the learning task, the output label

vector
iY may be:

[] (regression on latency) or

[,] (multi-output regression)

i i

i i i

L

L P

=

=

Y

Y

3.3 DATASET COMPILATION FOR SURROGATE

TRAINING

The final profiling dataset
1{(,)}N

i i i== D YD is a matrix:

1{(,)}N

i i i== D YD

where N is the number of design samples profiled. In practice,

200–500 design points are sufficient to train an accurate neural

surrogate model. These data points span:

• Diverse clock frequencies

• Various resource utilizations

• Software-hardware task partitions

• Algorithmic variants (e.g., CNN vs. SVM for classification

tasks)

3.3.1 Surrogate Model Training:

A surrogate model acts as a lightweight predictor that

approximates the relationship between input design

configurations and performance metrics such as latency and

power. In this research, we use a feedforward neural network

(FNN) for surrogate modeling due to its flexibility and ability to

approximate nonlinear mappings.

Let the normalized input design vector be:

 n
i D

And let the output be a performance vector:

2[,]i i iL P= Y

The neural surrogate model learns a function:

 : →D YF

where θ denotes the weights and biases of the neural network,

trained via gradient descent on a loss function.

For multi-output regression, the loss function L used is the

mean squared error (MSE) across all output metrics:

2

2
1

1
() ()

N

i i

iN


=

= − D YL F

The model is trained using backpropagation and an optimizer

like Adam until convergence. Early stopping and dropout may be

employed to prevent overfitting.

Once trained, the surrogate can predict performance in

milliseconds compared to minutes/hours for simulation-based

estimation, enabling rapid exploration of vast design spaces.

3.4 DESIGN SPACE EXPLORATION (DSE)

The goal of DSE is to find the best-performing configurations
*

D in a high-dimensional space, subject to application constraints

(e.g., real-time response, limited power, or area). Instead of using

simulation-based evaluation, the surrogate model is queried.

Let:

• nS : the design search space

• D S : candidate design

• () [,]L P= =Y DF

We define constraint-aware objectives such as minimizing

latency and power while maintaining accuracy and resource

constraints:

 min [,]L P
D S

min

max

()
subject to

() ,k k

A A

R R k

 


 

D

D

where,

()A D : accuracy predicted or inferred for classification task

()kR D : usage of resource k (e.g., LUT, DSP, BRAM)

Instead of brute-force search, the DSE uses surrogate-assisted

random sampling or Bayesian optimization to explore the

configuration space efficiently. In Bayesian optimization, the

surrogate model also predicts uncertainty:

M PARAMESWARI XX et al.: NEURAL-SURROGATE-ASSISTED HARDWARE-SOFTWARE CO-DESIGN FOR REAL-TIME RECONFIGURABLE FPGA SYSTEMS IN WEARABLE

 DEVICES

2122

2() ~ ((), ())  D D DF N

We select the next query point
*

D using an acquisition

function like Expected Improvement (EI) or Upper Confidence

Bound (UCB):

 bestEI() max(0, ())f 
 = − D DFE

This balances exploration (uncertainty) and exploitation

(performance).

3.5 PARETO OPTIMIZATION

Most hardware-software co-designs involve conflicting

objectives. For instance, minimizing latency might increase

power, and reducing area might impact accuracy. Thus, instead of

a single optimum, we aim to discover the Pareto front, a set of

non-dominated solutions.

A solution aD is said to dominate bD if:

 : () () and : () ()? :i i j j
a b a bi j i F      D D D DF F F F

The Pareto front P is the set of all configurations that are non-

dominated:

 { | such that }
 

=  D D D DP S ó S

Graphically, this represents a trade-off curve in the

performance space (e.g., latency vs. power). System designers can

pick a configuration from the Pareto front based on application-

specific constraints or preferences.

Table.1. Latency (ms) vs Clock Frequency (100–250 MHz)

Clock

Frequency

(MHz)

Exhaustive

Search

Heuristic-based

co-design approach

Proposed

NSCD

100 17.6 16.2 13.8

120 15.5 14.7 12.2

140 14.1 13.3 11.1

160 12.7 12.0 10.0

180 11.8 11.1 9.2

200 10.5 10.0 8.3

220 9.8 9.2 7.6

230 9.3 8.8 7.1

240 8.7 8.3 6.6

250 8.1 7.7 6.1

Table.2: Power Consumption (mW) vs Clock Frequency

Clock

Frequency

(MHz)

Exhaustive

Search

Heuristic-based

co-design approach

Proposed

NSCD

100 176 168 142

120 188 175 151

140 199 186 161

160 211 196 170

180 223 205 180

200 235 215 190

220 248 226 200

230 255 234 207

240 263 242 214

250 270 250 222

Table.3. Design Time Reduction (%)

Clock

Frequency

(MHz)

Exhaustive

Search

Heuristic-based

co-design approach

Proposed

NSCD

100 0 0 72

120 0 0 71

140 0 0 71

160 0 0 70

180 0 0 70

200 0 0 69

220 0 0 69

230 0 0 68

240 0 0 68

250 0 0 67

Table.4. Accuracy (%)

Clock

Frequency

(MHz)

Exhaustive

Search

Heuristic-based

co-design approach

Proposed

NSCD

100 91.2 92.1 93.8

120 91.5 92.3 94.1

140 91.7 92.5 94.4

160 91.8 92.6 94.6

180 92.0 92.8 94.8

200 92.2 93.0 95.0

220 92.3 93.1 95.1

230 92.4 93.2 95.2

240 92.4 93.3 95.2

250 92.5 93.3 95.3

The comparison of the proposed NSCD with traditional co-

design methods shows clear performance improvements across all

critical metrics. As shown in Table.1, NSCD achieves a consistent

reduction in latency across all frequency levels, with a maximum

latency of only 13.8 ms at 100 MHz, compared to 17.6 ms and

16.2 ms in traditional methods A and B, respectively. The trend

continues up to 250 MHz, where NSCD records the lowest latency

of 6.1 ms, indicating a 22–27% improvement.

In terms of power, Table.2 highlights that NSCD also leads

with reduced consumption consuming only 222 mW at 250 MHz,

while traditional methods exceed 250 mW, representing an 11–

18% improvement.

The most significant gain is in design time. As seen in Table.3,

NSCD reduces design time by 67–72%, as it eliminates the need

for repeated synthesis and simulation by using surrogate models.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2025, VOLUME: 11, ISSUE: 02

2123

Finally, Table.4 shows that NSCD slightly improves accuracy

(by about 1.5–2.8%), validating that surrogate-based optimization

does not compromise computational integrity. These comparisons

affirm that NSCD is well-suited for real-time wearable

applications that demand speed, efficiency, and reliability.

4. CONCLUSION

This study presents a novel NSCD framework for optimizing

ultra-low-latency reconfigurable systems using FPGAs in

wearable devices. By integrating a lightweight surrogate model to

predict performance metrics such as latency and power, the

proposed approach significantly accelerates design space

exploration without sacrificing accuracy. Compared to traditional

co-design methods, NSCD reduces latency by up to 27%, lowers

power consumption by 18%, and shortens the design cycle by

over 70%, as supported by empirical results across varying clock

frequencies. The use of Pareto optimization further ensures that a

spectrum of optimal configurations is identified, giving

developers the flexibility to balance multiple objectives such as

power, performance, and accuracy. This makes NSCD not only

efficient but also adapTable.to the dynamic and resource-

constrained nature of wearable applications. With the increasing

demand for real-time intelligence in wearables, this approach

offers a practical pathway to fast, reliable, and low-power FPGA

deployment. Future work may extend this framework to

incorporate online learning, enabling real-time adaptation based

on changing workloads or environmental conditions. In summary,

NSCD provides a scalable and intelligent solution to the pressing

challenges in embedded FPGA-based wearable system design.

REFERENCES

[1] B. Seyoum, M. Pagani, A. Biondi and G. Buttazzo,

“Automating the Design Flow Under Dynamic Partial

Reconfiguration for Hardware-Software Co-Design in

FPGA SoC”, Proceedings of the ACM Symposium on

Applied Computing, pp. 481-490, 2021.

[2] M. Vaithianathan, “Hardware-Software Co-Design for

Performance Optimization in Embedded Systems”,

International Journal of Emerging Research in Engineering

and Technology, Vol. 6, No. 1, pp. 29-35, 2025.

[3] A.K. Krishnan, M.H. Supriya and S. Nalesh, “A Hardware-

Software Co-Design based Approach for Development of a

Distributed DAQ System using FPGA”, Proceedings of the

International Symposium on VLSI Design and Test, pp. 1-6,

2021.

[4] J. Boudjadar, S.U. Islam and R. Buyya, “Dynamic FPGA

Reconfiguration for Scalable Embedded Artificial

Intelligence (AI): A Co-Design Methodology for

Convolutional Neural Networks (CNN) Acceleration”,

Future Generation Computer Systems, Vol. 169, pp. 1-11,

2025.

[5] C. Hale, “Dynamic Reconfigurable CNN Accelerator for

Embedded Edge Computing: A Hardware-Software Co-

Design Approach to Minimize Power and Resource

Consumption”, Transactions on Computational and

Scientific Methods, Vol. 4, No. 9, pp. 1-10, 2024.

[6] Pham-Quoc, X.Q. Nguyen and T.N. Thinh, “Towards an

FPGA-Targeted Hardware/Software Co-Design Framework

for CNN-based Edge Computing”, Mobile Networks and

Applications, Vol. 27, No. 5, pp. 2024-2035, 2022.

[7] H. Fan, M. Ferianc, Z. Que, H. Li, S. Liu, X. Niu and W.

Luk, “Algorithm and Hardware Co-Design for

Reconfigurable CNN Accelerator”, Proceedings of the

International Conference on Design Automation pp. 250-

255, 2022.

[8] B.I. Morshed and Morshed, “Embedded Systems-A

Hardware-Software Co-Design Approach”, 2021.

[9] M. Ulbricht, J. Acevedo, S. Krdoyan and F.H. Fitzek,

“Emulation vs Reality: Hardware/Software Co-Design in

Emulated and Real Time-sensitive Networks”, European

Wireless Conference, pp. 1-7, 2021.

[10] S. Lee and K.E. Kolodziej, “Hardware-Software Co-Design

of Sub-6 GHz Transceiver for Reconfigurable Prototyping”,

IEEE Radio and Wireless Symposium, pp. 60-63, 2022.

[11] M.L. Varshika, A.K. Mishra, N. Kandasamy and A. Das,

“Hardware-Software Co-Design for On-Chip Learning in AI

Systems”, Proceedings of the International Conference on

Design Automation, pp. 624-631, 2023.

