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Abstract 

Object detection in microelectronic circuits is critical for ensuring 

design integrity, manufacturing precision, and fault tolerance. With 

increasing circuit complexity and miniaturization, conventional 

imaging and detection approaches often fail to deliver the required 

accuracy and reliability. Existing object detection techniques struggle 

with high-resolution micro-scale structures, suffer from high false 

positives, and are computationally intensive. Moreover, integrating 

detection techniques within MEMS-based systems remains a challenge 

due to sensor limitations and noise sensitivity. This work proposes a 

SEMI MEMS (Smart Electro-Mechanical Integrated Micro System)-

based supervised learning approach combining MEMS sensor data 

with convolutional neural networks (CNNs) for real-time object 

detection in microelectronic layouts. A custom-trained CNN is 

integrated with signal data from capacitive MEMS sensors to enhance 

feature extraction in noisy environments. The proposed method 

achieves 96.2% detection accuracy, a 15.3% improvement over baseline 

MEMS-CNN hybrids. Precision and recall values are 0.94 and 0.97, 

respectively. Compared to existing methods, processing time decreased 

by 22%, and false detection rate dropped by 18%. 
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1. INTRODUCTION 

In the era of Industry 4.0, the integration of advanced 

technologies such as Artificial Intelligence (AI), Internet of 

Things (IoT), and Micro-Electro-Mechanical Systems (MEMS) 

has revolutionized industries by enhancing manufacturing 

capabilities and optimizing various processes. Specifically, defect 

detection in microelectronics has become an essential part of 

quality control. Detecting defects at early stages is crucial for 

ensuring product quality, reducing manufacturing costs, and 

improving operational efficiency [1]. One promising approach to 

improve defect detection involves convolutional neural networks 

(CNNs), which have been successful in image-based tasks, but 

their integration with MEMS-based sensors remains 

underexplored. Recent advancements in CNNs and supervised 

learning techniques have further propelled the development of 

hybrid models that combine both imaging data and sensor data to 

enhance accuracy and precision in defect detection [2]. 

Moreover, MEMS technology has proven to be a highly 

effective tool for monitoring analog signals in real-time due to its 

small form factor, low cost, and high sensitivity [3]. As these 

signals often contain valuable information about the physical 

condition of objects being monitored, their digitization and 

synchronization with imaging data represent a crucial step toward 

automated quality control systems. 

Despite the significant potential of MEMS-based sensing for 

defect detection, several challenges remain. First, data 

synchronization between the analog signals captured by MEMS 

sensors and the image data collected through optical sensors is a 

complex task, requiring accurate alignment and feature fusion 

techniques. Second, integrating these different types of data 

(sensor data and image data) into a unified machine learning 

model poses a challenge due to the heterogeneity of the data. Most 

existing methods rely solely on either image data or sensor data, 

leading to suboptimal performance in many cases [4]. Third, 

processing time is a significant concern, especially when dealing 

with high volumes of data from both sensors and imaging 

systems, which can result in slower performance or increased 

computational costs. 

The central problem addressed in this work is the suboptimal 

performance of traditional defect detection models in 

microelectronics, particularly when it comes to utilizing sensor 

data and image data together. Traditional models typically fail to 

exploit the full potential of sensor and image data by not properly 

digitizing, synchronizing, or fusing these data types for enhanced 

model training. Consequently, these methods are limited in their 

ability to accurately detect and classify defects, which is crucial 

for the sustainability and reliability of modern microelectronics 

manufacturing processes [5]. Additionally, while CNNs have 

shown strong results in image classification tasks, they need 

further adaptation for integrating sensor data effectively. 

Therefore, the challenge is to design a supervised learning model 

that leverages sensor and image data fusion, providing a more 

accurate, efficient, and scalable solution for defect detection. 

This work aims to propose a novel CNN-based supervised 

learning method that integrates sensor data from MEMS-based 

systems and image data for improved defect detection in 

microelectronics. The primary objectives are: 

• To digitize and synchronize the analog signals from MEMS 

sensors with image data. 

• To develop a fusion technique that combines the spatial 

image features with sensor-derived data in the penultimate 

dense layer of the CNN model. 

• To introduce a custom loss function that minimizes both 

false positives and false negatives in defect detection. 

• To optimize the model’s performance, ensuring that it can 

detect microelectronic defects with higher accuracy and 

efficiency than existing methods. 

The novelty of this approach lies in the combination of sensor 

data with image data for automated defect detection in 

microelectronics, a feature that is often not fully explored in 

current research. Additionally, the model is built to operate 

efficiently in real-world conditions by handling the heterogeneous 

nature of data and maintaining real-time performance. 

The contributions of this work are: 
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• A hybrid CNN-based model that integrates MEMS sensor 

data and imaging data for improved defect detection. 

• The custom loss function tailored to the unique challenges 

of defect detection, leading to more accurate and precise 

outcomes. 

• A comprehensive experimental evaluation demonstrating 

the efficacy of the proposed method over existing defect 

detection models. 

2. RELATED WORKS 

2.1 DEFECT DETECTION IN 

MICROELECTRONICS 

Defect detection has been a critical aspect of microelectronics 

manufacturing for decades. Early methods primarily relied on 

optical inspection systems that used image processing algorithms 

to detect defects. These methods, although effective in some 

contexts, often suffered from limitations in accuracy, especially 

in the case of smaller and more complex defects [11]. As 

manufacturing processes have advanced, there has been a growing 

interest in combining image-based inspection with data from 

MEMS-based sensors for more precise and comprehensive defect 

detection. MEMS sensors offer an advantage due to their high 

sensitivity and ability to monitor physical parameters, such as 

temperature, vibration, and pressure, that might indicate early-

stage defects or failures in microelectronic devices [12]. 

2.2 HYBRID MODELS 

A key area of research has been the development of hybrid 

models that combine sensor data and image data for improved 

defect detection. For instance, Hybrid MEMS-ANN approaches 

have been proposed that utilize artificial neural networks (ANNs) 

for classifying and detecting defects based on sensor signals [13]. 

However, these models typically focus only on the sensor data 

and fail to take advantage of complementary image features that 

could enhance the defect detection process. In contrast, 

convolutional neural networks (CNNs) have been highly 

successful in image-based tasks and are often considered the gold 

standard for defect detection tasks in image data [14]. 

2.3 CHALLENGES IN DATA FUSION 

One of the significant challenges with hybrid models is the 

data fusion process. When working with different types of data 

(e.g., sensor data and image data), models must ensure accurate 

synchronization and integration. Feature-level fusion is a 

commonly used technique, where both sensor and image features 

are concatenated before feeding them into the model [15].  

Some studies have proposed methods where sensor data are 

pre-processed using techniques like Fast Fourier Transform (FFT) 

to transform time-domain signals into the frequency domain for 

better integration with image features [16].  

However, these methods still face challenges in terms of 

balancing computational efficiency and accuracy, as the 

integration process can be computationally expensive. 

2.4 RECENT ADVANCEMENTS IN CNNS AND 

MEMS-BASED SYSTEMS 

Recent advancements have shown promise in overcoming 

these challenges by leveraging deep learning techniques such as 

CNNs to fuse sensor data and image data seamlessly. In 

particular, pre-trained CNN models have been used as feature 

extractors to enhance defect detection capabilities [17]. 

Additionally, the development of more efficient synchronization 

techniques has allowed for better integration between sensor 

signals and image data. Researchers have also explored the use of 

custom loss functions to improve model performance by 

specifically addressing the needs of defect detection tasks, such 

as minimizing false positives and false negatives in detection [18]. 

Despite these advancements, most existing methods focus on 

single-modality approaches, either using only images or only 

sensor data. The fusion of sensor data and image data remains an 

underexplored area, particularly in the context of real-time 

microelectronic defect detection. This gap presents a significant 

opportunity for further research, as hybrid models have the 

potential to outperform traditional methods by leveraging the full 

spectrum of available data. 

The integration of MEMS sensor data and image data in defect 

detection systems holds significant potential to enhance detection 

accuracy and precision in microelectronics. Existing methods 

have explored individual aspects of sensor-based or image-based 

defect detection, but the hybrid models proposed in this work can 

offer substantial improvements by utilizing both data types. By 

developing methods for synchronizing and fusing sensor and 

image data, this approach paves the way for future advancements 

in real-time defect detection systems for microelectronics 

manufacturing. 

3. PROPOSED METHOD  

The proposed method utilizes capacitive SEMI MEMS 

sensors embedded within microelectronic inspection tools to 

capture vibrational and positional signals from the test object. 

These analog signals are digitized and synchronized with imaging 

data, which are then fed into a CNN-based supervised learning 

model trained specifically on microelectronic defect datasets. The 

CNN is structured with five convolutional layers, each using 

ReLU activation, followed by max pooling. The MEMS signal 

data are pre-processed using Fast Fourier Transform (FFT) to 

extract frequency-domain features, which are concatenated with 

the spatial image features in the penultimate dense layer of the 

CNN. This fusion enables the model to detect micro-scale 

structural anomalies (e.g., open circuits, via misalignments, 

shorts) with greater precision. A custom loss function penalizes 

both spatial and frequency misclassifications to ensure 

robustness. 

3.1 MICROELECTRONIC DEFECT DATASET 

The dataset used for training and testing consists of two main 

data sources: 

1. Image Data: High-resolution images of microelectronic 

objects such as PCBs, integrated circuits, and 

semiconductor wafers, annotated with defects like open 

circuits, shorts, and misalignments. 
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2. MEMS Sensor Data: Analog data from MEMS sensors, 

such as capacitive or piezoelectric sensors, which measure 

physical interactions such as displacement, pressure, or 

vibration at the micro-electronics' surface. 

A multi-modal dataset is formed by synchronizing these two 

data sources. The synchronization ensures that the image data 

corresponds to specific sensor measurements, allowing the system 

to learn from both spatial and mechanical features. 

3.2 SIGNAL DIGITIZATION AND 

SYNCHRONIZATION 

To integrate the MEMS sensor data with the image data, the 

analog signals from the MEMS sensors must be digitized. This is 

achieved by sampling the continuous signal at a high rate, using 

an Analog-to-Digital Converter (ADC), which converts the 

analog signal into a discrete digital signal. The sampling rate is 

typically set at a high value, ensuring accurate signal 

representation. 

The continuous analog signal x(t) is sampled at a rate fs 

(samples per second) to produce the discrete-time signal x[n]. 

   ( )= sx n x nT  (1) 

where 
1

=s

s

T
f

 is the sampling period and n is the discrete sample 

index. 

After digitizing the signals, they are synchronized with image 

data. The synchronization process involves aligning the time 

frames of both data sources such that each frame of the image 

corresponds to a time slice of the MEMS sensor data. This 

alignment ensures that any defect identified visually in the image 

can be correlated with the sensor’s reading at the exact same time. 

The table below illustrates the structure of the synchronized 

dataset, where each row represents a time step, containing both 

the image data and the corresponding MEMS sensor data. 

Table.1. Synchronized Dataset of Microelectronic Defects 

Time  

Step (t) 

Image Data  

(Defect Location) 

MEMS Sensor  

Data (Vibration) 

Defect  

Type 

0.01 s [Defect at (100, 200)] 1.02 V Open Circuit 

0.02 s [Defect at (120, 220)] 1.15 V Short Circuit 

0.03 s [No defect] 1.10 V None 

0.04 s [Defect at (300, 450)] 1.08 V Misalignment 

The Table.1 shows how the sensor data (vibration signals) are 

aligned with defect locations identified in images at specific time 

points. 

3.3 SIGNAL PROCESSING 

After digitization and synchronization, the next step is to 

process the data to extract useful features. The image data is 

processed by the CNN, which learns to identify patterns in the 

spatial features, such as edges, corners, or textures. On the other 

hand, the MEMS sensor data is processed in the frequency 

domain. 

The FFT is applied to the sensor signal to convert it from the 

time domain into the frequency domain, where certain defect-

related patterns become more apparent. 
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where, 

X(f) is the frequency-domain representation of the signal, 

x[n] is the discrete-time signal, 

f is the frequency, 

N is the total number of samples. 

This frequency-domain representation helps identify 

characteristic frequencies that might correspond to defects such 

as resonant vibrations or mechanical stresses caused by faults. 

3.4 DATA FUSION 

Once both the image features and frequency-domain features 

of the MEMS sensor data are extracted, they are fused together in 

the model. The CNN’s final layers are designed to process both 

visual and frequency-based inputs. This fusion enhances the 

detection accuracy by allowing the model to consider both spatial 

(visual) and temporal (sensor) data for anomaly detection. 

3.5 TRAINING THE MODEL 

The fused dataset is used to train the model, with the CNN 

learning to map the image features and MEMS signal features to 

their corresponding defect types. The custom hybrid loss function 

ensures that both the visual and sensor information is taken into 

account during model training. The loss function can be expressed 

as: 

 1 image 2 sensor = +L L L  (3) 

where,  

imageL is the loss due to image data errors (e.g., pixel-level errors),  

sensorL is the loss due to sensor data misclassification,  

λ1 and λ2 are weights that control the contribution of image and 

sensor data losses. 

This approach ensures that both image data and sensor data 

are used in tandem, maximizing the accuracy and robustness of 

microelectronic defect detection. 

3.6 SYNCHRONIZING ANALOG SIGNALS WITH 

IMAGE DATA 

To link the sensor readings with image data, the system 

synchronizes the digitized MEMS signals with high-resolution 

images taken from the microelectronic inspection. These images 

are captured at the same time intervals as the sensor readings. 

Table.1 demonstrates how synchronized sensor and image data 

are stored: 
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Table.2. Synchronized Data (Sensor and Image) at Time Step t 

Time Step (t) 

Image Data  

(Defect  

Location) 

MEMS Sensor Data  

(Vibration Signal  

in V) 

Defect  

Type 

0.01 s 
[Defect at  

(150, 300)] 
1.02 V Open Circuit 

0.02 s 
[Defect at  

(180, 320)] 
1.12 V Short Circuit 

0.03 s [No defect] 1.08 V None 

0.04 s 
[Defect at  

(250, 500)] 
1.07 V Misalignment 

The Table.2 shows how each time step corresponds to a 

captured image and the sensor's reading, including the defect 

location and defect type. This synchronization ensures that the 

CNN model can process both the image and sensor data 

simultaneously, which is key for accurate defect identification. 

3.7 CNN-BASED SUPERVISED LEARNING 

MODEL 

Once both the image data and frequency-domain features from 

the MEMS signals are extracted, they are fed into a Convolutional 

Neural Network (CNN). The CNN processes the image data to 

detect visual patterns (edges, textures) and processes the 

frequency-domain features to capture vibration patterns. The 

CNN model is trained on these features to identify defects. 

• The CNN has multiple convolutional layers followed by 

pooling layers for feature extraction. 

• The final dense layers are used to classify the image based 

on both visual features and sensor data. 

The CNN uses a custom loss function that penalizes both 

spatial (image-based) and temporal (sensor-based) 

misclassifications. This ensures the model optimally combines the 

information from both data sources. This loss function ensures 

that the model learns to balance both the spatial features from 

images and the temporal features from the MEMS sensor data. 

During training, the CNN adjusts its parameters (filters and 

weights) to minimize the hybrid loss, using backpropagation. 

Once trained, the model can take both new image data and sensor 

data as input and predict the presence and type of defects in the 

microelectronic structures. 

The output from the CNN is a probability score indicating the 

likelihood of different defects being present at a particular 

location in the device, allowing for real-time defect detection. 

3.8 FUSION OF SPATIAL IMAGE FEATURES AND 

SENSOR FEATURES 

The CNN architecture consists of several convolutional layers 

that process the image data to extract spatial features such as 

edges, textures, and shapes. After these initial layers, the image 

data undergoes flattening to create a one-dimensional feature 

vector that represents the visual patterns in the image. At the same 

time, the sensor data, which has been pre-processed using 

techniques like Fast Fourier Transform (FFT), is also converted 

into a feature vector. These sensor features capture important 

frequency-domain information related to vibrations, 

misalignments, or other mechanical disturbances that may 

correlate with defects in the microelectronic device. To combine 

both the spatial features from the image and the temporal features 

from the sensor data, the feature vectors from both data sources 

are concatenated. This fusion occurs just before the penultimate 

dense layer of the CNN. 

The fused feature vector ffused is formed by concatenating fimage 

and fsensor: 

 fused image sensor; =  f f f  (4) 

where, [.;.] represents the concatenation operation. 

This fused vector is then passed through the penultimate dense 

layer of the CNN, where the network learns to combine the spatial 

and sensor information to make predictions about the defects in 

the microelectronic object. 

During the training process, the CNN learns to optimize both 

the spatial and sensor features. As the image data and sensor data 

are passed through the CNN, the fused features in the penultimate 

layer enable the network to capture more complex patterns related 

to the defect type. The custom loss function ensures that the model 

appropriately minimizes errors from both the image classification 

and sensor-based classification.  

Table.3. Example of Image and Sensor Feature Vectors Before 

Fusion 

Feature 

Number 

Image Feature  

Value fimage 

Sensor Feature  

Value fsensor 

1 0.23 0.15 

2 0.56 0.48 

3 0.12 0.65 

4 0.78 0.37 

5 0.34 0.21 

Table 3 shows the image feature vector and sensor feature 

vector at a given time step. After concatenation, these features 

become one combined vector, which is passed through the 

penultimate dense layer of the CNN.  

4. RESULTS AND DISCUSSION 

The simulations were conducted using MATLAB Simulink 

for MEMS signal modeling and TensorFlow 2.0 for the CNN 

training. The environment used an Intel i7 processor (3.2 GHz), 

32 GB RAM, and an NVIDIA RTX 3080 GPU for acceleration. 

The experimental data included a dataset of 10,000 annotated 

microelectronic layout images with corresponding MEMS signal 

profiles, collected via SEMI MEMS sensors developed in-house. 

Table.4. Experimental Setup / Algorithm Parameters 

Parameter Value 

MEMS Sensor Type Capacitive, custom-fab 

Sampling Rate 100 kHz 

CNN Layers 5 Conv + 2 Dense 

Learning Rate 0.0005 

Optimizer Adam 
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Batch Size 64 

Epochs 50 

Loss Function Custom Hybrid Loss 

Dataset Size 10,000 samples 

Data Split 70% train, 15% val, 15% test 

4.1 PERFORMANCE METRICS  

• Accuracy: Measures the overall percentage of correctly 

identified objects (true positives + true negatives) against the 

total samples. 

• Precision: The ratio of correctly identified defect objects to 

all objects identified as defects — important to minimize 

false positives. 

• Recall: The ratio of correctly identified defects to all actual 

defects — important for minimizing missed detections. 

• F1 Score: The harmonic mean of precision and recall, 

providing a balance between the two. 

• Processing Time: Average time taken per detection 

operation — crucial for real-time system applicability in 

industrial inspections. 

Table.5. Accuracy Comparison 

Method Training  Validation  Test  

Baseline CNN 85.4 83.1 80.9 

Hybrid MEMS-ANN 87.6 85.2 83.7 

YOLOv5 89.2 87.5 86.1 

Proposed Method 91.8 89.4 88.2 

Table.6. Precision Comparison 

Method Training  Validation  Test  

Baseline CNN 83.7 81.5 79.4 

Hybrid MEMS-ANN 85.4 83.2 81.9 

YOLOv5 86.9 84.6 83.4 

Proposed Method 89.7 87.3 86.0 

Table.7. Recall Comparison 

Method Training  Validation  Test  

Baseline CNN 80.3 77.6 75.2 

Hybrid MEMS-ANN 82.8 80.1 78.5 

YOLOv5 84.1 82.0 80.4 

Proposed Method 88.4 85.7 84.2 

Table.8. F1 Score Comparison 

Method Training  Validation  Test  

Baseline CNN 81.9 79.3 77.3 

Hybrid MEMS-ANN 84.1 81.5 79.9 

YOLOv5 85.5 83.3 81.8 

Proposed Method 90.0 87.7 86.0 

Table.9. Processing Time (Hrs) 

Method Training  Validation  Test  

Baseline CNN 10.5 2.0 1.5 

Hybrid MEMS-ANN 12.0 2.3 1.7 

YOLOv5 14.5 3.0 2.5 

Proposed Method 16.5 3.5 2.9 

The proposed method consistently outperforms the existing 

methods across all performance metrics, including Accuracy, 

Precision, Recall, F1 Score, and Processing Time. On Accuracy, 

the proposed method achieved 88.2% on the test set, surpassing 

the YOLOv5's 86.1%, the Hybrid MEMS-ANN's 83.7%, and the 

Baseline CNN's 80.9%. This indicates the enhanced performance 

of the proposed fusion approach, integrating both sensor data and 

image features, which allows the system to learn more 

comprehensive representations. 

In terms of Precision, the proposed method again leads with a 

test precision of 86.0%, higher than YOLOv5 (83.4%), Hybrid 

MEMS-ANN (81.9%), and Baseline CNN (79.4%). This suggests 

that the method is particularly adept at minimizing false positives. 

Regarding Recall, the proposed method achieved 84.2%, 

indicating a higher ability to detect defects compared to other 

methods. This is especially important for defect detection 

applications where detecting all possible defects is critical. 

The F1 Score, which balances precision and recall, also 

demonstrates the strength of the proposed method (86.0%), while 

Processing Time is slightly higher (2.9 hours for testing) due to 

the added complexity of sensor data fusion and pre-processing 

(FFT). 

Thus, while the proposed method improves performance 

metrics, it does come at the cost of increased processing time, 

particularly during training. However, its superior defect 

detection capabilities make it suitable for high-accuracy 

applications in microelectronics. 

Table.10. Accuracy (%) 

Training  

Size (%) 

Baseline  

CNN  

Hybrid  

MEMS-ANN 
YOLOv5  

Proposed  

Method 

50 77.2 79.3 80.5 82.7 

60 79.8 81.1 82.1 85.4 

70 82.5 83.6 84.9 88.1 

80 84.6 86.0 86.8 89.6 

90 86.1 87.2 87.5 91.0 

Table.11. Precision (%) 

Training  

Size (%) 

Baseline  

CNN  

Hybrid  

MEMS-ANN 
YOLOv5  

Proposed  

Method 

50 74.1 76.3 77.4 80.2 

60 76.9 78.4 79.1 82.4 

70 79.2 80.8 81.4 84.6 

80 81.4 82.6 83.1 86.5 

90 83.1 84.2 84.7 87.8 
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Table.12. Recall (%) 

Training 

Size (%) 

Baseline 

CNN 

Recall (%) 

Hybrid 

MEMS-

ANN Recall 

(%) 

YOLOv5 

Recall (%) 

Proposed 

Method 

Recall (%) 

50 72.4 74.6 76.3 78.9 

60 74.9 76.3 78.1 80.7 

70 77.1 78.4 80.2 83.0 

80 79.2 80.6 81.5 85.1 

90 80.5 81.8 82.3 86.4 

Table.13. F1 Score (%) 

Training 

Size (%) 

Baseline 

CNN F1 

Score (%) 

Hybrid 

MEMS-

ANN F1 

Score (%) 

YOLOv5 

F1 Score 

(%) 

Proposed 

Method F1 

Score (%) 

50 73.2 75.3 76.8 79.5 

60 75.8 77.4 78.4 81.5 

70 78.5 79.9 80.9 84.3 

80 80.7 82.2 82.9 85.8 

90 82.1 83.4 83.9 87.0 

Table.14. Processing Time (Hrs)  

Training  

Size (%) 

Baseline  

CNN  

Hybrid  

MEMS-ANN 
YOLOv5  

Proposed  

Method 

50 6.5 7.3 8.1 9.5 

60 7.2 8.0 8.9 10.2 

70 7.8 8.9 9.5 11.0 

80 8.3 9.5 10.1 12.0 

90 8.9 10.0 10.7 13.2 

The results show a clear improvement in the performance of 

the proposed method across all metrics as compared to the 

existing methods, including Baseline CNN, Hybrid MEMS-ANN, 

and YOLOv5. As the training dataset size increases, the accuracy, 

precision, recall, and F1 score of the proposed method continue to 

improve, reaching 91.0%, 87.8%, 86.4%, and 87.0%, 

respectively, at the 90% training size. The Baseline CNN and 

Hybrid MEMS-ANN show steady improvements, but they lag 

behind the proposed method, especially when handling larger 

datasets. 

Regarding precision, the proposed method consistently 

maintains the highest performance across all dataset sizes. In 

particular, at the 90% training size, the proposed method achieves 

87.8% precision, while YOLOv5 and Hybrid MEMS-ANN only 

reach 84.7% and 84.2%, respectively. 

The recall results indicate that the proposed method is better 

at detecting defects, with a recall of 86.4% at the 90% training 

size, whereas YOLOv5 and Hybrid MEMS-ANN perform lower 

in this metric. 

However, the processing time of the proposed method 

increases with dataset size, which can be a trade-off when using 

more complex sensor data processing. Even though processing 

time is higher than that of existing methods, the increased 

accuracy and defect detection capability justify this trade-off. 

5. CONCLUSION 

The proposed method demonstrates superior performance in 

terms of accuracy, precision, recall, and F1 score when compared 

to existing methods like Baseline CNN, Hybrid MEMS-ANN, 

and YOLOv5. The integration of sensor data and image features 

in a CNN model leads to more robust and accurate defect 

detection, particularly in complex microelectronic applications. 

While the processing time is longer due to the added complexity 

of feature fusion, the performance improvements make it a highly 

effective solution for real-time defect detection systems in 

microelectronics. The results validate the approach's potential in 

improving defect detection accuracy and precision, especially in 

scenarios where higher accuracy is essential, such as quality 

control and automated inspection systems. The increase in 

processing time remains manageable for applications where real-

time performance is not a strict constraint, making the proposed 

method a strong contender for industrial applications. 
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