
ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

DOI: 10.21917/ijme.2025.0343

2019

DESIGN AND EVALUATION OF OPTIMIZED NETWORK-ON-CHIP (NOC)

TOPOLOGIES FOR SYSTEM-ON-CHIP (SOC) ARCHITECTURES

T. Suresh
Department of Electronics and Communication Engineering, R.M.K. Engineering College, India

Abstract

With the increasing complexity of System-on-Chip (SoC) designs, the

demand for efficient and scalable interconnect architecture has

become critical. Network-on-Chip (NoC) has emerged as a promising

solution for addressing communication bottlenecks in modern SoCs.

Traditional NoC topologies often suffer from high latency, low

throughput, and inefficient power consumption when scaled to support

many-core systems. There is a pressing need for novel topologies that

balance performance and energy efficiency. This study proposes a

modified hybrid mesh-tree NoC topology (HMT-NoC) designed using

Xilinx Vivado and simulated using ModelSim. The architecture aims to

reduce average packet latency, increase throughput, and optimize

energy usage. Performance is validated through simulations under

uniform, hotspot, and bit-complement traffic patterns. The HMT-NoC

achieved a 23% reduction in average latency, 18% improvement in

throughput, and 12% lower power consumption compared to

conventional mesh and torus topologies across various core sizes.

Keywords:

Network-on-Chip, System-on-Chip, Topology Design, Performance

Metrics, Low-Latency Communication

1. INTRODUCTION

. In integrated circuit (IC) design, System-on-Chip (SoC)

architectures have become indispensable due to their integration

of multiple functional components on a single chip. These SoCs

are commonly used in high-performance computing,

communication systems, and embedded applications [1]. A

critical challenge in SoC design is ensuring efficient

communication among various components, which is often

handled by the Network-on-Chip (NoC) architecture. NoCs serve

as the backbone for data communication in SoCs, allowing

scalable, high-throughput, and low-latency communication

between cores, memory units, and I/O devices. Traditional NoC

topologies such as Mesh, Torus, and Fat-Tree have been widely

employed, but they often struggle with the scalability and power

efficiency demands of modern, large-scale SoC systems [2].

However, with increasing core counts in modern SoCs

(ranging from 16 to 100s of cores), the limitations of existing NoC

topologies have become apparent. Mesh and Torus topologies,

while simple and scalable, suffer from high latency and increased

power consumption when scaling to large core numbers.

Meanwhile, the Fat-Tree topology offers better bandwidth and

fault tolerance but often comes at the cost of higher complexity

and power consumption [3]. As the demand for energy-efficient,

low-latency communication increases, more efficient topologies

and routing schemes are needed to address these limitations.

The primary challenge in NoC design lies in balancing

performance, scalability, power consumption, and area in the face

of increasing chip complexity. In particular, NoCs must manage

high traffic congestion in multi-core systems, which results in

increased packet latency and reduced throughput. Achieving low-

power operation while maintaining high performance is another

critical challenge [4]. Additionally, managing congestion and

hotspot traffic efficiently across multiple cores is complicated by

the fact that traditional topologies do not always provide an

optimized path for data transfer, especially when there are large

variations in traffic patterns.

Moreover, the development of more complex routing

algorithms that can scale with the number of cores, while still

meeting low latency and power efficiency requirements, remains

an open challenge [5]. Existing routes like XY-routing are

effective in low-traffic conditions but tend to suffer in highly

congested or asymmetrical traffic scenarios. This necessitates the

exploration of more dynamic routing schemes that adapt to

changing network traffic loads, further complicating the design

process.

Given the limitations of traditional topologies, this research

aims to design an improved NoC topology that strikes a balance

between latency, throughput, power consumption, and scalability.

The key problem addressed is the need for a more efficient routing

algorithm that minimizes congestion and ensures optimal

resource utilization across all core configurations. The focus is on

achieving low-latency communication while minimizing energy

consumption and power dissipation in large-scale SoC systems.

A secondary problem addressed is the dynamic management

of hotspots and traffic congestion that typically occur in large

NoC systems. Traditional static routing algorithms fail to address

these concerns effectively, particularly under varying traffic

patterns like uniform, hotspot, and bit-complement traffic. There

is also a need for topologies that support fault tolerance and

resilience while ensuring energy efficiency.

The objectives of this research are as follows:

• Design and propose a new NoC topology that combines

mesh and tree structures for improved scalability and

performance.

• Develop an efficient deterministic routing algorithm (XY-

Tree) that ensures low-latency and low-power

communication across various traffic patterns.

• Evaluate the power consumption, latency, throughput,

energy per packet, and network utilization of the proposed

design in comparison to existing topologies (mesh, torus,

fat-tree) using realistic traffic patterns (uniform, hotspot, bit-

complement).

The proposed research introduces a novel hybrid mesh-tree

(HMT) topology for NoC design, which optimizes

communication efficiency by partitioning the network into

clusters connected via a local mesh network, with cluster heads

interconnecting through a tree structure. The XY-tree routing

algorithm is proposed to take advantage of this hybrid topology,

T SURESH et al.: DESIGN AND EVALUATION OF OPTIMIZED NETWORK-ON-CHIP (NOC) TOPOLOGIES FOR SYSTEM-ON-CHIP (SOC) ARCHITECTURES

2020

combining the benefits of XY routing for local communications

and tree routing for inter-cluster communications.

Key contributions of this work include:

• A novel hybrid mesh-tree topology that significantly reduces

packet latency and power consumption while enhancing

throughput compared to traditional mesh, torus, and fat-tree

topologies.

• A deterministic routing algorithm designed to address the

challenges of congestion and hotspot management in multi-

core NoCs, ensuring that data packets are routed along the

most efficient path depending on the traffic pattern.

• A comprehensive evaluation of the proposed topology and

routing algorithm using multiple performance metrics

(latency, throughput, power consumption, energy per

packet, and network utilization) across multiple core

configurations (16, 32, 64 cores) and different traffic

patterns (uniform, hotspot, bit-complement).

• Energy-efficient techniques such as power-gating and

virtual channels to further optimize performance and reduce

power consumption, making the proposed method suitable

for next-generation large-scale SoC designs.

2. RELATED WORKS

NoC design has been an area of extensive research, with

numerous studies exploring topology design, routing algorithms,

and performance optimization. The evolution of NoC topologies

has been driven by the need to meet increasing bandwidth

requirements while minimizing power consumption and ensuring

scalability.

Mesh NoC designs are among the simplest and most widely

used topologies. In a Mesh topology, nodes are connected in a 2D

grid, where each node has two types of communication links

(horizontal and vertical). Torus is an extension of the mesh, where

the boundaries are connected, forming a wrap-around structure.

While these topologies are simple and scalable, their latency and

power consumption increase substantially as the number of cores

grows. A mesh-based architecture is proposed but highlighted the

increasing communication delays and energy consumption at

higher core counts [10].

The Fat-Tree topology provides a more robust solution for

NoC design. It offers a hierarchical structure that ensures a high

level of fault tolerance and balanced communication paths,

making it ideal for large-scale systems. However, as [11 pointed

out, while Fat-Tree improves bandwidth and fault tolerance, its

complexity and power consumption remain problematic in certain

scenarios [11]. Fat-Tree suffers from inefficient routing under

heavy traffic patterns, especially when congestion is high.

In recent years, hybrid topologies have gained attention due to

their potential to combine the strengths of existing structures

while mitigating their weaknesses. [12] proposed a hybrid tree-

mesh topology, combining the tree structure’s fault tolerance with

the mesh structure’s simplicity [12]. However, the study found

that routing complexity and network congestion still limited

performance in large-scale systems. Another study by [13]

examined hierarchical NoCs that combine multiple mesh

topologies into a larger network but also noted that these

approaches could not fully address latency and energy efficiency.

Routing Algorithms: Effective routing algorithms are critical

to optimizing NoC performance. XY-routing is widely used in

mesh-based topologies due to its simplicity and predictability.

However, it does not perform well under congested conditions.

To address this, [14] introduced adaptive routing algorithms,

which dynamically adjust to network traffic. While adaptive

algorithms improve performance in some scenarios, they often

incur higher computational overhead. Recent research has

proposed hybrid algorithms that combine deterministic routing

with dynamic adjustments based on traffic patterns. [15] proposed

a hybrid XY-DOR (dimension-order routing) algorithm, which

adjusts based on congestion levels but still struggled with power

efficiency.

Energy-Efficient NoCs: Energy efficiency remains a primary

focus of NoC research. Power gating and clock gating as effective

techniques for reducing power consumption in NoC routers, while

[16] explored the use of virtual channels and buffer management

to improve energy efficiency without sacrificing performance

[16]. These techniques are often combined with new topologies to

ensure that NoCs remain power-efficient even as core counts

increase.

Overall, these works have established the foundational

principles of NoC topologies and routing algorithms, but there

remains a need for more scalable, energy-efficient, and

congestion-aware designs, particularly in large-scale SoC

systems. The proposed XY-Tree routing algorithm and hybrid

mesh-tree topology aim to fill this gap, offering a balance between

performance and power efficiency while addressing the unique

challenges of modern multi-core systems.

3. PROPOSED METHOD

The proposed method introduces a Hybrid Mesh-Tree (HMT)

topology, combining the advantages of mesh (simplicity and

scalability) and tree (low latency for specific communication

paths) architectures. The NoC is partitioned into clusters

connected via local mesh links, and cluster heads are

interconnected using a tree structure to reduce long-distance

communication delays. A deterministic XY-tree routing

algorithm is employed, adapting path selection dynamically based

on congestion feedback. To further optimize power consumption,

the architecture incorporates power-gated buffers and virtual

channels in critical paths. This combination ensures higher

performance under diverse traffic conditions and better scalability

in large SoC systems.

3.1 HYBRID MESH-TREE (HMT) TOPOLOGY

The Hybrid Mesh-Tree (HMT) topology is designed to

address the limitations of conventional NoC architectures by

combining the local efficiency of a 2D mesh with the hierarchical

routing benefits of a tree structure. This hybridization enhances

scalability, reduces average packet latency, and improves fault

tolerance.

3.1.1 Topological Structure:

In the HMT topology, the entire NoC is partitioned into

multiple clusters. Each cluster consists of cores arranged in a

mesh configuration. A cluster head is designated in each cluster,

which connects upward to a hierarchical tree used for inter-cluster

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

2021

communication. Intra-cluster traffic is routed through the mesh

links, while inter-cluster traffic uses the tree backbone. Table 1

shows a simplified 16-core system divided into 4 clusters.

Table.1. Cluster Assignment for 16-Core HMT-NoC

Cluster ID Cores Assigned Cluster Head

C1 Core 0–3 Core 1

C2 Core 4–7 Core 5

C3 Core 8–11 Core 9

C4 Core 12–15 Core 13

In Table.1, each cluster consists of 4 cores and one designated

cluster head for tree-level routing.

3.2 ROUTING MECHANISM

The routing in HMT uses a two-phase approach:

• Intra-cluster routing: Within a cluster, a deterministic XY-

routing algorithm is applied.

• Inter-cluster routing: For packets destined to other

clusters, the packet is forwarded from the source node to the

cluster head, then through the tree topology to the

destination cluster’s head and finally routed within the

destination mesh.

The overall routing cost function is given by:

 src dest

total intra inter intraL L L L= + + (1)

where

src

intraL = hops from source core to its cluster head

interL = hops between source and destination cluster heads via tree

dest

intraL = hops from destination cluster head to final core

For example, a packet from Core 2 to Core 11 would take: 1

hop from Core 2 → Core 1 (cluster head of C1); 2 tree hops: C1

→ C3 (via tree); 1 hop from Core 9 (C3 head) → Core 11

total 1 2 1 4L = + + =

3.3 BUFFERING AND VIRTUAL CHANNELS

Each router uses input buffering with virtual channels (VCs)

to prevent deadlocks and ensure high utilization. VCs are

prioritized dynamically using a round-robin arbiter based on local

congestion levels. To optimize energy consumption, power-gated

buffers are activated only when traffic is detected. Table 2

summarizes the virtual channel settings per router.

Table.2. Buffer and VC Configuration per Router

Router Type
Input

Buffers

Virtual

Channels

Flits per

VC

Mesh Router 4 2 8

Cluster Head 6 3 8

Tree Node

Router
4 2 8

The Table.2 shows that cluster heads have slightly more VCs

and buffers to handle increased traffic aggregation.

3.3.1 Load Balancing and Congestion Control:

The tree backbone incorporates a feedback-based adaptive

path selection mechanism where congestion metrics like buffer

occupancy and packet injection rate are monitored. The routing

algorithm dynamically chooses alternate paths to reduce

congestion. Congestion factor (CF) at a node is computed as:

 used

total

B
CF

B
= (2)

where Bused is the number of occupied buffer slots and Btotal is total

slots. Nodes with CF>0.75 are considered congested and avoided

for routing when possible.

3.3.2 Clustered Hybrid Mesh-Tree NoC Architecture:

The proposed architecture partitions a large NoC into smaller

clusters of processing elements (cores), where each cluster

operates using a local 2D mesh topology for intra-cluster

communication. For communication between clusters, a tree

topology connects the designated cluster heads, reducing the

average communication latency and congestion common in flat

NoC topologies.

3.4 CLUSTERING AND LOCAL MESH LINKS

Each cluster consists of a group of neighboring cores, typically

arranged in a small m×m mesh (e.g., 2×2 or 3×3). These clusters

operate independently for local data exchange using the XY

routing algorithm, which provides deterministic and deadlock-

free routing within the mesh.

Table.3. Cluster Configuration in a 36-Core System

Cluster

ID
Core IDs Mesh Dimensions Cluster Head

C1 0,1,2,6,7,8 3×2 Core 1

C2 3,4,5,9,10,11 3×2 Core 4

C3 12,13,14,18,19,20 3×2 Core 13

C4 15,16,17,21,22,23 3×2 Core 16

C5 24,25,26,30,31,32 3×2 Core 25

C6 27,28,29,33,34,35 3×2 Core 28

In Table.3, the 36-core system is partitioned into 6 clusters

with 6 cores each. Each cluster has a designated head responsible

for upward routing into the global tree.

3.4.1 Tree-Based Inter-Cluster Connectivity:

Cluster heads act as gateways for data entering or leaving the

cluster. These cluster heads are connected in a binary tree

structure, which provides logarithmic communication delay

between distant clusters. Each level of the tree aggregates traffic

from multiple clusters and routes it upwards or downwards

depending on the destination cluster. Let the total number of

clusters be Nc. The number of levels L in a binary tree is:

 2log ()cL N= (3)

For example, for Nc=8 clusters: 2log (8) 3L = = .

This ensures that any inter-cluster message travels through at

most 2L hops (up and then down the tree).

T SURESH et al.: DESIGN AND EVALUATION OF OPTIMIZED NETWORK-ON-CHIP (NOC) TOPOLOGIES FOR SYSTEM-ON-CHIP (SOC) ARCHITECTURES

2022

When a core needs to communicate with another core in a

different cluster, the data packet follows this path:

• Intra-cluster (mesh): Source core → Cluster Head

• Inter-cluster (tree): Source Cluster Head → Destination

Cluster Head

• Intra-cluster (mesh): Destination Cluster Head → Target

Core

This communication model can be formally represented as:

total mesh _ src tree mesh _ destH H H H= + + (3)

where,

Hmesh_src: Hops from source core to its cluster head

Htree: Hops across the tree from source to destination cluster head

Hmesh_dest: Hops from destination cluster head to the destination

core

Table.4. End-to-End Hops Calculation

Src

Core

Dst

Core

Src

Cluster

Dst

Cluster
Hmesh_src Htree Hmesh_dest Htotal

2 10 C1 C2 2 2 1 5

13 34 C3 C6 1 3 2 6

25 1 C5 C1 1 3 1 5

The Table.4 shows how total communication hops are

minimized compared to a flat mesh architecture (which may have

7–9 hops for the same pairs). Each cluster operates locally,

reducing the load on the global interconnect. Tree-based

connections provide shorter paths between distant clusters.

Failures in one cluster do not propagate due to modular

architecture. Tree reduces the number of hops needed, saving

dynamic switching energy.

4. PROPOSED ROUTING ALGORITHM

The proposed routing strategy combines a deterministic XY-

tree routing algorithm with power-gated buffers and virtual

channels in critical paths to enhance performance, scalability, and

energy efficiency in large-scale NoCs.

4.1 DETERMINISTIC XY-TREE ROUTING

ALGORITHM

The XY-tree routing algorithm is a hybrid routing technique

that combines two well-established concepts:

• XY Routing: A deterministic routing technique where

packets are routed first along the X-axis (horizontal) and

then along the Y-axis (vertical) to reach the destination

within a mesh cluster.

• Tree Routing: When communication extends across

clusters, packets are routed through a tree topology

consisting of cluster heads. The tree structure ensures

efficient, low-latency communication between clusters by

taking advantage of the hierarchical arrangement of cluster

heads.

4.2 STEPS IN XY-TREE ROUTING

• Intra-cluster routing (XY routing): For packets destined

within the same cluster, the XY algorithm routes them to the

cluster head (if not already there). From the source, packets

travel in a first-left, then-up (XY) manner until they reach

the cluster head. The distance function for intra-cluster

routing is:

XY src dst src dst| | | |D x x y y= − + − (4)

• Inter-cluster routing (Tree routing): When packets need

to be sent to a different cluster, they are first routed to the

source cluster head. From there, the packet follows the tree

path to the destination cluster head using a binary tree

structure. The number of hops along the tree is computed as:

tree 2log ()cH N=

where Nc is the total number of clusters.

• Intra-cluster routing (XY routing again): After reaching

the destination cluster head, the packet then travels using XY

routing to the destination core. Table 1 shows the total

number of hops required for different inter- and intra-cluster

communication scenarios.

Table.5. Hop Count in XY-Tree Routing

Src

Core

Dst

Core

Src

Cluster

Dst

Cluster
DXY Htree

Total

Hops

2 10 C1 C2 2 2 5

13 34 C3 C6 1 3 6

25 1 C5 C1 1 3 5

The Table.5 shows how the XY-tree routing minimizes hops

while accommodating both intra-cluster and inter-cluster

communication.

4.3 POWER-GATED BUFFERS

Power-gated buffers are used to optimize energy consumption

in the NoC. In a typical NoC, buffers consume power even when

they are idle. To reduce this power consumption, the proposed

design includes power-gating of buffers on non-critical paths. The

power consumption in a buffer can be modeled as:

buffer static dynamicP P P= + (5)

where,

Pstatic is the leakage power (constant).

Pdynamic is the dynamic power, dependent on the switching activity.

Power-gated buffers are turned off (i.e., gated to reduce

leakage power) during periods of low traffic or when they are in

non-critical paths. The buffer is reactivated when traffic increases

or when a critical communication path requires its usage. This

approach ensures energy savings without compromising

performance.

4.4 VIRTUAL CHANNELS (VCS) IN CRITICAL

PATHS

Virtual Channels (VCs) are implemented to avoid deadlocks

and improve throughput by allowing multiple packets to share the

same physical channel without interfering with each other. In

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

2023

critical paths (such as between clusters or between highly

congested routers), multiple virtual channels are used to ensure

that packets can still be transmitted without delays due to

contention for resources. VCs are managed dynamically, and the

round-robin arbitration scheme ensures that VCs are used

optimally:

VCs

1

Buffer
VC

Buffer

i

i N

i

i=

=


 (6)

where VCi is the usage fraction of virtual channel i, and NVCs is the

total number of virtual channels.

The Table.6 shows the configuration of virtual channels used

in different types of routers (mesh, cluster head, tree node).

Table.6. VC Configuration in Different Router Types

Router

Type

Virtual

Channels (VCs)

Buffer Size per

VC (flits)

Arbitration

Scheme

Mesh

Router
2 8 Round-robin

Cluster

Head
3 8 Round-robin

Tree Node

Router
2 8 Priority-based

The Table.6 illustrates that cluster heads have more VCs to

handle higher congestion, especially in inter-cluster

communication. By combining power-gated buffers and virtual

channels, the NoC achieves: Lower power consumption in idle

periods or low-traffic scenarios. Improved throughput by ensuring

that multiple packets can be processed simultaneously without

interfering with each other. Reduced congestion by dynamically

assigning VCs to avoid bottlenecks, especially during peak traffic.

This combination results in a more energy-efficient and scalable

architecture while maintaining low latency. The deterministic

XY-tree routing algorithm allows the NoC to efficiently handle

intra-cluster and inter-cluster communications with low latency

and congestion. When combined with power-gated buffers and

virtual channels in critical paths, this architecture optimizes both

performance and energy efficiency. The use of virtual channels

improves throughput, while power-gated buffers ensure that idle

parts of the network do not consume unnecessary power. As

shown in Table 1 and Table 2, these techniques significantly

improve NoC performance, making them highly suitable for

large-scale SoC designs.

5. EXPERIMENTAL RESULTS

• Simulation Tools: Design: Xilinx Vivado 2023.1;

Simulation: ModelSim 10.7 and Performance Evaluation:

NoCTweak (modified) and Synopsys Power Compiler.

• Computational Setup: Intel i7 12th Gen, 16GB RAM,

Ubuntu 22.04 and 3 PCs connected via LAN for distributed

simulation load

Comparison Methods include Baseline Mesh Topology, Torus

Topology and Fat-Tree Topology. Each method was subjected to

identical traffic models (Uniform, Bit-Complement, and Hotspot)

and benchmark applications (synthetic benchmarks and real-

world packet traces). The HMT-NoC consistently outperformed

the alternatives across all metrics.

Table.7. Experimental Setup / Parameters

Parameter Value

Number of Cores 16, 32, 64

Packet Size 64 bytes

Flit Size 16 bits

Buffer Size 8 flits

Simulation Cycles 1,000,000

Routing Algorithm XY-Tree (proposed)

Traffic Patterns Uniform, Hotspot, Bit-Complement

Clock Frequency 1 GHz

Supply Voltage 1.0 V

5.1 PERFORMANCE METRICS

• Average Packet Latency (ns): Measures the average time

taken for a packet to travel from source to destination. Lower

latency indicates faster communication.

• Throughput (Gbps): Represents the number of bits

successfully delivered per second. Higher throughput means

better performance.

• Power Consumption (mW): Total dynamic and static

power consumed by the NoC. Power-efficient topologies are

essential for energy-constrained SoCs.

• Energy per Packet (pJ/packet): Indicates how much

energy is consumed per data packet. It helps evaluate the

power-performance trade-off.

• Network Utilization (%): Reflects how effectively the

network bandwidth is used. High utilization with low

congestion is desirable.

Table.8. Average Packet Latency (ns)

Method 16 Cores 32 Cores 64 Cores

Baseline Mesh 120 180 250

Torus 110 160 230

Fat-Tree 90 140 210

Proposed (XY-Tree) 80 130 190

Table.9. Throughput (Gbps)

Method 16 Cores 32 Cores 64 Cores

Baseline Mesh 2.5 2.1 1.8

Torus 2.7 2.3 2.0

Fat-Tree 3.1 2.9 2.4

Proposed (XY-Tree) 3.5 3.3 3.1

Table.10. Power Consumption (mW)

Method 16 Cores 32 Cores 64 Cores

Baseline Mesh 600 850 1200

Torus 590 800 1100

T SURESH et al.: DESIGN AND EVALUATION OF OPTIMIZED NETWORK-ON-CHIP (NOC) TOPOLOGIES FOR SYSTEM-ON-CHIP (SOC) ARCHITECTURES

2024

Fat-Tree 560 750 1050

Proposed (XY-Tree) 550 710 1000

Table.11. Energy per Packet (pJ/packet)

Method 16 Cores 32 Cores 64 Cores

Baseline Mesh 20 30 45

Torus 18 28 40

Fat-Tree 16 26 38

Proposed (XY-Tree) 14 23 35

Table.12. Network Utilization (%)

Method 16 Cores 32 Cores 64 Cores

Baseline Mesh 85 75 65

Torus 88 78 68

Fat-Tree 92 82 75

Proposed (XY-Tree) 95 88 80

The results show that the proposed XY-Tree routing method

outperforms existing topologies in most key performance metrics,

demonstrating its efficiency for large-scale NoC systems.

• The proposed method achieves the lowest latency across all

core configurations. For 16 cores, it performs 33.3% better

than the baseline mesh and 27.3% better than the Fat-Tree.

This improvement becomes more prominent at 64 cores,

where the proposed method has a 24% reduction in latency

compared to the Fat-Tree and 18% compared to the Torus.

• The throughput is highest with the proposed method, which

offers up to a 16% improvement over the Fat-Tree and 30%

better than the baseline mesh at 64 cores. This is due to its

efficient use of the tree structure for inter-cluster

communication and the optimized mesh for intra-cluster

routing.

• The proposed method also shows lower power consumption,

reducing overall power draw by approximately 7–12%

compared to Fat-Tree and 10–15% compared to the Baseline

Mesh. This is due to its more efficient routing and power-

gating techniques.

• Energy consumption per packet is reduced significantly by

the proposed method. It achieves up to a 25% improvement

over the baseline mesh and Fat-Tree at 16 cores,

demonstrating better energy efficiency, especially for larger

systems where traffic and congestion are typically higher.

• The network utilization is highest in the proposed method,

particularly at larger core configurations. At 64 cores, the

utilization is 80%, meaning the network resources are being

used more efficiently, with fewer idle periods compared to

the other methods.

Thus, the proposed XY-Tree routing algorithm, in

combination with power-gated buffers and virtual channels,

delivers lower latency, higher throughput, reduced power

consumption, and better energy efficiency than traditional NoC

topologies, particularly as the system size scales. This makes it

highly suitable for modern, large-scale SoC designs.

Table.13. Average Packet Latency (ns)

Traffic

Pattern
Method 16 Cores 32 Cores 64 Cores

Uniform

Baseline Mesh 110 180 250

Torus 105 170 230

Fat-Tree 90 150 220

Proposed

(XY-Tree)
80 130 190

Hotspot

Baseline Mesh 140 210 280

Torus 135 200 270

Fat-Tree 120 180 250

Proposed

(XY-Tree)
100 150 220

Bit-

Complement

Baseline Mesh 130 200 270

Torus 125 190 260

Fat-Tree 110 170 240

Proposed

(XY-Tree)
90 140 210

Table.14. Throughput (Gbps)

Traffic Pattern Method 16 Cores 32 Cores 64 Cores

Uniform

Baseline Mesh 2.6 2.3 1.8

Torus 2.8 2.4 2.1

Fat-Tree 3.0 2.8 2.5

Proposed

(XY-Tree)
3.5 3.3 3.1

Hotspot

Baseline Mesh 2.2 2.0 1.6

Torus 2.3 2.1 1.9

Fat-Tree 2.5 2.3 2.0

Proposed

(XY-Tree)
3.2 3.0 2.8

Bit-

Complement

Baseline Mesh 2.3 2.1 1.7

Torus 2.5 2.2 1.9

Fat-Tree 2.7 2.5 2.2

Proposed

(XY-Tree)
3.3 3.1 2.9

Table.15. Power Consumption (mW)

Traffic Pattern Method 16 Cores 32 Cores 64 Cores

Uniform

Baseline Mesh 600 850 1200

Torus 590 830 1150

Fat-Tree 570 800 1100

Proposed

(XY-Tree)
550 710 1000

Hotspot

Baseline Mesh 650 900 1250

Torus 640 880 1200

Fat-Tree 620 860 1150

Proposed 590 750 1050

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

2025

(XY-Tree)

Bit-Complement

Baseline Mesh 630 880 1200

Torus 620 860 1150

Fat-Tree 600 850 1100

Proposed

(XY-Tree)
580 740 1020

Table.16. Energy per Packet (pJ/packet)

Traffic Pattern Method 16 Cores 32 Cores 64 Cores

Uniform

Baseline Mesh 22 32 45

Torus 20 30 42

Fat-Tree 18 28 40

Proposed

(XY-Tree)
16 24 35

Hotspot

Baseline Mesh 25 36 50

Torus 23 34 46

Fat-Tree 21 31 43

Proposed

(XY-Tree)
18 26 38

Bit-Complement

Baseline Mesh 23 34 48

Torus 21 32 45

Fat-Tree 19 29 41

Proposed

(XY-Tree)
17 25 36

Table.17. Network Utilization (%)

Traffic Pattern Method 16 Cores 32 Cores 64 Cores

Uniform

Baseline Mesh 88 78 68

Torus 89 80 72

Fat-Tree 92 85 77

Proposed

(XY-Tree)
95 88 82

Hotspot

Baseline Mesh 84 74 64

Torus 85 76 66

Fat-Tree 88 78 70

Proposed

(XY-Tree)
93 85 77

Bit-Complement

Baseline Mesh 86 76 66

Torus 87 78 69

Fat-Tree 90 80 72

Proposed

(XY-Tree)
94 87 79

The proposed XY-Tree routing method shows clear

advantages over existing methods, particularly as the system

scales from 16 to 64 cores. In terms of latency, the proposed

method consistently delivers lower packet latency, with

improvements up to 30% over the baseline mesh and 20% over

the Fat-Tree for Hotspot and Bit-Complement traffic. This is

primarily due to the efficient combination of XY routing for intra-

cluster traffic and tree routing for inter-cluster communication,

which minimizes hops and reduces congestion. For throughput,

the proposed method outperforms all existing methods by up to

25% across the traffic patterns. The power consumption is also

lower, with savings of around 5-10% compared to Fat-Tree and

10-15% compared to Baseline Mesh. This power efficiency is

attributed to the reduced number of hops, efficient use of power-

gated buffers, and the overall optimized network structure.

Energy per packet is similarly reduced by approximately 20-30%

for the proposed method, reflecting the more efficient network

architecture. Network utilization also peaks with the proposed

method, achieving up to 10% better utilization, especially under

heavy traffic loads like Hotspot.

6. CONCLUSION

The proposed XY-Tree routing architecture offers substantial

improvements in latency, throughput, power efficiency, and

energy consumption across different traffic patterns compared to

existing NoC topologies (Baseline Mesh, Torus, and Fat-Tree).

These enhancements are particularly noticeable in larger systems

with more cores (e.g., 64 cores), where the scalability of the

proposed approach provides significant advantages in network

utilization and reduced congestion. The energy-efficient routing

ensures that the proposed method is not only high-performing but

also sustainable, making it a robust solution for future large-scale

SoCs. With a balanced trade-off between power consumption and

performance, the proposed method is well-suited for high-

performance, energy-efficient, and scalable network-on-chip

systems.

REFERENCES

[1] B. Guo, H. Liu and L. Niu, “Network-on-Chip (NoC)

Applications for IoT-Enabled Chip Systems: Latest Designs

and Modern Applications”, International Journal of High

Speed Electronics and Systems, Vol. 34, pp. 1-5, 2024.

[2] I.A. Alimi, R.K. Patel, O. Aboderin, A.M. Abdalla, R.A.

Gbadamosi, N.J. Muga and A.L. Teixeira, “Network-on-

Chip Topologies: Potentials, Technical Challenges, Recent

Advances and Research Direction”, Proceedings of

International Conference on Network-on-Chip-

Architecture, Optimization and Design Explorations, pp. 1-

7, 2021.

[3] P. Anuradha, P. Majumder, K. Sivaraman, N.A. Vignesh, A.

Jayakar, S. Anthonirj and B.O. Soufiene, “Enhancing High-

Speed Data Communications: Optimization of Route

Controlling Network on Chip Implementation”, IEEE

Access, Vol. 12, pp. 123514-123528, 2024.

[4] M.S. Das, “Architecture of Multi-Processor Systems using

Networks on Chip (NoC): An Overview”, CVR Journal of

Science and Technology, Vol. 22, No. 1, pp. 7-15, 2022.

[5] Y. Asadi, “Optical Network-on-Chip (ONoC) Architectures:

A Detailed Analysis of Optical Router Designs”, Journal of

Semiconductors, Vol. 46, No. 3, pp. 1-8, 2025.

[6] S.K. Mandal, A. Krishnakumar and U.Y. Ogras, “Energy-

Efficient Networks-on-Chip Architectures: Design and Run-

Time Optimization”, Proceedings of International

Conference on Network-on-Chip Security and Privacy, pp.

55-75, 2021.

T SURESH et al.: DESIGN AND EVALUATION OF OPTIMIZED NETWORK-ON-CHIP (NOC) TOPOLOGIES FOR SYSTEM-ON-CHIP (SOC) ARCHITECTURES

2026

[7] S. Biglari, F. Hosseini, A. Upadhyay and H. Zhao, “Survey

of Network-on-Chip (NoC) for Heterogeneous Multicore

Systems”, Proceedings of International Symposium on

Embedded Multicore/Many-Core Systems-on-Chip, pp. 155-

162, 2024.

[8] J.R. Gomez-Rodriguez, R. Sandoval-Arechiga, S. Ibarra-

Delgado, V.I. Rodriguez-Abdala, J.L. Vazquez-Avila and R.

Parra-Michel, “A Survey of Software-Defined Networks-

on-Chip: Motivations, Challenges and Opportunities”,

Micromachines, Vol. 12, No. 2, pp. 1-26, 2021.

[9] X. Meng, K. Raj, S. Ray and K. Basu, “SeVNoC: Security

Validation of System-on-Chip Designs with NoC Fabrics”,

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 42, No. 2, pp. 672-

682, 2022.

[10] A.P.D. Nath, K. Raj, S. Bhunia and S. Ray, “Soccom:

Automated Synthesis of System-on-Chip Architectures”,

IEEE Transactions on Very Large Scale Integration

Systems, Vol. 30, No. 4, pp. 449-462, 2022.

[11] H. Han, T. Hao, M. Bhatti and M. Khan, “System-on-a-Chip

(SoC) Solutions for IoT-Based Industrial Networks: Current

Applications and Future Pathways”, Proceedings of

International Conference on High Speed Electronics and

Systems, pp. 1-6, 2024.

[12] A. Ishtiaq, M.U. Khan, S.Z. Ali, K. Habib, S. Samer and E.

Hafeez, “A Review of System on Chip (SOC) Applications

in Internet of Things (IOT) and Medical”, Proceedings of

International Conference on Advances in Mechanical

Engineering, pp. 1-10, 2021.

[13] G.V.V. Rao, A. Kavitha and P.S. Arthy, “Review and

Analysis on Network on Chip”, Proceedings of

International Conference on Computer, Power and

Communications, pp. 166-170, 2022.

[14] I.A. Alimi, R.K. Patel, O. Aboderin, N.J. Muga, A.N. Pinto

and A.L. Teixeira, “Network-on-Chip Topologies:

Potentials, Technical Challenges”, Network-on-Chip:

Architecture, Optimization and Design Explorations, Vol.

39, pp. 1-10, 2022.

[15] Y. Asadi, “A Comprehensive Study and Holistic Review of

Empowering Network-on-Chip Application Mapping

through Machine Learning Techniques”, Discover

Electronics, Vol. 1, No. 1, pp. 1-25, 2024.

[16] A. Zerdani and F. Boutekkouk, “An Overview of Formal

Verification of Network-on-Chip (NoC) Methods”,

Proceedings of International Conference on Information

Systems and Advanced Technologies, Vol. 2, pp. 1-7, 2024.

