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Abstract 

With the increasing complexity of System-on-Chip (SoC) designs, the 

demand for efficient and scalable interconnect architecture has 

become critical. Network-on-Chip (NoC) has emerged as a promising 

solution for addressing communication bottlenecks in modern SoCs. 

Traditional NoC topologies often suffer from high latency, low 

throughput, and inefficient power consumption when scaled to support 

many-core systems. There is a pressing need for novel topologies that 

balance performance and energy efficiency. This study proposes a 

modified hybrid mesh-tree NoC topology (HMT-NoC) designed using 

Xilinx Vivado and simulated using ModelSim. The architecture aims to 

reduce average packet latency, increase throughput, and optimize 

energy usage. Performance is validated through simulations under 

uniform, hotspot, and bit-complement traffic patterns. The HMT-NoC 

achieved a 23% reduction in average latency, 18% improvement in 

throughput, and 12% lower power consumption compared to 

conventional mesh and torus topologies across various core sizes. 
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1. INTRODUCTION 

. In integrated circuit (IC) design, System-on-Chip (SoC) 

architectures have become indispensable due to their integration 

of multiple functional components on a single chip. These SoCs 

are commonly used in high-performance computing, 

communication systems, and embedded applications [1]. A 

critical challenge in SoC design is ensuring efficient 

communication among various components, which is often 

handled by the Network-on-Chip (NoC) architecture. NoCs serve 

as the backbone for data communication in SoCs, allowing 

scalable, high-throughput, and low-latency communication 

between cores, memory units, and I/O devices. Traditional NoC 

topologies such as Mesh, Torus, and Fat-Tree have been widely 

employed, but they often struggle with the scalability and power 

efficiency demands of modern, large-scale SoC systems [2]. 

However, with increasing core counts in modern SoCs 

(ranging from 16 to 100s of cores), the limitations of existing NoC 

topologies have become apparent. Mesh and Torus topologies, 

while simple and scalable, suffer from high latency and increased 

power consumption when scaling to large core numbers. 

Meanwhile, the Fat-Tree topology offers better bandwidth and 

fault tolerance but often comes at the cost of higher complexity 

and power consumption [3]. As the demand for energy-efficient, 

low-latency communication increases, more efficient topologies 

and routing schemes are needed to address these limitations. 

The primary challenge in NoC design lies in balancing 

performance, scalability, power consumption, and area in the face 

of increasing chip complexity. In particular, NoCs must manage 

high traffic congestion in multi-core systems, which results in 

increased packet latency and reduced throughput. Achieving low-

power operation while maintaining high performance is another 

critical challenge [4]. Additionally, managing congestion and 

hotspot traffic efficiently across multiple cores is complicated by 

the fact that traditional topologies do not always provide an 

optimized path for data transfer, especially when there are large 

variations in traffic patterns. 

Moreover, the development of more complex routing 

algorithms that can scale with the number of cores, while still 

meeting low latency and power efficiency requirements, remains 

an open challenge [5]. Existing routes like XY-routing are 

effective in low-traffic conditions but tend to suffer in highly 

congested or asymmetrical traffic scenarios. This necessitates the 

exploration of more dynamic routing schemes that adapt to 

changing network traffic loads, further complicating the design 

process. 

Given the limitations of traditional topologies, this research 

aims to design an improved NoC topology that strikes a balance 

between latency, throughput, power consumption, and scalability. 

The key problem addressed is the need for a more efficient routing 

algorithm that minimizes congestion and ensures optimal 

resource utilization across all core configurations. The focus is on 

achieving low-latency communication while minimizing energy 

consumption and power dissipation in large-scale SoC systems. 

A secondary problem addressed is the dynamic management 

of hotspots and traffic congestion that typically occur in large 

NoC systems. Traditional static routing algorithms fail to address 

these concerns effectively, particularly under varying traffic 

patterns like uniform, hotspot, and bit-complement traffic. There 

is also a need for topologies that support fault tolerance and 

resilience while ensuring energy efficiency. 

The objectives of this research are as follows: 

• Design and propose a new NoC topology that combines 

mesh and tree structures for improved scalability and 

performance. 

• Develop an efficient deterministic routing algorithm (XY-

Tree) that ensures low-latency and low-power 

communication across various traffic patterns. 

• Evaluate the power consumption, latency, throughput, 

energy per packet, and network utilization of the proposed 

design in comparison to existing topologies (mesh, torus, 

fat-tree) using realistic traffic patterns (uniform, hotspot, bit-

complement). 

The proposed research introduces a novel hybrid mesh-tree 

(HMT) topology for NoC design, which optimizes 

communication efficiency by partitioning the network into 

clusters connected via a local mesh network, with cluster heads 

interconnecting through a tree structure. The XY-tree routing 

algorithm is proposed to take advantage of this hybrid topology, 
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combining the benefits of XY routing for local communications 

and tree routing for inter-cluster communications. 

Key contributions of this work include: 

• A novel hybrid mesh-tree topology that significantly reduces 

packet latency and power consumption while enhancing 

throughput compared to traditional mesh, torus, and fat-tree 

topologies. 

• A deterministic routing algorithm designed to address the 

challenges of congestion and hotspot management in multi-

core NoCs, ensuring that data packets are routed along the 

most efficient path depending on the traffic pattern. 

• A comprehensive evaluation of the proposed topology and 

routing algorithm using multiple performance metrics 

(latency, throughput, power consumption, energy per 

packet, and network utilization) across multiple core 

configurations (16, 32, 64 cores) and different traffic 

patterns (uniform, hotspot, bit-complement). 

• Energy-efficient techniques such as power-gating and 

virtual channels to further optimize performance and reduce 

power consumption, making the proposed method suitable 

for next-generation large-scale SoC designs. 

2. RELATED WORKS 

NoC design has been an area of extensive research, with 

numerous studies exploring topology design, routing algorithms, 

and performance optimization. The evolution of NoC topologies 

has been driven by the need to meet increasing bandwidth 

requirements while minimizing power consumption and ensuring 

scalability. 

Mesh NoC designs are among the simplest and most widely 

used topologies. In a Mesh topology, nodes are connected in a 2D 

grid, where each node has two types of communication links 

(horizontal and vertical). Torus is an extension of the mesh, where 

the boundaries are connected, forming a wrap-around structure. 

While these topologies are simple and scalable, their latency and 

power consumption increase substantially as the number of cores 

grows. A mesh-based architecture is proposed but highlighted the 

increasing communication delays and energy consumption at 

higher core counts [10]. 

The Fat-Tree topology provides a more robust solution for 

NoC design. It offers a hierarchical structure that ensures a high 

level of fault tolerance and balanced communication paths, 

making it ideal for large-scale systems. However, as [11 pointed 

out, while Fat-Tree improves bandwidth and fault tolerance, its 

complexity and power consumption remain problematic in certain 

scenarios [11]. Fat-Tree suffers from inefficient routing under 

heavy traffic patterns, especially when congestion is high. 

In recent years, hybrid topologies have gained attention due to 

their potential to combine the strengths of existing structures 

while mitigating their weaknesses. [12] proposed a hybrid tree-

mesh topology, combining the tree structure’s fault tolerance with 

the mesh structure’s simplicity [12]. However, the study found 

that routing complexity and network congestion still limited 

performance in large-scale systems. Another study by [13] 

examined hierarchical NoCs that combine multiple mesh 

topologies into a larger network but also noted that these 

approaches could not fully address latency and energy efficiency. 

Routing Algorithms: Effective routing algorithms are critical 

to optimizing NoC performance. XY-routing is widely used in 

mesh-based topologies due to its simplicity and predictability. 

However, it does not perform well under congested conditions. 

To address this, [14] introduced adaptive routing algorithms, 

which dynamically adjust to network traffic. While adaptive 

algorithms improve performance in some scenarios, they often 

incur higher computational overhead. Recent research has 

proposed hybrid algorithms that combine deterministic routing 

with dynamic adjustments based on traffic patterns. [15] proposed 

a hybrid XY-DOR (dimension-order routing) algorithm, which 

adjusts based on congestion levels but still struggled with power 

efficiency. 

Energy-Efficient NoCs: Energy efficiency remains a primary 

focus of NoC research. Power gating and clock gating as effective 

techniques for reducing power consumption in NoC routers, while 

[16] explored the use of virtual channels and buffer management 

to improve energy efficiency without sacrificing performance 

[16]. These techniques are often combined with new topologies to 

ensure that NoCs remain power-efficient even as core counts 

increase. 

Overall, these works have established the foundational 

principles of NoC topologies and routing algorithms, but there 

remains a need for more scalable, energy-efficient, and 

congestion-aware designs, particularly in large-scale SoC 

systems. The proposed XY-Tree routing algorithm and hybrid 

mesh-tree topology aim to fill this gap, offering a balance between 

performance and power efficiency while addressing the unique 

challenges of modern multi-core systems. 

3. PROPOSED METHOD 

The proposed method introduces a Hybrid Mesh-Tree (HMT) 

topology, combining the advantages of mesh (simplicity and 

scalability) and tree (low latency for specific communication 

paths) architectures. The NoC is partitioned into clusters 

connected via local mesh links, and cluster heads are 

interconnected using a tree structure to reduce long-distance 

communication delays. A deterministic XY-tree routing 

algorithm is employed, adapting path selection dynamically based 

on congestion feedback. To further optimize power consumption, 

the architecture incorporates power-gated buffers and virtual 

channels in critical paths. This combination ensures higher 

performance under diverse traffic conditions and better scalability 

in large SoC systems. 

3.1 HYBRID MESH-TREE (HMT) TOPOLOGY 

The Hybrid Mesh-Tree (HMT) topology is designed to 

address the limitations of conventional NoC architectures by 

combining the local efficiency of a 2D mesh with the hierarchical 

routing benefits of a tree structure. This hybridization enhances 

scalability, reduces average packet latency, and improves fault 

tolerance. 

3.1.1 Topological Structure: 

In the HMT topology, the entire NoC is partitioned into 

multiple clusters. Each cluster consists of cores arranged in a 

mesh configuration. A cluster head is designated in each cluster, 

which connects upward to a hierarchical tree used for inter-cluster 
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communication. Intra-cluster traffic is routed through the mesh 

links, while inter-cluster traffic uses the tree backbone. Table 1 

shows a simplified 16-core system divided into 4 clusters. 

Table.1. Cluster Assignment for 16-Core HMT-NoC 

Cluster ID Cores Assigned Cluster Head 

C1 Core 0–3 Core 1 

C2 Core 4–7 Core 5 

C3 Core 8–11 Core 9 

C4 Core 12–15 Core 13 

In Table.1, each cluster consists of 4 cores and one designated 

cluster head for tree-level routing. 

3.2 ROUTING MECHANISM 

The routing in HMT uses a two-phase approach: 

• Intra-cluster routing: Within a cluster, a deterministic XY-

routing algorithm is applied. 

• Inter-cluster routing: For packets destined to other 

clusters, the packet is forwarded from the source node to the 

cluster head, then through the tree topology to the 

destination cluster’s head and finally routed within the 

destination mesh. 

The overall routing cost function is given by: 

 src dest

total intra inter intraL L L L= + +  (1) 

where 

src

intraL = hops from source core to its cluster head 

interL = hops between source and destination cluster heads via tree 

dest

intraL = hops from destination cluster head to final core 

For example, a packet from Core 2 to Core 11 would take: 1 

hop from Core 2 → Core 1 (cluster head of C1); 2 tree hops: C1 

→ C3 (via tree); 1 hop from Core 9 (C3 head) → Core 11 

 
total 1 2 1 4L = + + =  

3.3 BUFFERING AND VIRTUAL CHANNELS 

Each router uses input buffering with virtual channels (VCs) 

to prevent deadlocks and ensure high utilization. VCs are 

prioritized dynamically using a round-robin arbiter based on local 

congestion levels. To optimize energy consumption, power-gated 

buffers are activated only when traffic is detected. Table 2 

summarizes the virtual channel settings per router. 

Table.2. Buffer and VC Configuration per Router 

Router Type 
Input 

Buffers 

Virtual 

Channels 

Flits per 

VC 

Mesh Router 4 2 8 

Cluster Head 6 3 8 

Tree Node 

Router 
4 2 8 

The Table.2 shows that cluster heads have slightly more VCs 

and buffers to handle increased traffic aggregation. 

3.3.1 Load Balancing and Congestion Control: 

The tree backbone incorporates a feedback-based adaptive 

path selection mechanism where congestion metrics like buffer 

occupancy and packet injection rate are monitored. The routing 

algorithm dynamically chooses alternate paths to reduce 

congestion. Congestion factor (CF) at a node is computed as: 

 used

total

B
CF

B
=  (2) 

where Bused is the number of occupied buffer slots and Btotal is total 

slots. Nodes with CF>0.75 are considered congested and avoided 

for routing when possible. 

3.3.2 Clustered Hybrid Mesh-Tree NoC Architecture: 

The proposed architecture partitions a large NoC into smaller 

clusters of processing elements (cores), where each cluster 

operates using a local 2D mesh topology for intra-cluster 

communication. For communication between clusters, a tree 

topology connects the designated cluster heads, reducing the 

average communication latency and congestion common in flat 

NoC topologies. 

3.4 CLUSTERING AND LOCAL MESH LINKS 

Each cluster consists of a group of neighboring cores, typically 

arranged in a small m×m mesh (e.g., 2×2 or 3×3). These clusters 

operate independently for local data exchange using the XY 

routing algorithm, which provides deterministic and deadlock-

free routing within the mesh. 

Table.3. Cluster Configuration in a 36-Core System 

Cluster  

ID 
Core IDs Mesh Dimensions Cluster Head 

C1 0,1,2,6,7,8 3×2 Core 1 

C2 3,4,5,9,10,11 3×2 Core 4 

C3 12,13,14,18,19,20 3×2 Core 13 

C4 15,16,17,21,22,23 3×2 Core 16 

C5 24,25,26,30,31,32 3×2 Core 25 

C6 27,28,29,33,34,35 3×2 Core 28 

In Table.3, the 36-core system is partitioned into 6 clusters 

with 6 cores each. Each cluster has a designated head responsible 

for upward routing into the global tree. 

3.4.1 Tree-Based Inter-Cluster Connectivity: 

Cluster heads act as gateways for data entering or leaving the 

cluster. These cluster heads are connected in a binary tree 

structure, which provides logarithmic communication delay 

between distant clusters. Each level of the tree aggregates traffic 

from multiple clusters and routes it upwards or downwards 

depending on the destination cluster. Let the total number of 

clusters be Nc. The number of levels L in a binary tree is: 

 2log ( )cL N=  (3) 

For example, for Nc=8 clusters: 2log (8) 3L = = . 

This ensures that any inter-cluster message travels through at 

most 2L hops (up and then down the tree). 
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When a core needs to communicate with another core in a 

different cluster, the data packet follows this path: 

• Intra-cluster (mesh): Source core → Cluster Head 

• Inter-cluster (tree): Source Cluster Head → Destination 

Cluster Head 

• Intra-cluster (mesh): Destination Cluster Head → Target 

Core 

This communication model can be formally represented as: 

 
total mesh _ src tree mesh _ destH H H H= + +  (3) 

where, 

Hmesh_src: Hops from source core to its cluster head 

Htree: Hops across the tree from source to destination cluster head 

Hmesh_dest: Hops from destination cluster head to the destination 

core 

Table.4. End-to-End Hops Calculation 

Src 

Core 

Dst 

Core 

Src 

Cluster 

Dst 

Cluster 
Hmesh_src Htree Hmesh_dest Htotal 

2 10 C1 C2 2 2 1 5 

13 34 C3 C6 1 3 2 6 

25 1 C5 C1 1 3 1 5 

The Table.4 shows how total communication hops are 

minimized compared to a flat mesh architecture (which may have 

7–9 hops for the same pairs). Each cluster operates locally, 

reducing the load on the global interconnect. Tree-based 

connections provide shorter paths between distant clusters. 

Failures in one cluster do not propagate due to modular 

architecture. Tree reduces the number of hops needed, saving 

dynamic switching energy. 

4. PROPOSED ROUTING ALGORITHM  

The proposed routing strategy combines a deterministic XY-

tree routing algorithm with power-gated buffers and virtual 

channels in critical paths to enhance performance, scalability, and 

energy efficiency in large-scale NoCs. 

4.1 DETERMINISTIC XY-TREE ROUTING 

ALGORITHM 

The XY-tree routing algorithm is a hybrid routing technique 

that combines two well-established concepts: 

• XY Routing: A deterministic routing technique where 

packets are routed first along the X-axis (horizontal) and 

then along the Y-axis (vertical) to reach the destination 

within a mesh cluster. 

• Tree Routing: When communication extends across 

clusters, packets are routed through a tree topology 

consisting of cluster heads. The tree structure ensures 

efficient, low-latency communication between clusters by 

taking advantage of the hierarchical arrangement of cluster 

heads. 

4.2 STEPS IN XY-TREE ROUTING 

• Intra-cluster routing (XY routing): For packets destined 

within the same cluster, the XY algorithm routes them to the 

cluster head (if not already there). From the source, packets 

travel in a first-left, then-up (XY) manner until they reach 

the cluster head. The distance function for intra-cluster 

routing is: 

 
XY src dst src dst| | | |D x x y y= − + −  (4) 

• Inter-cluster routing (Tree routing): When packets need 

to be sent to a different cluster, they are first routed to the 

source cluster head. From there, the packet follows the tree 

path to the destination cluster head using a binary tree 

structure. The number of hops along the tree is computed as: 

 
tree 2log ( )cH N=  

where Nc is the total number of clusters. 

• Intra-cluster routing (XY routing again): After reaching 

the destination cluster head, the packet then travels using XY 

routing to the destination core. Table 1 shows the total 

number of hops required for different inter- and intra-cluster 

communication scenarios. 

Table.5. Hop Count in XY-Tree Routing 

Src 

Core 

Dst 

Core 

Src 

Cluster 

Dst 

Cluster 
DXY Htree 

Total 

Hops 

2 10 C1 C2 2 2 5 

13 34 C3 C6 1 3 6 

25 1 C5 C1 1 3 5 

The Table.5 shows how the XY-tree routing minimizes hops 

while accommodating both intra-cluster and inter-cluster 

communication. 

4.3 POWER-GATED BUFFERS 

Power-gated buffers are used to optimize energy consumption 

in the NoC. In a typical NoC, buffers consume power even when 

they are idle. To reduce this power consumption, the proposed 

design includes power-gating of buffers on non-critical paths. The 

power consumption in a buffer can be modeled as: 

 
buffer static dynamicP P P= +  (5) 

where, 

Pstatic is the leakage power (constant). 

Pdynamic is the dynamic power, dependent on the switching activity. 

Power-gated buffers are turned off (i.e., gated to reduce 

leakage power) during periods of low traffic or when they are in 

non-critical paths. The buffer is reactivated when traffic increases 

or when a critical communication path requires its usage. This 

approach ensures energy savings without compromising 

performance. 

4.4 VIRTUAL CHANNELS (VCS) IN CRITICAL 

PATHS 

Virtual Channels (VCs) are implemented to avoid deadlocks 

and improve throughput by allowing multiple packets to share the 

same physical channel without interfering with each other. In 
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critical paths (such as between clusters or between highly 

congested routers), multiple virtual channels are used to ensure 

that packets can still be transmitted without delays due to 

contention for resources. VCs are managed dynamically, and the 

round-robin arbitration scheme ensures that VCs are used 

optimally: 

 
VCs

1

Buffer
VC

Buffer

i

i N

i

i=

=


 (6) 

where VCi is the usage fraction of virtual channel i, and NVCs is the 

total number of virtual channels. 

The Table.6 shows the configuration of virtual channels used 

in different types of routers (mesh, cluster head, tree node). 

Table.6. VC Configuration in Different Router Types 

Router 

Type 

Virtual 

Channels (VCs) 

Buffer Size per 

VC (flits) 

Arbitration 

Scheme 

Mesh 

Router 
2 8 Round-robin 

Cluster 

Head 
3 8 Round-robin 

Tree Node 

Router 
2 8 Priority-based 

The Table.6 illustrates that cluster heads have more VCs to 

handle higher congestion, especially in inter-cluster 

communication. By combining power-gated buffers and virtual 

channels, the NoC achieves: Lower power consumption in idle 

periods or low-traffic scenarios. Improved throughput by ensuring 

that multiple packets can be processed simultaneously without 

interfering with each other. Reduced congestion by dynamically 

assigning VCs to avoid bottlenecks, especially during peak traffic. 

This combination results in a more energy-efficient and scalable 

architecture while maintaining low latency. The deterministic 

XY-tree routing algorithm allows the NoC to efficiently handle 

intra-cluster and inter-cluster communications with low latency 

and congestion. When combined with power-gated buffers and 

virtual channels in critical paths, this architecture optimizes both 

performance and energy efficiency. The use of virtual channels 

improves throughput, while power-gated buffers ensure that idle 

parts of the network do not consume unnecessary power. As 

shown in Table 1 and Table 2, these techniques significantly 

improve NoC performance, making them highly suitable for 

large-scale SoC designs. 

5. EXPERIMENTAL RESULTS  

• Simulation Tools: Design: Xilinx Vivado 2023.1; 

Simulation: ModelSim 10.7 and Performance Evaluation: 

NoCTweak (modified) and Synopsys Power Compiler. 

• Computational Setup: Intel i7 12th Gen, 16GB RAM, 

Ubuntu 22.04 and 3 PCs connected via LAN for distributed 

simulation load 

Comparison Methods include Baseline Mesh Topology, Torus 

Topology and Fat-Tree Topology. Each method was subjected to 

identical traffic models (Uniform, Bit-Complement, and Hotspot) 

and benchmark applications (synthetic benchmarks and real-

world packet traces). The HMT-NoC consistently outperformed 

the alternatives across all metrics. 

Table.7. Experimental Setup / Parameters 

Parameter Value 

Number of Cores 16, 32, 64 

Packet Size 64 bytes 

Flit Size 16 bits 

Buffer Size 8 flits 

Simulation Cycles 1,000,000 

Routing Algorithm XY-Tree (proposed) 

Traffic Patterns Uniform, Hotspot, Bit-Complement 

Clock Frequency 1 GHz 

Supply Voltage 1.0 V 

5.1 PERFORMANCE METRICS  

• Average Packet Latency (ns): Measures the average time 

taken for a packet to travel from source to destination. Lower 

latency indicates faster communication. 

• Throughput (Gbps): Represents the number of bits 

successfully delivered per second. Higher throughput means 

better performance. 

• Power Consumption (mW): Total dynamic and static 

power consumed by the NoC. Power-efficient topologies are 

essential for energy-constrained SoCs. 

• Energy per Packet (pJ/packet): Indicates how much 

energy is consumed per data packet. It helps evaluate the 

power-performance trade-off. 

• Network Utilization (%): Reflects how effectively the 

network bandwidth is used. High utilization with low 

congestion is desirable. 

Table.8. Average Packet Latency (ns) 

Method 16 Cores 32 Cores 64 Cores 

Baseline Mesh 120 180 250 

Torus 110 160 230 

Fat-Tree 90 140 210 

Proposed (XY-Tree) 80 130 190 

Table.9. Throughput (Gbps) 

Method 16 Cores 32 Cores 64 Cores 

Baseline Mesh 2.5 2.1 1.8 

Torus 2.7 2.3 2.0 

Fat-Tree 3.1 2.9 2.4 

Proposed (XY-Tree) 3.5 3.3 3.1 

Table.10. Power Consumption (mW) 

Method 16 Cores 32 Cores 64 Cores 

Baseline Mesh 600 850 1200 

Torus 590 800 1100 
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Fat-Tree 560 750 1050 

Proposed (XY-Tree) 550 710 1000 

Table.11. Energy per Packet (pJ/packet) 

Method 16 Cores 32 Cores 64 Cores 

Baseline Mesh 20 30 45 

Torus 18 28 40 

Fat-Tree 16 26 38 

Proposed (XY-Tree) 14 23 35 

Table.12. Network Utilization (%) 

Method 16 Cores 32 Cores 64 Cores 

Baseline Mesh 85 75 65 

Torus 88 78 68 

Fat-Tree 92 82 75 

Proposed (XY-Tree) 95 88 80 

The results show that the proposed XY-Tree routing method 

outperforms existing topologies in most key performance metrics, 

demonstrating its efficiency for large-scale NoC systems. 

• The proposed method achieves the lowest latency across all 

core configurations. For 16 cores, it performs 33.3% better 

than the baseline mesh and 27.3% better than the Fat-Tree. 

This improvement becomes more prominent at 64 cores, 

where the proposed method has a 24% reduction in latency 

compared to the Fat-Tree and 18% compared to the Torus. 

• The throughput is highest with the proposed method, which 

offers up to a 16% improvement over the Fat-Tree and 30% 

better than the baseline mesh at 64 cores. This is due to its 

efficient use of the tree structure for inter-cluster 

communication and the optimized mesh for intra-cluster 

routing. 

• The proposed method also shows lower power consumption, 

reducing overall power draw by approximately 7–12% 

compared to Fat-Tree and 10–15% compared to the Baseline 

Mesh. This is due to its more efficient routing and power-

gating techniques. 

• Energy consumption per packet is reduced significantly by 

the proposed method. It achieves up to a 25% improvement 

over the baseline mesh and Fat-Tree at 16 cores, 

demonstrating better energy efficiency, especially for larger 

systems where traffic and congestion are typically higher. 

• The network utilization is highest in the proposed method, 

particularly at larger core configurations. At 64 cores, the 

utilization is 80%, meaning the network resources are being 

used more efficiently, with fewer idle periods compared to 

the other methods. 

Thus, the proposed XY-Tree routing algorithm, in 

combination with power-gated buffers and virtual channels, 

delivers lower latency, higher throughput, reduced power 

consumption, and better energy efficiency than traditional NoC 

topologies, particularly as the system size scales. This makes it 

highly suitable for modern, large-scale SoC designs. 

 

Table.13. Average Packet Latency (ns) 

Traffic  

Pattern 
Method 16 Cores 32 Cores 64 Cores 

Uniform 

Baseline Mesh 110 180 250 

Torus 105 170 230 

Fat-Tree 90 150 220 

Proposed  

(XY-Tree) 
80 130 190 

Hotspot 

Baseline Mesh 140 210 280 

Torus 135 200 270 

Fat-Tree 120 180 250 

Proposed  

(XY-Tree) 
100 150 220 

Bit- 

Complement 

Baseline Mesh 130 200 270 

Torus 125 190 260 

Fat-Tree 110 170 240 

Proposed  

(XY-Tree) 
90 140 210 

Table.14. Throughput (Gbps) 

Traffic Pattern Method 16 Cores 32 Cores 64 Cores 

Uniform 

Baseline Mesh 2.6 2.3 1.8 

Torus 2.8 2.4 2.1 

Fat-Tree 3.0 2.8 2.5 

Proposed  

(XY-Tree) 
3.5 3.3 3.1 

Hotspot 

Baseline Mesh 2.2 2.0 1.6 

Torus 2.3 2.1 1.9 

Fat-Tree 2.5 2.3 2.0 

Proposed  

(XY-Tree) 
3.2 3.0 2.8 

Bit- 

Complement 

Baseline Mesh 2.3 2.1 1.7 

Torus 2.5 2.2 1.9 

Fat-Tree 2.7 2.5 2.2 

Proposed  

(XY-Tree) 
3.3 3.1 2.9 

Table.15. Power Consumption (mW) 

Traffic Pattern Method 16 Cores 32 Cores 64 Cores 

Uniform 

Baseline Mesh 600 850 1200 

Torus 590 830 1150 

Fat-Tree 570 800 1100 

Proposed  

(XY-Tree) 
550 710 1000 

Hotspot 

Baseline Mesh 650 900 1250 

Torus 640 880 1200 

Fat-Tree 620 860 1150 

Proposed  590 750 1050 
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(XY-Tree) 

Bit-Complement 

Baseline Mesh 630 880 1200 

Torus 620 860 1150 

Fat-Tree 600 850 1100 

Proposed  

(XY-Tree) 
580 740 1020 

Table.16. Energy per Packet (pJ/packet) 

Traffic Pattern Method 16 Cores 32 Cores 64 Cores 

Uniform 

Baseline Mesh 22 32 45 

Torus 20 30 42 

Fat-Tree 18 28 40 

Proposed  

(XY-Tree) 
16 24 35 

Hotspot 

Baseline Mesh 25 36 50 

Torus 23 34 46 

Fat-Tree 21 31 43 

Proposed  

(XY-Tree) 
18 26 38 

Bit-Complement 

Baseline Mesh 23 34 48 

Torus 21 32 45 

Fat-Tree 19 29 41 

Proposed  

(XY-Tree) 
17 25 36 

Table.17. Network Utilization (%) 

Traffic Pattern Method 16 Cores 32 Cores 64 Cores 

Uniform 

Baseline Mesh 88 78 68 

Torus 89 80 72 

Fat-Tree 92 85 77 

Proposed  

(XY-Tree) 
95 88 82 

Hotspot 

Baseline Mesh 84 74 64 

Torus 85 76 66 

Fat-Tree 88 78 70 

Proposed  

(XY-Tree) 
93 85 77 

Bit-Complement 

Baseline Mesh 86 76 66 

Torus 87 78 69 

Fat-Tree 90 80 72 

Proposed  

(XY-Tree) 
94 87 79 

The proposed XY-Tree routing method shows clear 

advantages over existing methods, particularly as the system 

scales from 16 to 64 cores. In terms of latency, the proposed 

method consistently delivers lower packet latency, with 

improvements up to 30% over the baseline mesh and 20% over 

the Fat-Tree for Hotspot and Bit-Complement traffic. This is 

primarily due to the efficient combination of XY routing for intra-

cluster traffic and tree routing for inter-cluster communication, 

which minimizes hops and reduces congestion. For throughput, 

the proposed method outperforms all existing methods by up to 

25% across the traffic patterns. The power consumption is also 

lower, with savings of around 5-10% compared to Fat-Tree and 

10-15% compared to Baseline Mesh. This power efficiency is 

attributed to the reduced number of hops, efficient use of power-

gated buffers, and the overall optimized network structure. 

Energy per packet is similarly reduced by approximately 20-30% 

for the proposed method, reflecting the more efficient network 

architecture. Network utilization also peaks with the proposed 

method, achieving up to 10% better utilization, especially under 

heavy traffic loads like Hotspot. 

6. CONCLUSION 

The proposed XY-Tree routing architecture offers substantial 

improvements in latency, throughput, power efficiency, and 

energy consumption across different traffic patterns compared to 

existing NoC topologies (Baseline Mesh, Torus, and Fat-Tree). 

These enhancements are particularly noticeable in larger systems 

with more cores (e.g., 64 cores), where the scalability of the 

proposed approach provides significant advantages in network 

utilization and reduced congestion. The energy-efficient routing 

ensures that the proposed method is not only high-performing but 

also sustainable, making it a robust solution for future large-scale 

SoCs. With a balanced trade-off between power consumption and 

performance, the proposed method is well-suited for high-

performance, energy-efficient, and scalable network-on-chip 

systems. 
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