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Abstract 

Given a set of pins and obstacles in a Very-Large-Scale Integration 

(VLSI) chip layout, the goal is to develop an optimal routing path with 

minimal wire length. This work construct Obstacle Avoidance 

Rectilinear Steiner Minimal Tree (OARSMT) using a deep Q-learning 

approach, a type of reinforcement learning. It employs union-find data 

structure, parallel Deep Q-Network and Adam optimizer to train an 

agent to determine the optimal connection between pins. The DQN 

approximates Q-values, which reflect the likelihood of selecting an 

edge. Connections with higher Q-values are those that are obstacle-

free, have lower weight values, and favors connections that share 

common paths. The DQN takes the help Kruskal’s algorithm to 

construct a rectilinear steiner tree with the above connection 

constraints. The approach uses multi-threading during the training to 

handle large datasets. The proposed model returns shorter wire lengths 

with improvement of 5% for obstacle-based benchmark data. The 

model also achieves 9.8% less training time on an average due to the 

parallelization of the DQN. The proposed approach realizes an 85.3 % 

increase in reward gain than other approaches. The developed method 

achieved the objective and can attain superior performance not only in 

VLSI physical design but also in various obstacle based routing. 
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1. INTRODUCTION 

A rectilinear steiner minimum tree construction problem of 

VLSI pins is a NP- hard problem [1]. The Obstacle Avoidance 

Rectilinear Minimum Steiner Tree (OARSMT) problem is a 

graph optimization problem. A set of pins and non-pins of a VLSI 

chips are considered as set of nodes of the graph. The non-pins 

are the corner points of the obstacles which can be used for the 

pins connections.  The graph also contains a set of obstacles. The 

goal is to connect all the pins such that the connecting edge will 

not face any obstacles.   

The machine learning field is trending toward finding a well-

formed and accurate solution to most of the problems [2].This 

encourages us to develop obstacle avoidance routing using Deep 

Reinforcement Learning (DRL), where an agent is trained to carry 

out a certain task by learning from itself with rewards and 

punishment [3]. The agent selects some action from a set of 

actions for different states. The action is applied on an 

environment and the agent is updated as per the outcomes of the 

action.  DRL is typically used in dynamic situations when it is 

impossible to predict what would work best ahead of time [3], [4]. 

For example a graph optimization problem requires a more 

dynamic and adaptable solution [5]. The Q-learning is a 

reinforcement learning technique to improve the quality of a 

solution by training [6]. 

This paper is going to use deep Q-learning, gradient descent, 

and the Adam optimizer to fine-tune the connections in the very 

well-known OARSMT problem. It takes a VLSI layout as an input 

with pins and obstacles data. The output is an OARSMT. It 

designs a feedforward neural network that selects a Q-value for a 

particular edge. The Q-value is the probability of an edge towards 

an optimal solution. The action is accomplished with the help of 

Kruskal’s algorithm, where an MST is created by avoiding 

obstacles. The gradient descent and Adam optimizers are used to 

calculate the loss and update the Q-network. Sometimes a 

disconnected tree is obtained for heavily obstructed areas, where 

the Q-learning agent might be struggling to find a feasible 

solution. So an initial solution is created, and a new heuristic 

approach is designed to connect all nodes of the graph 

successfully. This refined solution is used for the training only to 

find the optimal OARSMT. 

The structure of the paper is as follows: The Section 2 

provides a summary of recent relevant publications. The Section 

3 presents the problem statement. The Section 4 explains the 

proposed algorithm, while the Section 5 offers complexity 

analysis of the algorithms. The Section 6 covers the results and 

compares them to existing literature. Lastly, the concluding 

remarks for the current work are presented in the Section 7. 

2. LITERATURE SURVEY 

The OARSMT is solved using common optimization methods 

such as PB Sat, genetic algorithms and physarum-inspired 

optimization algorithms [7] - [9]. Some recent researches based 

on DRL technique to solve challenges akin to these are included 

in this section. 

A DQN (Deep Q-network) is a combination of Q-learning and 

deep neural networks. Hasselt et al. [10] proposed Double DQN 

(DDQN) that uses the DQN algorithm to enhance Double Q-

learning [11] Both DQN and Double DQN were compared and 

found that DQNs greedy policy performed better than DDQN. 

Liao et al. [12] addressed the routing problem by combining 

reinforcement learning and deep learning. A DQN router was 

proposed that established standards for solving pin 

decomposition. It modeled the circuit as a grid graph from which 

information was fed into the DQN router and outperformed the 

conventional 𝐴∗approach. It solved the unfair distribution of 

routing resources and optimized wire length while decentralizing 

routing resources. This optimization strategy produced high-

quality global routing results without overflow. 

Liu et al. [13] developed a reinforcement learning-based 

algorithm that is better in terms of quality and runtime for small 

to medium-sized networks. It may not handle problems with 

changing constraints or dynamic environments, which pose to be 

a substantial challenge.  Yan et al. [14] designed a framework to 

find a steiner tree of minimum weight in a graph that connects a 

set of pins. The DRL based DQN and graph embedding methods 

were used in this work. It encrypted path-related data from a 
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specified collection of steiner tree problem instances in order to 

retrieve solutions. It bears overhead of intensive computation with 

a heavy demand for computational resources. A space partition 

technique is employed by using attention-based policy parameter 

optimization and training schemes with different stopping criteria 

by Wang et al.  [15]. It reduced computational and memory 

overheads compared to traditional algorithms for handling large 

instances. This problem faces a challenge due to the lack of 

publicly available problem set repositories with diverse sizes and 

constraints. 

Lin et al. [16] developed DRL based edge embedding model 

and Multi-Source Dijkstra based steiner tree which has a slow 

convergence rate. The development of a better solution to handle 

obstacles is still in demand to improve the quality of convergence. 

The proposed method targets to reduce the wire length with 

less computation overhead and offers an outperform reward 

growth rate using a Kruskal Based DRL method and Adam 

Optimizer. The suitability of this proposed method is discussed in 

the following sections. 

3. PROBLEM STATEMENT 

Let consider a graph G(V,E) contains a set of vertices V and a 

set of edges E. All vertex represent a VLSI circuit's pins, and 

edges represent the connection between two pins. There are three 

types of connections between two adjacent pins in a graph. These 

connections aim to discover shared paths among nearby nodes and 

get minimal steiner points. These three types of connections are 

shown in the Fig.1. 

 

Fig.1. Types of Connection among Pins 

If  u and v represent two pins or nodes of a Graph G, the overall 

objective function aims to minimize the distance between these 

pins. It uses the standard Manhattan distance to compute the 

distance as shown in the Eq.(1). Here  x1, y1 ∈ u    and  x2, y2 ∈ v    

are the coordinates of the pins respectively. 
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An edge (u,v)∈G represent states where actions correspond to 

three types connections between two nodes. R denotes a set of 

obstacles. A state-action pair combines a specific edge (u,v)  and 

an action a. A reward value is obtained based on criteria such as 

minimizing edge weight w(u,v) and ensuring obstacle-free paths  

((u,v)∩R=∅). The reward value can be a negative value if the 

criteria could not be passed. The Q-values are calculated using the 

current Q-value Q[(u,v)][a] and the projected Q-value for the 

Next state-action pair (u",v") and action a" where (u",v")  

represents the next state and a"  represents the next action. Thus, 

the objective function aims to maximize Q-values within the Deep 

Q-Network (DQN) for targeted state-action pairs as shown in the 

Eq.(2). The ∝ and γ are the learning and discount factor 

respectively. The ∝ is used in the optimization process and the γ 

represents difference in future and present rewards. 

 

[( , )][ ] [( , )][ ]

Reward max [( , )][ ] [( , )][ ]
a

Q u v a Q u v a

Q u v a Q u v a








 +

 
 +  


 −


 (2) 

4. PROPOSED METHOD 

The Lin et al. [16] method applies DRL for bridge embedding, 

but in this work a steiner tree is constructed using a Kruskal based 

DRL approach. The Kruskal is applied to the environment to build 

the OARSMT. The complete process has three step, initial 

solution, training and testing. The testing method is similar to 

training process with one iteration. So, the initial solution, DQN 

training model and its working principles are discussed in this 

section.  

First, an initial OARSMT is built to get the minimum number 

of pins and non-pins for connecting all pins. A Delaunay 

triangulation approach is used to create a graph of a given set of 

pins. The edges of the graph are sorted in descending order of their 

distance. The union and find data structures are used to create a 

minimum spanning tree of the created graph. The steiner point is 

found between two pins during the construction of the tree. There 

are three types of rectilinear paths. When one type faces any 

obstacle, it finds the alternative. If no path is possible the path is 

discarded. Additionally, the connection of two pins avoids cross 

connections and prefers sharing paths to reduce the number of 

steiner points. The procedure is mentioned in Algorithm 1. 

Algorithm 1: Obstacle Avoidance Rectilinear Steiner Tree 

Input: Set of Pins P and Obstacles O 

Output: Obstacle Avoidance Rectilinear Steiner Tree 

1. E = Delaunay Triangulation (P) 

2. Create a Grid A=zeros(x_max,y_max) 

3. Set A[i][j] = ∞ where i,j ∈ O 

4. for v ∈ P do  

a. Makeset(v) 

5. end for 

6. Q=MinPriorityQueue(E) 

7. Cost=0 

8. while Q do 

a. e(u,v)=Delete(Q) 

b. if Find(u) != Find(v) then 

i. s=Find Steiner Point(u,v) 

ii. if s ∈ A where A ≠0 then 

continue 

iii. end if 

iv. if e(u,v) intersect any path and s∉ A 

where A > 0 and A < ∞ then 

continue 

v. end if 

vi. if e(u,v) ∈ A where A == ∞ then 

continue 

vii. end if 

viii. Union(u,v) 
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ix. Cost = Cost + Cost_(e(u,v)) 

c. end if 

9. end while 

10. return Tree 

The initial solution of the proposed work is different than 

others because it uses only pins. The algorithm fails to create a 

connected graph, or MST, if there are heavy obstacles between 

two nodes. So it forms a disconnected tree. A heuristic is 

developed to connect all forests of the disconnected tree in 

Algorithm 2.  The objective is to detect and connect outliers. It 

finds the number of connected components using disjoint data 

structures. Next, it finds the closest forest and connects them with 

additional points. These additional points are the non-pins from 

the obstacle boundaries. Finally, these non-pins are added to the 

graph that is used to optimize.  

Algorithm 2: Connect Component Heuristic  

Input:  OARSMT 

Output: Set of nodes and edges 

1. Find the component set  from the obtained OARSMT  

2. List out all leaf nodes with among all component set of 

OARSMT 

3. Determine the shortest distance between the leaf nodes 

of two adjacent components  

4. Find the obstacles that lie between the leaf nodes of  

closest component  

5. Construct a Graph using Delaunay Triangulation of the 

points of the obstacles and leaf 

6. Find the shortest path between the leaf nodes in the 

Delaunay graph. 

7. Include set of nodes and edges belonging to the shortest 

path into the original graph 

4.1 PROPOSED NRST ARCHITECTURE 

The proposed DRL method is called NRST (Noble Rectilinear 

Steiner Tree) which objective is to develop an OARSMT on an 

environment for a set of actions. A feed forward neural network 

with two fully connected layers is being built for approximating 

the Q-value function for the DRL algorithm. The is a Deep Q-

Network (DQN) which assigned the task to different tensors of 

the tensor flow model. This DQN runs in parallel using multi-

threading approach to handle massive pins and obstacles. A block 

diagram of the NRST agent training process is shown in the Fig.2 

which shows the flow of data among the components. The agent 

has a central role in a reinforcement learning approach because all 

operations are carried out by the agent. So the agent is the hub of 

the architecture. 

• DQN: The DQN architecture has four layers. A state is an 

edge between two pins. This is an input feature vector of the 

neural network, the coordinates of the two end points. The 

action is selected by using the policy gradient method which 

is a probability distribution over actions for a given state. 

When the input feature is fed to the Q-Network and action is 

sampled which results in a set of a Q-value. Two hidden 

dense layers use the Rectified Linear Unit (ReLU) activation 

function [17] and sample Q-values for each action and pass 

them to the output layer. The first fully connected (dense) 

layer of the neural network has 64 units. This layer performs 

matrix multiplication of the input with its weights, followed 

by applying the ReLU activation function. 

• Target DQN:  The target DQN is a copy of the DQN which 

is used to select the target state. A separate neural network 

is used to reduce the selection of the same state. 

 

Fig.2. NRST Training Model 

• Grid Environment: The grid is a layout of nodes and 

obstacles in the graph. An action of the agent is to construct 

OARSMT. An action is rewarded with a score of positive 

value corresponding to the type of edge used in the 

OARSMT otherwise the action is punished with a negative 

value. The punishment means it will have less probability of 

selection and vice versa.  

• Experience Replay Buffer: A Q-Network stores data in an 

Experience Replay Buffer, unlike a Q-table. The buffer 

stores the information like state, action, reward, and target 

state in a tuple called experience. Its primary tasks are 

storing and sample experiences. It is implemented using a 

priority queue data structure. The agent samples a batch of 

experiences (mini-batches) randomly for optimizing the Q-

network parameters during training. The random sampling 

breaks the temporal correlation between consecutive 

experiences and reduces the risk of over fitting to recent 

experiences. 

• Adam Optimizer: The optimization of the input weight and 

other network parameters are performed by the Adam 

(Adaptive Moment) optimizer. The gradient of loss is 

calculated for a set of current and target sets. The loss is 

optimized to attain the minimum wire length by updating the 

Q-Network parameters. 

4.2 NRST ALGORITHM 

The working principle of the NRST Algorithm is mentioned 

in Algorithm 3. The inputs are graph and grid environments, and 

the output is a trained deep Q network. The objective is to 

optimize different types of connections in the steiner tree. The 

first step is to initialize DQN and Experience Replay Buffer. In 

every episode (epoch) a temporary graph and grid environment T 

are used to build an intermediate OARSMT with a connected set 
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of edges. The size of T is the maximum of x and y coordinate 

values from the pins or non-pins of the graph. 

Algorithm 3:  

Input: Graph 𝐺 = (𝑉, 𝐸)and Grid 𝑇  

Output: Trained Deep Q- Network  

Assumption: State  =  𝐸 , Actions 𝐴 =  [0, 1, 2] 

1.  Initialize DQN = 𝐹𝐹𝑁(𝑠 ∈ 𝑆, ℎ1, ℎ2, 𝑎 ∈ 𝐴) , Replay 

Buffer 𝐷 , 𝜀, 𝛼, 𝛾, 𝜃 

2.  for each episode do 

3.   
Initialize Grid 𝑇 [ max

(𝑥𝑖,𝑦𝑖)∈𝑉
𝑥𝑖 + 1] [ max

(𝑥𝑖,𝑦𝑖)∈𝑉
𝑦𝑖 + 1] =

0 and Graph 𝐺𝑡 = 𝐺 

4.   Use  Kruskal’s algorithm to find the MST of 𝐺𝑡with 

edges 𝐸𝑀𝑆𝑇 ⊆ 𝐸 

5.   for each edge 𝑒 ∈  𝐸𝑀𝑆𝑇  do 

6.    𝑠𝑡 = 𝑒 , Select action 

   𝑎𝑡  =

{
~𝑟𝑎𝑛𝑑𝑜𝑚(𝑠𝑡 , 𝑎) 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑙𝑢𝑒 <  𝜀 

argmax
𝑎∈𝐴

(𝑠𝑡 , 𝑎)                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

7.    Compute Reward 

 𝑟 = {
1 , 𝑖𝑓 𝑎𝑡  = 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑒
−1,                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

8.    Compute Target state 

 𝑠𝑡+1 = 𝑔(𝑠𝑡 , 𝑎𝑡) = max
𝑎′

(𝑄[𝑒′][𝑎′]) 

9.    Create an Experience 𝑃𝑡 = ( 𝑠𝑡 ,  𝑎𝑡  , 𝑅, 𝑠𝑡+1)  

10.     𝐷 ← 𝐷 ∪  {𝑃𝑡}   

11.    if |𝐷| ≥ min _𝑠𝑖𝑧𝑒 then 

12.     Sample Mini-batch 

    Mini − batch =  {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′)}1

𝐵~ 𝐷 

13.     Compute Loss 

14.     
 𝐿(𝜃) =

1

|𝐵|
 ∑ (𝑄(𝑠𝑖 , 𝑎𝑖;  𝜃) −(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠𝑖

′)∈𝐵

(𝑟𝑖 + 𝛾 max
𝑎′

𝑄(𝑠𝑖
′, 𝑎′; 𝜃−)))

2

              

15.     Update Parameters  𝜃 ← 𝜃 − 𝛼∇𝜃𝐿(𝜃) 

16.    end if 

17.   end for     

18.    end for       

• Action Selection:  The 𝜀-Greedy Technique is used for 

action selection by generating a random value. The 𝜀 value 

is considered 0.1 to have a better exploration and 

exploitation. It results in positive convergence of the DQN.  

The action  𝑎𝑡 at t iteration is selected either randomly or the 

maximum probability distribution value from the Q-

Network whose input is a state.  

• Reward Calculation: The reward is collected from the grid 

environment by applying action to it. The action is to 

construct the OARSMT. The reward value r is awarded to  

(S_t,a_t ) which is set to 100 if the connection type matches 

the selected action otherwise -1. 

• Target state selection: The target state is the edge followed 

by the current edge with maximum Q-value. Let the two end 

points of a state at the t iteration is St with nodes  u and v i.e.  

St = (u,v). Let (u",v") are the set of edges outgoing from v 

except the edge (u,v). So the target state  St+1 is another edge 

from (u",v") having maximum action value. In the algorithm 

(u,v)  and (u",v") are mentioned as e and e" respectfully. The 

a" is a set actions belonging to (u",v"). 

• Q-Network Update:  An experience 𝑃 is a tuple of four 

values that is  P = (St,at,rt,St+1). This is created and added to 

replay buffer. A mini-batch of size B is randomly sampled 

from the Replay Buffer D if there are enough value of a 

specific size as per the Eq.(3). Here, ~ denotes random 

sampling from the replay buffer. 

 1Mini-batch {( , , , )}B
i i i i is a r s D

==   (3) 

A gradient descent function updates the network parameters 𝜃 

with an objective to maximize the Q-value. The loss function is 

computed with respect to 𝜃 signifying the difference between the 

current and target state.  The expectation of the Q-value at 

iteration 𝑖 is computed by the gradient descent function as per the 

Eq.(4). Here L  is the gradient value with respect to the loss of 

the Q-Network.  This updates all the network parameters. 

 

0

( )
B

i i

i

L Q r   
=

 
=  

  
E  (4) 

• Parallelism and Synchronization: This approach uses 

multiple threads to process different epochs of the learning 

method. These epochs are randomly assigned to these 

threads as parallel tensors. The parallel allocation of tensor 

may fall in deadlock. So synchronization of Tensor Flow 

operations is essential to controlling parallelism. However, 

Locks are maintained around the Tensor Flow model 

ensuring thread safety and avoiding race conditions. 

5. RUN TIME ANALYSIS 

In this section, efforts are made to determine the time 

complexity of the proposed algorithm based on its serial 

execution. The following section demonstrates that parallel 

execution is significantly faster in practice. Additionally, a proof 

is provided to compute the time taken for checking obstacles 

during the construction of an MST.  

Theorem 1:  Let G(V,E) be the graph and  T is the grid 

representing environment. If each obstacle in T is represented 

with a two dimensional sub-array and vertex are represented in a 

single cell of the grid. The time complexity of OARSMT is O (E 

logE ) including the checking of obstacle in the path between two 

adjacent nodes. 

Proof: The OARSMT problem checks obstacles during 

construction of MST using Kruskal’s algorithm whose time 

complexity is E logE [18]. The implementation process used the 

np.any() library function for a single connection between two 
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coordinates. All the connections mentioned in the Fig.1 are 

rectilinear in nature. The search window is either the x-axis value 

or the y-axis value of the Grid Graph which is a liner search. 

Hence, the np.any()  is linear with respect to the size of the 

window [19]. So, the checking time of obstacles during the 

construction of MST is O(E). Hence, the overall time complexity 

of OARSMT is  (ElogE) . 

Theorem 2:  For a graph with E - number of edges, V - number 

of vertices, T - number of epochs, with B - batch size used for 

updating the DQN, the time complexity of the Algorithm 3 can be 

expressed as (T×(ElogE+V×B×C)). 

Proof: The proposed method’s training is primarily driven by 

the computation of the minimum spanning tree using Kruskal’s 

algorithm and DQN operation in each episode. As per the 

Theorem 1, the time complexity OARSMT is  O(ElogE) 

=O(VlogV).  The OARSMT returns exactly V-1 edges for V 

vertices.  The edges of OARSMT serve as input to DQN. So all 

operations take O(V) time. The gradient function updates the 

parameters with a time complexity of O(B×C) where C and B 

represent the complexity of computing the gradient and the batch 

size respectively[20]. Combining all for T episodes, the overall 

time complexity of the Q-Network training function is 

(T×(ElogE+V×B×C)) 

6. EXPERIMENTAL RESULTS 

The experiment is conducted on a Google Colab Pro 

environment which is a Google Cloud service providing access to 

NVIDIA Tesla T4 or P100 GPUs, up to 50 GB of RAM, and a 

Linux-based operating system. The deep Q-Network is executed 

in parallel using Tensor Flow library and multi-threading.  This 

development is carried out using Python language through a 

Jupiter Notebook interface. Next, fifteen obstacle based DIMACS 

Challenge Benchmark instances are used from [21] to test the wire 

length by avoiding obstacles. There are ten RC instances, 

designated RC1 through RC10 range from a minimum of 10 

obstacles and 500 pins to a maximum of 1000 obstacles and 500 

pins. The training is carried out for 200 epochs or episode for Lin 

et al. [16] and NRST. The wire length value, training time and 

cumulative reward are recorded at each epoch. 

6.1 WIRE LENGTH COMPARISON 

The proposed algorithm is also designed to manage obstacle-

based instances. Its performance in terms of wire length is 

compared with results from previous studies on obstacle-based 

instances, specifically those by [9], [22], [23], [16] as shown in 

the Table.1. 

Table.1. Wire Length Comparison  

Bench-

mark  

Instances 

Wire Length Improvement Rate 

[9] [22] [23] [16] NRST [9] [22] [23] [16] 

RC01 26334 27630 27015 26040 26028 1.17 5.8 3.66 0.05 

RC02 42462 43290 43882 41980 40436 4.78 6.6 7.86 3.68 

RC03 54722 56940 54737 54560 53987 1.35 5.19 1.38 1.06 

RC04 60925 61990 60800 59560 54020 11.34 12.86 11.16 9.31 

RC05 75146 75685 75685 76640 74193 1.27 1.98 1.98 3.2 

RC06 84030 84662 85808 82954 81967 2.46 3.19 4.48 1.19 

RC07 113056 113598 113672 111961 110674 2.11 2.58 2.64 1.15 

RC08 118277 119177 122057 119213 112825 4.61 5.33 7.57 5.36 

RC09 117722 117074 117993 116295 112147 4.74 4.21 4.96 3.57 

RC10 167781 167219 169443 169450 149305 11.02 10.72 11.89 11.89 

Average 4.48 5.84 5.75 4.05 

Total average 5.03 

The improvement rate I is calculated using the formula in the 

Eq.(5). The proposed method demonstrates an approximate 5% 

improvement over all the other methods. Thus, the proposed 

method NRST demonstrates a significant performance advantage 

across the instances compared to the existing alternatives.  

 Others NRST

Others

Wirelength Wirelength
100

Wirelength
I

 −
=  
 

 (5) 

6.2 COMPARISON OF CONVERGENCE TREND 

The convergence rate of DRL models defines the rate of 

change in the learning of the training parameter i.e. Q-values. The 

Fig.3 shows the reward curves for Lin et al. [16] and NRST 

approach. The reward value is the cumulative of the reward of 

each action in an episode. The Lin paper approach and NRST 

paper training model run same data set for 200 episode with same 

reward as 100 and punishment value to -1 for comparing the 

convergence rate. It also keeps the α, ε and γ value fixed as 0.001, 

0.1 and 0.9 respectively for a meaningful comparison. The growth 

rate of NRST training model is compared with the Lin's [16] edge 

embedding model. The growth rate defines the sum of the number 

of episodes having reward more than or equal with the others [16]. 

These plots have the number of episodes on the x-axis and the 

corresponding episode reward on the y-axis. The dark green and 

magenta lines represent the NRST and Lin et al. [16] reward 

trends, respectively. 

 

(a) RC1 

 

(b) RC2 
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(c) RC3 

 

(d) RC4 

 

(e) RC5 

 

(f) RC6 

 

(g) RC7 

 

(h) RC8 

 

(i) RC9 

 

(j) RC10 

Fig.3. Training Convergence Comparison 
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For both the approaches, it is found that the reward value 

increases with increase in pins. The initial and final reward values 

display a hike if the number of obstacles is more than the number 

of pins as in the benchmark RC6, RC7, RC8 and RC9. The reward 

of the approaches is overlapping and competing more with each 

other lower gap. There is wider gap between the rewards in RC1, 

RC2, RC3, RC4 and RC10. In all the cases the NRST signal stays 

high achieving an average reward growth rate of 85.3% than the 

Lin et al. [16]. 

6.3 TRAINING TIME COMPARISON 

The proposed model is trained using the DIMACS Challenge 

Benchmark Instances, RC1 through RC10, which differ in 

complexity and size. A comparison of training time is shown in 

the Fig.4 where the y-axis is the training time in second unit and 

x-axis are the bench mark instances. The Lin et al. [16] and NRST 

approaches are shown in blue and red color bar respectively. It is 

found the NRST has advantages of concurrency and trains faster 

than Lin. It can be noticed that RC10 takes less time because it 

has less number of Obstacles than RC6, RC7, RC8 and RC9. It 

can be considered that the use of parallelism makes a little 

advantage than the existing approach. 

 

Fig.4. Training Time Comparison 

7. CONCLUSION 

The Steiner tree construction plays a critical role in VLSI 

design due to its significance in optimizing interconnects on a 

chip. Hence it always attracts sincere attention. A union-find data 

structure based deep Q-learning approach has been developed in 

this paper for construction of a rectilinear steiner tree. It considers 

the constraint to avoid obstacles while minimizing the wire 

length. It achieves lower wire length for obstacle based instances 

in DIMACS Implementation Challenge. The results obtained are 

quantified as below: 

There is improvement of approximately 5% in wire length 

reduction. The convergence growth rate is 85.3% that indicates an 

accumulation of reward resulting in maximum return. The 

parallelism in the model leads to 9.8% reduction in training time 

across different complex benchmarks in diverse scenarios.  

The current approach requires higher configuration-based 

architecture like memory and GPU. Therefore, attention can be 

directed toward developing alternative optimized solutions for 

Steiner tree construction by designing other evolutionary or 

nature-inspired algorithms to address the mentioned limitation. 
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