
ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

DOI: 10.21917/ijme.2025.0339

1989

A NOBLE RECTILINEAR STEINER TREE WITH OBSTACLES USING PARALLEL

DQN: NRST

Chittaranjan Mohapatra and Nibedita Adhikari
Department of Computer Science and Applications, Utkal University, India

Abstract

Given a set of pins and obstacles in a Very-Large-Scale Integration

(VLSI) chip layout, the goal is to develop an optimal routing path with

minimal wire length. This work construct Obstacle Avoidance

Rectilinear Steiner Minimal Tree (OARSMT) using a deep Q-learning

approach, a type of reinforcement learning. It employs union-find data

structure, parallel Deep Q-Network and Adam optimizer to train an

agent to determine the optimal connection between pins. The DQN

approximates Q-values, which reflect the likelihood of selecting an

edge. Connections with higher Q-values are those that are obstacle-

free, have lower weight values, and favors connections that share

common paths. The DQN takes the help Kruskal’s algorithm to

construct a rectilinear steiner tree with the above connection

constraints. The approach uses multi-threading during the training to

handle large datasets. The proposed model returns shorter wire lengths

with improvement of 5% for obstacle-based benchmark data. The

model also achieves 9.8% less training time on an average due to the

parallelization of the DQN. The proposed approach realizes an 85.3 %

increase in reward gain than other approaches. The developed method

achieved the objective and can attain superior performance not only in

VLSI physical design but also in various obstacle based routing.

Keywords:

Deep Reinforcement Learning, Adam Optimizer, OARSMT, VLSI,

Physical Design and Routing

1. INTRODUCTION

A rectilinear steiner minimum tree construction problem of

VLSI pins is a NP- hard problem [1]. The Obstacle Avoidance

Rectilinear Minimum Steiner Tree (OARSMT) problem is a

graph optimization problem. A set of pins and non-pins of a VLSI

chips are considered as set of nodes of the graph. The non-pins

are the corner points of the obstacles which can be used for the

pins connections. The graph also contains a set of obstacles. The

goal is to connect all the pins such that the connecting edge will

not face any obstacles.

The machine learning field is trending toward finding a well-

formed and accurate solution to most of the problems [2].This

encourages us to develop obstacle avoidance routing using Deep

Reinforcement Learning (DRL), where an agent is trained to carry

out a certain task by learning from itself with rewards and

punishment [3]. The agent selects some action from a set of

actions for different states. The action is applied on an

environment and the agent is updated as per the outcomes of the

action. DRL is typically used in dynamic situations when it is

impossible to predict what would work best ahead of time [3], [4].

For example a graph optimization problem requires a more

dynamic and adaptable solution [5]. The Q-learning is a

reinforcement learning technique to improve the quality of a

solution by training [6].

This paper is going to use deep Q-learning, gradient descent,

and the Adam optimizer to fine-tune the connections in the very

well-known OARSMT problem. It takes a VLSI layout as an input

with pins and obstacles data. The output is an OARSMT. It

designs a feedforward neural network that selects a Q-value for a

particular edge. The Q-value is the probability of an edge towards

an optimal solution. The action is accomplished with the help of

Kruskal’s algorithm, where an MST is created by avoiding

obstacles. The gradient descent and Adam optimizers are used to

calculate the loss and update the Q-network. Sometimes a

disconnected tree is obtained for heavily obstructed areas, where

the Q-learning agent might be struggling to find a feasible

solution. So an initial solution is created, and a new heuristic

approach is designed to connect all nodes of the graph

successfully. This refined solution is used for the training only to

find the optimal OARSMT.

The structure of the paper is as follows: The Section 2

provides a summary of recent relevant publications. The Section

3 presents the problem statement. The Section 4 explains the

proposed algorithm, while the Section 5 offers complexity

analysis of the algorithms. The Section 6 covers the results and

compares them to existing literature. Lastly, the concluding

remarks for the current work are presented in the Section 7.

2. LITERATURE SURVEY

The OARSMT is solved using common optimization methods

such as PB Sat, genetic algorithms and physarum-inspired

optimization algorithms [7] - [9]. Some recent researches based

on DRL technique to solve challenges akin to these are included

in this section.

A DQN (Deep Q-network) is a combination of Q-learning and

deep neural networks. Hasselt et al. [10] proposed Double DQN

(DDQN) that uses the DQN algorithm to enhance Double Q-

learning [11] Both DQN and Double DQN were compared and

found that DQNs greedy policy performed better than DDQN.

Liao et al. [12] addressed the routing problem by combining

reinforcement learning and deep learning. A DQN router was

proposed that established standards for solving pin

decomposition. It modeled the circuit as a grid graph from which

information was fed into the DQN router and outperformed the

conventional 𝐴∗approach. It solved the unfair distribution of

routing resources and optimized wire length while decentralizing

routing resources. This optimization strategy produced high-

quality global routing results without overflow.

Liu et al. [13] developed a reinforcement learning-based

algorithm that is better in terms of quality and runtime for small

to medium-sized networks. It may not handle problems with

changing constraints or dynamic environments, which pose to be

a substantial challenge. Yan et al. [14] designed a framework to

find a steiner tree of minimum weight in a graph that connects a

set of pins. The DRL based DQN and graph embedding methods

were used in this work. It encrypted path-related data from a

CHITTARANJAN MOHAPATRA AND NIBEDITA ADHIKARI et al.: A NOBLE RECTILINEAR STEINER TREE WITH OBSTACLES USING PARALLEL DQN: NRST

1990

specified collection of steiner tree problem instances in order to

retrieve solutions. It bears overhead of intensive computation with

a heavy demand for computational resources. A space partition

technique is employed by using attention-based policy parameter

optimization and training schemes with different stopping criteria

by Wang et al. [15]. It reduced computational and memory

overheads compared to traditional algorithms for handling large

instances. This problem faces a challenge due to the lack of

publicly available problem set repositories with diverse sizes and

constraints.

Lin et al. [16] developed DRL based edge embedding model

and Multi-Source Dijkstra based steiner tree which has a slow

convergence rate. The development of a better solution to handle

obstacles is still in demand to improve the quality of convergence.

The proposed method targets to reduce the wire length with

less computation overhead and offers an outperform reward

growth rate using a Kruskal Based DRL method and Adam

Optimizer. The suitability of this proposed method is discussed in

the following sections.

3. PROBLEM STATEMENT

Let consider a graph G(V,E) contains a set of vertices V and a

set of edges E. All vertex represent a VLSI circuit's pins, and

edges represent the connection between two pins. There are three

types of connections between two adjacent pins in a graph. These

connections aim to discover shared paths among nearby nodes and

get minimal steiner points. These three types of connections are

shown in the Fig.1.

Fig.1. Types of Connection among Pins

If u and v represent two pins or nodes of a Graph G, the overall

objective function aims to minimize the distance between these

pins. It uses the standard Manhattan distance to compute the

distance as shown in the Eq.(1). Here x1, y1 ∈ u and x2, y2 ∈ v

are the coordinates of the pins respectively.

 ()
1 1 2 2

1 2 1 2

(,),(,)

min Wirelength

x y x y

x x y y= − + − ∣ ∣ ∣ ∣ (1)

An edge (u,v)∈G represent states where actions correspond to

three types connections between two nodes. R denotes a set of

obstacles. A state-action pair combines a specific edge (u,v) and

an action a. A reward value is obtained based on criteria such as

minimizing edge weight w(u,v) and ensuring obstacle-free paths

((u,v)∩R=∅). The reward value can be a negative value if the

criteria could not be passed. The Q-values are calculated using the

current Q-value Q[(u,v)][a] and the projected Q-value for the

Next state-action pair (u",v") and action a" where (u",v")

represents the next state and a" represents the next action. Thus,

the objective function aims to maximize Q-values within the Deep

Q-Network (DQN) for targeted state-action pairs as shown in the

Eq.(2). The ∝ and γ are the learning and discount factor

respectively. The ∝ is used in the optimization process and the γ

represents difference in future and present rewards.

[(,)][] [(,)][]

Reward max [(,)][] [(,)][]
a

Q u v a Q u v a

Q u v a Q u v a

 +

 +

 −

 (2)

4. PROPOSED METHOD

The Lin et al. [16] method applies DRL for bridge embedding,

but in this work a steiner tree is constructed using a Kruskal based

DRL approach. The Kruskal is applied to the environment to build

the OARSMT. The complete process has three step, initial

solution, training and testing. The testing method is similar to

training process with one iteration. So, the initial solution, DQN

training model and its working principles are discussed in this

section.

First, an initial OARSMT is built to get the minimum number

of pins and non-pins for connecting all pins. A Delaunay

triangulation approach is used to create a graph of a given set of

pins. The edges of the graph are sorted in descending order of their

distance. The union and find data structures are used to create a

minimum spanning tree of the created graph. The steiner point is

found between two pins during the construction of the tree. There

are three types of rectilinear paths. When one type faces any

obstacle, it finds the alternative. If no path is possible the path is

discarded. Additionally, the connection of two pins avoids cross

connections and prefers sharing paths to reduce the number of

steiner points. The procedure is mentioned in Algorithm 1.

Algorithm 1: Obstacle Avoidance Rectilinear Steiner Tree

Input: Set of Pins P and Obstacles O

Output: Obstacle Avoidance Rectilinear Steiner Tree

1. E = Delaunay Triangulation (P)

2. Create a Grid A=zeros(x_max,y_max)

3. Set A[i][j] = ∞ where i,j ∈ O

4. for v ∈ P do

a. Makeset(v)

5. end for

6. Q=MinPriorityQueue(E)

7. Cost=0

8. while Q do

a. e(u,v)=Delete(Q)

b. if Find(u) != Find(v) then

i. s=Find Steiner Point(u,v)

ii. if s ∈ A where A ≠0 then

continue

iii. end if

iv. if e(u,v) intersect any path and s∉ A

where A > 0 and A < ∞ then

continue

v. end if

vi. if e(u,v) ∈ A where A == ∞ then

continue

vii. end if

viii. Union(u,v)

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

1991

ix. Cost = Cost + Cost_(e(u,v))

c. end if

9. end while

10. return Tree

The initial solution of the proposed work is different than

others because it uses only pins. The algorithm fails to create a

connected graph, or MST, if there are heavy obstacles between

two nodes. So it forms a disconnected tree. A heuristic is

developed to connect all forests of the disconnected tree in

Algorithm 2. The objective is to detect and connect outliers. It

finds the number of connected components using disjoint data

structures. Next, it finds the closest forest and connects them with

additional points. These additional points are the non-pins from

the obstacle boundaries. Finally, these non-pins are added to the

graph that is used to optimize.

Algorithm 2: Connect Component Heuristic

Input: OARSMT

Output: Set of nodes and edges

1. Find the component set from the obtained OARSMT

2. List out all leaf nodes with among all component set of

OARSMT

3. Determine the shortest distance between the leaf nodes

of two adjacent components

4. Find the obstacles that lie between the leaf nodes of

closest component

5. Construct a Graph using Delaunay Triangulation of the

points of the obstacles and leaf

6. Find the shortest path between the leaf nodes in the

Delaunay graph.

7. Include set of nodes and edges belonging to the shortest

path into the original graph

4.1 PROPOSED NRST ARCHITECTURE

The proposed DRL method is called NRST (Noble Rectilinear

Steiner Tree) which objective is to develop an OARSMT on an

environment for a set of actions. A feed forward neural network

with two fully connected layers is being built for approximating

the Q-value function for the DRL algorithm. The is a Deep Q-

Network (DQN) which assigned the task to different tensors of

the tensor flow model. This DQN runs in parallel using multi-

threading approach to handle massive pins and obstacles. A block

diagram of the NRST agent training process is shown in the Fig.2

which shows the flow of data among the components. The agent

has a central role in a reinforcement learning approach because all

operations are carried out by the agent. So the agent is the hub of

the architecture.

• DQN: The DQN architecture has four layers. A state is an

edge between two pins. This is an input feature vector of the

neural network, the coordinates of the two end points. The

action is selected by using the policy gradient method which

is a probability distribution over actions for a given state.

When the input feature is fed to the Q-Network and action is

sampled which results in a set of a Q-value. Two hidden

dense layers use the Rectified Linear Unit (ReLU) activation

function [17] and sample Q-values for each action and pass

them to the output layer. The first fully connected (dense)

layer of the neural network has 64 units. This layer performs

matrix multiplication of the input with its weights, followed

by applying the ReLU activation function.

• Target DQN: The target DQN is a copy of the DQN which

is used to select the target state. A separate neural network

is used to reduce the selection of the same state.

Fig.2. NRST Training Model

• Grid Environment: The grid is a layout of nodes and

obstacles in the graph. An action of the agent is to construct

OARSMT. An action is rewarded with a score of positive

value corresponding to the type of edge used in the

OARSMT otherwise the action is punished with a negative

value. The punishment means it will have less probability of

selection and vice versa.

• Experience Replay Buffer: A Q-Network stores data in an

Experience Replay Buffer, unlike a Q-table. The buffer

stores the information like state, action, reward, and target

state in a tuple called experience. Its primary tasks are

storing and sample experiences. It is implemented using a

priority queue data structure. The agent samples a batch of

experiences (mini-batches) randomly for optimizing the Q-

network parameters during training. The random sampling

breaks the temporal correlation between consecutive

experiences and reduces the risk of over fitting to recent

experiences.

• Adam Optimizer: The optimization of the input weight and

other network parameters are performed by the Adam

(Adaptive Moment) optimizer. The gradient of loss is

calculated for a set of current and target sets. The loss is

optimized to attain the minimum wire length by updating the

Q-Network parameters.

4.2 NRST ALGORITHM

The working principle of the NRST Algorithm is mentioned

in Algorithm 3. The inputs are graph and grid environments, and

the output is a trained deep Q network. The objective is to

optimize different types of connections in the steiner tree. The

first step is to initialize DQN and Experience Replay Buffer. In

every episode (epoch) a temporary graph and grid environment T

are used to build an intermediate OARSMT with a connected set

CHITTARANJAN MOHAPATRA AND NIBEDITA ADHIKARI et al.: A NOBLE RECTILINEAR STEINER TREE WITH OBSTACLES USING PARALLEL DQN: NRST

1992

of edges. The size of T is the maximum of x and y coordinate

values from the pins or non-pins of the graph.

Algorithm 3:

Input: Graph 𝐺 = (𝑉, 𝐸)and Grid 𝑇

Output: Trained Deep Q- Network

Assumption: State = 𝐸 , Actions 𝐴 = [0, 1, 2]

1. Initialize DQN = 𝐹𝐹𝑁(𝑠 ∈ 𝑆, ℎ1, ℎ2, 𝑎 ∈ 𝐴) , Replay

Buffer 𝐷 , 𝜀, 𝛼, 𝛾, 𝜃

2. for each episode do

3.
Initialize Grid 𝑇 [max

(𝑥𝑖,𝑦𝑖)∈𝑉
𝑥𝑖 + 1] [max

(𝑥𝑖,𝑦𝑖)∈𝑉
𝑦𝑖 + 1] =

0 and Graph 𝐺𝑡 = 𝐺

4. Use Kruskal’s algorithm to find the MST of 𝐺𝑡with

edges 𝐸𝑀𝑆𝑇 ⊆ 𝐸

5. for each edge 𝑒 ∈ 𝐸𝑀𝑆𝑇 do

6. 𝑠𝑡 = 𝑒 , Select action

 𝑎𝑡 =

{
~𝑟𝑎𝑛𝑑𝑜𝑚(𝑠𝑡 , 𝑎) 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑙𝑢𝑒 < 𝜀

argmax
𝑎∈𝐴

(𝑠𝑡 , 𝑎) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

7. Compute Reward

 𝑟 = {
1 , 𝑖𝑓 𝑎𝑡 = 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑒
−1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

8. Compute Target state

 𝑠𝑡+1 = 𝑔(𝑠𝑡 , 𝑎𝑡) = max
𝑎′

(𝑄[𝑒′][𝑎′])

9. Create an Experience 𝑃𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑅, 𝑠𝑡+1)

10. 𝐷 ← 𝐷 ∪ {𝑃𝑡}

11. if |𝐷| ≥ min _𝑠𝑖𝑧𝑒 then

12. Sample Mini-batch

 Mini − batch = {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′)}1

𝐵~ 𝐷

13. Compute Loss

14.
 𝐿(𝜃) =

1

|𝐵|
 ∑ (𝑄(𝑠𝑖 , 𝑎𝑖; 𝜃) −(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠𝑖

′)∈𝐵

(𝑟𝑖 + 𝛾 max
𝑎′

𝑄(𝑠𝑖
′, 𝑎′; 𝜃−)))

2

15. Update Parameters 𝜃 ← 𝜃 − 𝛼∇𝜃𝐿(𝜃)

16. end if

17. end for

18. end for

• Action Selection: The 𝜀-Greedy Technique is used for

action selection by generating a random value. The 𝜀 value

is considered 0.1 to have a better exploration and

exploitation. It results in positive convergence of the DQN.

The action 𝑎𝑡 at t iteration is selected either randomly or the

maximum probability distribution value from the Q-

Network whose input is a state.

• Reward Calculation: The reward is collected from the grid

environment by applying action to it. The action is to

construct the OARSMT. The reward value r is awarded to

(S_t,a_t) which is set to 100 if the connection type matches

the selected action otherwise -1.

• Target state selection: The target state is the edge followed

by the current edge with maximum Q-value. Let the two end

points of a state at the t iteration is St with nodes u and v i.e.

St = (u,v). Let (u",v") are the set of edges outgoing from v

except the edge (u,v). So the target state St+1 is another edge

from (u",v") having maximum action value. In the algorithm

(u,v) and (u",v") are mentioned as e and e" respectfully. The

a" is a set actions belonging to (u",v").

• Q-Network Update: An experience 𝑃 is a tuple of four

values that is P = (St,at,rt,St+1). This is created and added to

replay buffer. A mini-batch of size B is randomly sampled

from the Replay Buffer D if there are enough value of a

specific size as per the Eq.(3). Here, ~ denotes random

sampling from the replay buffer.

 1Mini-batch {(, , ,)}B
i i i i is a r s D

== (3)

A gradient descent function updates the network parameters 𝜃

with an objective to maximize the Q-value. The loss function is

computed with respect to 𝜃 signifying the difference between the

current and target state. The expectation of the Q-value at

iteration 𝑖 is computed by the gradient descent function as per the

Eq.(4). Here L is the gradient value with respect to the loss of

the Q-Network. This updates all the network parameters.

0

()
B

i i

i

L Q r
=

=

E (4)

• Parallelism and Synchronization: This approach uses

multiple threads to process different epochs of the learning

method. These epochs are randomly assigned to these

threads as parallel tensors. The parallel allocation of tensor

may fall in deadlock. So synchronization of Tensor Flow

operations is essential to controlling parallelism. However,

Locks are maintained around the Tensor Flow model

ensuring thread safety and avoiding race conditions.

5. RUN TIME ANALYSIS

In this section, efforts are made to determine the time

complexity of the proposed algorithm based on its serial

execution. The following section demonstrates that parallel

execution is significantly faster in practice. Additionally, a proof

is provided to compute the time taken for checking obstacles

during the construction of an MST.

Theorem 1: Let G(V,E) be the graph and T is the grid

representing environment. If each obstacle in T is represented

with a two dimensional sub-array and vertex are represented in a

single cell of the grid. The time complexity of OARSMT is O (E

logE) including the checking of obstacle in the path between two

adjacent nodes.

Proof: The OARSMT problem checks obstacles during

construction of MST using Kruskal’s algorithm whose time

complexity is E logE [18]. The implementation process used the

np.any() library function for a single connection between two

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

1993

coordinates. All the connections mentioned in the Fig.1 are

rectilinear in nature. The search window is either the x-axis value

or the y-axis value of the Grid Graph which is a liner search.

Hence, the np.any() is linear with respect to the size of the

window [19]. So, the checking time of obstacles during the

construction of MST is O(E). Hence, the overall time complexity

of OARSMT is (ElogE) .

Theorem 2: For a graph with E - number of edges, V - number

of vertices, T - number of epochs, with B - batch size used for

updating the DQN, the time complexity of the Algorithm 3 can be

expressed as (T×(ElogE+V×B×C)).

Proof: The proposed method’s training is primarily driven by

the computation of the minimum spanning tree using Kruskal’s

algorithm and DQN operation in each episode. As per the

Theorem 1, the time complexity OARSMT is O(ElogE)

=O(VlogV). The OARSMT returns exactly V-1 edges for V

vertices. The edges of OARSMT serve as input to DQN. So all

operations take O(V) time. The gradient function updates the

parameters with a time complexity of O(B×C) where C and B

represent the complexity of computing the gradient and the batch

size respectively[20]. Combining all for T episodes, the overall

time complexity of the Q-Network training function is

(T×(ElogE+V×B×C))

6. EXPERIMENTAL RESULTS

The experiment is conducted on a Google Colab Pro

environment which is a Google Cloud service providing access to

NVIDIA Tesla T4 or P100 GPUs, up to 50 GB of RAM, and a

Linux-based operating system. The deep Q-Network is executed

in parallel using Tensor Flow library and multi-threading. This

development is carried out using Python language through a

Jupiter Notebook interface. Next, fifteen obstacle based DIMACS

Challenge Benchmark instances are used from [21] to test the wire

length by avoiding obstacles. There are ten RC instances,

designated RC1 through RC10 range from a minimum of 10

obstacles and 500 pins to a maximum of 1000 obstacles and 500

pins. The training is carried out for 200 epochs or episode for Lin

et al. [16] and NRST. The wire length value, training time and

cumulative reward are recorded at each epoch.

6.1 WIRE LENGTH COMPARISON

The proposed algorithm is also designed to manage obstacle-

based instances. Its performance in terms of wire length is

compared with results from previous studies on obstacle-based

instances, specifically those by [9], [22], [23], [16] as shown in

the Table.1.

Table.1. Wire Length Comparison

Bench-

mark

Instances

Wire Length Improvement Rate

[9] [22] [23] [16] NRST [9] [22] [23] [16]

RC01 26334 27630 27015 26040 26028 1.17 5.8 3.66 0.05

RC02 42462 43290 43882 41980 40436 4.78 6.6 7.86 3.68

RC03 54722 56940 54737 54560 53987 1.35 5.19 1.38 1.06

RC04 60925 61990 60800 59560 54020 11.34 12.86 11.16 9.31

RC05 75146 75685 75685 76640 74193 1.27 1.98 1.98 3.2

RC06 84030 84662 85808 82954 81967 2.46 3.19 4.48 1.19

RC07 113056 113598 113672 111961 110674 2.11 2.58 2.64 1.15

RC08 118277 119177 122057 119213 112825 4.61 5.33 7.57 5.36

RC09 117722 117074 117993 116295 112147 4.74 4.21 4.96 3.57

RC10 167781 167219 169443 169450 149305 11.02 10.72 11.89 11.89

Average 4.48 5.84 5.75 4.05

Total average 5.03

The improvement rate I is calculated using the formula in the

Eq.(5). The proposed method demonstrates an approximate 5%

improvement over all the other methods. Thus, the proposed

method NRST demonstrates a significant performance advantage

across the instances compared to the existing alternatives.

 Others NRST

Others

Wirelength Wirelength
100

Wirelength
I

 −
=

 (5)

6.2 COMPARISON OF CONVERGENCE TREND

The convergence rate of DRL models defines the rate of

change in the learning of the training parameter i.e. Q-values. The

Fig.3 shows the reward curves for Lin et al. [16] and NRST

approach. The reward value is the cumulative of the reward of

each action in an episode. The Lin paper approach and NRST

paper training model run same data set for 200 episode with same

reward as 100 and punishment value to -1 for comparing the

convergence rate. It also keeps the α, ε and γ value fixed as 0.001,

0.1 and 0.9 respectively for a meaningful comparison. The growth

rate of NRST training model is compared with the Lin's [16] edge

embedding model. The growth rate defines the sum of the number

of episodes having reward more than or equal with the others [16].

These plots have the number of episodes on the x-axis and the

corresponding episode reward on the y-axis. The dark green and

magenta lines represent the NRST and Lin et al. [16] reward

trends, respectively.

(a) RC1

(b) RC2

CHITTARANJAN MOHAPATRA AND NIBEDITA ADHIKARI et al.: A NOBLE RECTILINEAR STEINER TREE WITH OBSTACLES USING PARALLEL DQN: NRST

1994

(c) RC3

(d) RC4

(e) RC5

(f) RC6

(g) RC7

(h) RC8

(i) RC9

(j) RC10

Fig.3. Training Convergence Comparison

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

1995

For both the approaches, it is found that the reward value

increases with increase in pins. The initial and final reward values

display a hike if the number of obstacles is more than the number

of pins as in the benchmark RC6, RC7, RC8 and RC9. The reward

of the approaches is overlapping and competing more with each

other lower gap. There is wider gap between the rewards in RC1,

RC2, RC3, RC4 and RC10. In all the cases the NRST signal stays

high achieving an average reward growth rate of 85.3% than the

Lin et al. [16].

6.3 TRAINING TIME COMPARISON

The proposed model is trained using the DIMACS Challenge

Benchmark Instances, RC1 through RC10, which differ in

complexity and size. A comparison of training time is shown in

the Fig.4 where the y-axis is the training time in second unit and

x-axis are the bench mark instances. The Lin et al. [16] and NRST

approaches are shown in blue and red color bar respectively. It is

found the NRST has advantages of concurrency and trains faster

than Lin. It can be noticed that RC10 takes less time because it

has less number of Obstacles than RC6, RC7, RC8 and RC9. It

can be considered that the use of parallelism makes a little

advantage than the existing approach.

Fig.4. Training Time Comparison

7. CONCLUSION

The Steiner tree construction plays a critical role in VLSI

design due to its significance in optimizing interconnects on a

chip. Hence it always attracts sincere attention. A union-find data

structure based deep Q-learning approach has been developed in

this paper for construction of a rectilinear steiner tree. It considers

the constraint to avoid obstacles while minimizing the wire

length. It achieves lower wire length for obstacle based instances

in DIMACS Implementation Challenge. The results obtained are

quantified as below:

There is improvement of approximately 5% in wire length

reduction. The convergence growth rate is 85.3% that indicates an

accumulation of reward resulting in maximum return. The

parallelism in the model leads to 9.8% reduction in training time

across different complex benchmarks in diverse scenarios.

The current approach requires higher configuration-based

architecture like memory and GPU. Therefore, attention can be

directed toward developing alternative optimized solutions for

Steiner tree construction by designing other evolutionary or

nature-inspired algorithms to address the mentioned limitation.

REFERENCES

[1] X. Chen, G. Liu, N. Xiong, Y. Su and G. Chen, “A Survey

of Swarm Intelligence Techniques in VLSI Routing

Problems, IEEE Access Vol. 8, pp. 26266-26292, 2020.

[2] C. Mohapatra, N. Adhikari, B. Ray, B. Nayak and A. Dash,

“AMST: Accelerated Minimum Spanning Tree for Scalable

Data”, Indian Journal of Science and Technology, Vol. 16,

No. 37, pp. 3110-3120, 2023.

[3] R.S. Sutton and A.G. Barto, “Reinforcement Learning: An

Introduction”, IEEE Transactions on Neural Networks, Vol.

9, No. 5, pp. 1-9, 2018.

[4] Z. Ding, Y. Huang, H. Yuan and H. Dong, “Introduction to

Reinforcement Learning, Deep Reinforcement Learning:

Fundamentals, Research and Applications”, Springer, pp.

47-123, 2020.

[5] B. Jang, M. Kim, G. Harerimana and J.W. Kim, “Q-learning

Algorithms: A Comprehensive Classification and

Applications”, IEEE Access, Vol. 7, pp. 133653-133667,

2019.

[6] B. Altuner and Z.H. Kilimci, “A Novel Deep Reinforcement

Learning based Stock Price Prediction using Knowledge

Graph and Community Aware Sentiments”, Turkish Journal

of Electrical Engineering and Computer Sciences, Vol. 30,

No. 4, pp. 1506-1524, 2022.

[7] S. Kundu, S. Roy and S. Mukherjee, “Rectilinear Steiner

Tree Construction Techniques using PB-SAT-based

Methodology”, Journal of Circuits, Systems and Computers,

Vol. 29, No. 4, pp. 1-7, 2020.

[8] M. Rosenberg, T. French, M. Reynolds and L. While, “A

Genetic Algorithm Approach for the Euclidean Steiner Tree

Problem with Soft Obstacles”, Proceedings of the Genetic

and Evolutionary Computation Conference, pp. 618-626,

2021.

[9] W. Guo and X. Huang, “Pora: A Physarum-Inspired

Obstacle-Avoiding Routing Algorithm for Integrated Circuit

Design”, Applied Mathematical Modelling, Vol. 78, pp. 268-

286, 2020.

[10] H. Van Hasselt, A. Guez and D. Silver, “Deep

Reinforcement Learning with Double Q Learning”,

Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 30, No. 1, pp. 2094-2100, 2016.

[11] H. Hasselt, “Double Q-Learning”, Advances in Neural

Information Processing Systems, Vol. 23, pp. 1-8, 2010.

[12] H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada and L.

Burak Kara, “A Deep Reinforcement Learning Approach for

Global Routing”, Journal of Mechanical Design, Vol. 142,

No. 6, pp. 1-17, 2020.

[13] J. Liu, G. Chen and E.F. Young, “Rest: Constructing

Rectilinear Steiner Minimum Tree Via Reinforcement

Learning”, Proceedings of International Conference on

Design Automation, pp. 1135-1140, 2021.

[14] Z. Yan, H. Du, J. Zhang and G. Li, “Cherrypick: Solving the

Steiner Tree Problem in Graphs using Deep Reinforcement

Learning”, Proceedings of International Conference on

Industrial Electronics and Applications, pp. 35-40, 2021.

[15] S. Wang, Y. Wang and G. Tong, “Deep-Steiner: Learning to

Solve the Euclidean Steiner Tree Problem”, Proceedings of

International Conference on Wireless Internet, pp. 228-242,

2022.

CHITTARANJAN MOHAPATRA AND NIBEDITA ADHIKARI et al.: A NOBLE RECTILINEAR STEINER TREE WITH OBSTACLES USING PARALLEL DQN: NRST

1996

[16] Z. Lin, Y. Zhu, X. Huang, L. Yang and G. Liu, “Obstacle-

Avoiding Rectilinear Steiner Minimal Tree Algorithm based

on Deep Reinforcement Learning”, Proceedings of

International Conference on Artificial Intelligence of Things

and Systems, pp. 149-156, 2023.

[17] A.K. Dubey and V. Jain, “Comparative Study of

Convolution Neural Network’s Relu and Leaky-Relu

Activation Functions”, Applications of Computing,

Automation and Wireless Systems in Electrical Engineering,

pp. 873-880, 2019.

[18] T. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein,

“Introduction to Algorithms”, 2009.

[19] R. Harris, K.J. Millman, S.J. Van Der Walt, R. Gommers, P.

Virtanen, D. Cour napeau, E. Wieser, J. Taylor, S. Berg and

N.J. Smith, “Array Programming with Numpy”, Nature,

Vol. 585, pp. 357-362, 2020.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness,

M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjel and

G. Ostrovski, “Human-Level Control Through Deep

Reinforcement Learning”, Nature, Vol. 518, pp. 529-533

2015.

[21] Dimacs Implementation Challenge, Available at

https://dimacs11.zib.de/downloads.html, Accessed in 2023.

[22] X. Huang, W. Guo, G. Liu and G. Chen, “Fh-oaos: A Fast

Four-Step Heuristic for Obstacle-Avoiding Octilinear

Steiner Tree Construction”, ACM Transactions on Design

Automation of Electronic Systems, Vol. 21, No. 3, pp. 1-31,

2016.

[23] X. Huang, G. Liu, W. Guo, Y. Niu and G. Chen, “Obstacle-

Avoiding Algorithm in X-Architecture based on Discrete

Particle Swarm Optimization for VLSI Design”, ACM

Transactions on Design Automation of Electronic Systems,

Vol. 20, No. 2, pp. 1-28, 2015.

https://dimacs11.zib.de/downloads.html

