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Abstract 

The proliferation of the Internet of Things (IoT) has revolutionized the 

way devices interact, share data, and respond to real-time stimuli. 

Embedded IoT systems offer low-power, high-efficiency solutions for a 

variety of domains such as smart homes, healthcare, agriculture, and 

industrial automation. Despite advancements, achieving seamless 

connectivity and real-time intelligence in embedded IoT remains 

challenging due to limited computational power, energy constraints, 

and fragmented communication protocols. These limitations hinder 

performance, scalability, and responsiveness in real-world 

deployments. This research proposes a hybrid edge-cloud framework 

utilizing lightweight embedded devices integrated with optimized 

firmware for real-time processing, adaptive sensor data management, 

and low-latency communication. The method leverages MQTT 

protocol for lightweight messaging and integrates TinyML models on 

microcontrollers for localized intelligence, reducing reliance on 

centralized cloud services. The proposed system was tested using 

simulations in MATLAB and real-world deployments using Raspberry 

Pi 4 and ESP32 devices. Compared with existing models (CoAP-based 

IoT, MQTT without ML, Edge-Only, and Cloud-Only), the hybrid 

framework improved latency by 35%, energy efficiency by 27%, and 

inference speed by 42%, with minimal compromise on accuracy. The 

results validate the model’s scalability, responsiveness, and real-time 

intelligence for embedded IoT environments. 
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1. INTRODUCTION 

The rapid expansion of the Internet of Things (IoT) has created 

new opportunities for automation, data collection, and real-time 

decision-making in various sectors, including smart homes, 

healthcare, agriculture, and industrial applications. IoT is 

transforming the way systems interact with their environment by 

using sensors, actuators, and embedded systems to collect and 

exchange data seamlessly. The integration of IoT with machine 

learning (ML) at the edge and cloud computing has significantly 

improved the efficiency and scalability of these systems. By 

leveraging low-latency data processing and intelligent decision-

making, these systems offer improved resource management, 

predictive maintenance, and personalized services. However, as 

IoT networks scale, new challenges have emerged, particularly 

around resource management, energy efficiency, and system 

complexity. 

The existing systems based on traditional communication 

protocols such as CoAP (Constrained Application Protocol) and 

MQTT (Message Queuing Telemetry Transport) have limitations 

in handling the growing volume of data generated by IoT devices. 

CoAP-based IoT systems often suffer from low scalability and 

high latency when handling large datasets, as they are not 

optimized for real-time analytics [1]. MQTT without ML systems 

also experience limited intelligence, relying on basic data 

transmission without analyzing or processing the data locally [2]. 

Edge-only processing offers significant advantages in terms of 

low-latency decision-making but is constrained by the processing 

power of the devices and the complexity of deploying machine 

learning models on resource-constrained hardware [3]. On the 

other hand, cloud-only processing provides high computational 

power but introduces network latency and bandwidth limitations, 

making it unsuitable for real-time applications [4]. 

The challenges in the current IoT landscape can be categorized 

into several areas: 

• Scalability: Handling the increasing amount of data 

generated by IoT devices while ensuring system 

performance is challenging. IoT systems must be able to 

scale without compromising real-time decision-making [5]. 

• Energy Efficiency: IoT devices typically have limited 

power resources, making energy-efficient communication 

and processing crucial for extended system longevity [6]. 

• Latency: For time-sensitive applications, such as healthcare 

or industrial IoT, low latency is critical. Delays in data 

transmission or processing can severely impact the 

effectiveness of the system. 

• Complexity in Data Processing: With the growth in IoT 

devices, complex data analytics, such as anomaly detection, 

must be performed efficiently and intelligently. Balancing 

local processing capabilities with cloud-based analytics 

remains a significant challenge [7]. 

The research focuses on developing a framework that balances 

the benefits of local data processing with cloud-based analytics to 

address these challenges. The goal is to create a system that can 

efficiently handle large datasets, provide low-latency decision-

making, reduce energy consumption, and improve the overall 

accuracy of IoT applications [8-9]. 

The primary objectives of this research are: 

• Designing a hybrid Edge-Cloud IoT framework that 

integrates local preprocessing, inference, and selective data 

upload to improve system scalability, latency, and energy 

efficiency. 

• Optimizing communication protocols like MQTT to allow 

for efficient data transfer, reducing unnecessary 

communication overhead and minimizing energy 

consumption. 

• Enhancing accuracy by leveraging TinyML models for local 

inference and cloud-based analytics for complex decision-

making. 

The novelty of this work lies in the combination of edge and 

cloud processing using an intelligent communication strategy to 
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optimize resource management in IoT systems. The key 

contributions of this research are: 

• A novel edge-cloud hybrid framework that performs local 

preprocessing and inference with minimal data upload, 

improving scalability and reducing latency. 

• An optimized MQTT protocol that allows selective data 

upload based on specific criteria, ensuring efficient 

communication and reducing energy consumption. 

• Energy-efficient techniques and machine learning models 

that are optimized for low-power edge devices, ensuring 

high performance without compromising energy usage. 

• Experimental validation of the proposed system across 

several real-world IoT scenarios to demonstrate 

improvements in accuracy, latency, energy efficiency, and 

inference time. 

2. RELATED WORKS 

The integration of IoT with machine learning and edge 

computing has been an active area of research in recent years. 

Several works have explored different strategies to address the 

limitations of traditional IoT systems. 

The Constrained Application Protocol (CoAP) has been 

widely used in IoT systems due to its lightweight nature. Several 

studies have explored the use of CoAP in low-power IoT devices, 

which is particularly useful in resource-constrained environments 

[8]. However, CoAP's scalability and data handling capabilities 

are limited, especially when it comes to large datasets generated 

by modern IoT systems. For instance, CoAP-based systems often 

suffer from high latency when processing complex datasets and 

can be inefficient in terms of data transmission, making them 

unsuitable for applications that require real-time analysis. 

MQTT is a popular protocol for IoT systems due to its 

simplicity and efficiency in lightweight communication. Several 

studies have focused on optimizing MQTT for data transmission 

in IoT networks, especially for small devices with low processing 

power [9]. However, MQTT's ability to perform data analysis is 

limited, as it only transmits data without providing built-in 

mechanisms for processing or decision-making. Some work has 

been done on integrating basic data filtering with MQTT to reduce 

unnecessary traffic, but it lacks the ability to perform 

sophisticated machine learning analysis, making it less suitable 

for complex IoT applications. 

Edge computing has gained significant attention as a solution 

for low-latency processing in IoT systems. Edge devices can 

process data locally without relying on cloud infrastructure, which 

helps reduce communication overhead and improve decision-

making speed [10]. However, the main challenge with edge-only 

systems is the limited computational power available on 

embedded devices. While edge processing can handle simple 

tasks such as basic filtering or anomaly detection, it struggles with 

more complex tasks that require intensive computations, such as 

deep learning models. This has led to the exploration of hybrid 

systems that combine the strengths of edge computing and cloud 

processing. 

Cloud computing provides high computational resources and 

scalability, making it suitable for large-scale data analysis in IoT 

systems. Studies have demonstrated the power of cloud-based 

analytics for real-time monitoring and decision-making [11]. 

However, cloud-only systems suffer from inherent latency issues 

due to the distance between the IoT devices and the cloud servers. 

This makes cloud processing less suitable for real-time 

applications, particularly in sectors like healthcare or industrial 

automation, where low-latency decision-making is crucial. 

Furthermore, cloud processing often requires significant 

bandwidth, which may not be available in remote areas or in 

situations with network congestion. 

Recent work has focused on combining edge computing with 

cloud-based analytics to overcome the limitations of both 

approaches. These hybrid systems leverage edge devices for real-

time data processing and use the cloud for more complex tasks, 

such as machine learning-based predictions or large-scale data 

storage [12]. These systems can provide the benefits of low-

latency processing while still leveraging the computational power 

of the cloud for data-intensive tasks. However, the integration of 

edge and cloud computing introduces challenges related to 

communication protocols, data synchronization, and resource 

management. Additionally, the energy consumption of hybrid 

systems needs to be carefully optimized to ensure efficiency. 

Thus, while individual methods like CoAP, MQTT, edge-only 

processing, and cloud-only processing have been explored 

extensively, there is a growing need for integrated hybrid 

solutions that leverage the strengths of both edge and cloud 

computing. The research on hybrid edge-cloud IoT frameworks 

has been gaining momentum, with a focus on improving energy 

efficiency, scalability, and real-time decision-making. 

3. PROPOSED METHOD 

The proposed method integrates embedded IoT devices with 

lightweight machine learning models (TinyML) and MQTT-

based communication for real-time and intelligent connectivity. 

The system is designed to process data locally while selectively 

transmitting only relevant information to the cloud for long-term 

analytics. This reduces latency, conserves bandwidth, and 

improves responsiveness. The workflow includes: 

Step 1: Sensor Data Acquisition from multiple sources via 

ESP32 microcontrollers. 

Step 2: Local Preprocessing and Inference using pre-trained 

TinyML models deployed on the microcontrollers. 

Step 3: Communication via MQTT Protocol, enabling 

lightweight and efficient messaging between devices and 

servers. 

Step 4: Selective Data Upload of relevant or abnormal events to 

a cloud platform using Raspberry Pi 4 as an edge node. 

Step 5: Cloud-Based Analysis and Feedback, which is sent back 

to the embedded devices for actuation or alerts. 

3.1 SENSOR DATA ACQUISITION 

The first step in the proposed system is acquiring sensor data 

from various embedded IoT devices. In this step, real-time 

environmental or system data are captured by sensors attached to 

the microcontrollers. These sensors can measure a variety of 

parameters such as temperature, humidity, motion, or distance. 

The data from the sensors is collected at regular intervals and 

prepared for preprocessing. 
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For example, consider an IoT system monitoring the 

temperature and humidity of an industrial environment. Sensors 

such as the DHT11 (for temperature and humidity) are used to 

gather data. The microcontroller (e.g., ESP32) interfaces with the 

sensors, collects the data, and stores it temporarily in a buffer 

before transmitting or processing it further. 

Table.1. Sensor Data Acquisition Example 

Timestamp Temperature (°C) Humidity (%) Sensor ID 

2025-04-25  

12:00:00 
23.5 58 DHT11-01 

2025-04-25  

12:01:00 
23.6 57 DHT11-01 

2025-04-25  

12:02:00 
23.7 57 DHT11-01 

As shown in Table.1, the sensor data is timestamped and 

collected every minute. This data is then used for further 

processing, which is explained next. 

3.2 LOCAL PREPROCESSING AND INFERENCE 

Once the sensor data is acquired, the next step is local 

preprocessing and inference. The raw data typically undergoes 

several preprocessing steps to make it suitable for inference. 

These steps include: 

3.2.1 Noise Filtering: 

Sensor readings are often noisy due to environmental factors. 

Filtering techniques such as moving average or low-pass filters 

are applied to smooth out these fluctuations in the data. 

3.2.2 Normalization: 

Normalizing data ensures consistency across different sensor 

types, making it easier for machine learning models to process. 

Normalization transforms the raw sensor values into a 

standardized range (e.g., 0 to 1 or -1 to 1). 

3.2.3 Feature Extraction: 

In this step, important features are extracted from the raw data. 

For example, the change in temperature over time could be a 

useful feature for a predictive maintenance system in industrial 

IoT applications. 

3.2.4 Inference Using Pre-Trained TinyML Model: 

After preprocessing, the data is passed through a machine 

learning model deployed on the microcontroller. TinyML models 

are optimized for edge devices and perform inference locally 

without needing to transmit data to the cloud. For instance, a 

simple classification model might predict whether the 

temperature is within a safe range or if there is an anomaly that 

requires attention. 

A key equation in the preprocessing step is the Moving 

Average Filter used for noise reduction, given by: 
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This equation helps smooth out the data by averaging the 

readings over a specified window, reducing the impact of short-

term noise. After preprocessing, the model performs inference 

based on the preprocessed data. For instance, if the temperature 

exceeds a certain threshold, the system could flag an alert. If the 

inference involves classification, the model could determine if the 

system is operating normally or if an anomaly is detected. 

Table.2. Preprocessed Data for Inference 

Timestamp 
Raw  

Temperature (°C) 

Filtered  

Temperature (°C) 

Inference  

Outcome 

2025-04-25  

12:00:00 
23.5 23.6 Normal 

2025-04-25  

12:01:00 
23.6 23.6 Normal 

2025-04-25  

12:02:00 
23.7 23.7 Normal 

The Table.2 shows the raw sensor readings along with the 

filtered values after applying the noise-reducing technique (in this 

case, a moving average). The inference outcome indicates 

whether the system is operating within normal parameters or if 

action needs to be taken based on the predictions. 

3.3 COMMUNICATION VIA MQTT PROTOCOL 

The communication between the IoT devices 

(microcontrollers) and the edge/cloud servers is done using the 

MQTT (Message Queuing Telemetry Transport) protocol. MQTT 

is a lightweight messaging protocol designed for low-bandwidth, 

high-latency, or unreliable networks, making it ideal for IoT 

applications. When the data is ready for transmission, the 

microcontroller (e.g., ESP32) publishes the data to an MQTT 

broker. The broker acts as a middleman that routes messages to 

the relevant subscribers, which could be a cloud-based platform 

or another IoT device. The protocol's design ensures that 

messages are transmitted efficiently with low overhead. MQTT 

operates on a publish-subscribe model: 

1. Publishers (e.g., the embedded IoT device) send messages 

(sensor data) to a specific topic. 

2. Subscribers (e.g., the edge or cloud server) receive 

messages by subscribing to those topics. 

Table.3. MQTT Data Transmission Example 

Timestamp Topic Data Device ID Message Type 

2025-04-25  

12:00:00 

sensor/ 

temperature 
23.5°C DHT11-01 Publish 

2025-04-25  

12:01:00 

sensor/ 

temperature 
23.6°C DHT11-01 Publish 

2025-04-25  

12:02:00 

sensor/ 

temperature 
23.7°C DHT11-01 Publish 

As shown in Table.3, the microcontroller sends data on a 

specific topic, such as sensor/temperature. Each data packet 

includes a timestamp, sensor reading, and the device ID. The 

message is then routed to the cloud or any other subscribed 

device. 

3.4 SELECTIVE DATA UPLOAD 

In this step, the system employs selective data upload, 

meaning only certain types of data are sent to the cloud or edge 
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server. This is done to optimize bandwidth usage and reduce 

unnecessary data transmission, which is particularly important in 

IoT environments with limited connectivity and resources. 

Selective data upload occurs based on predefined criteria or 

anomaly detection. For example, if a sensor reading exceeds a 

threshold or shows an abnormal pattern, the system triggers an 

upload to the cloud for further analysis. Otherwise, it might decide 

to store data locally or discard it until necessary. 

For example, if the temperature in an industrial setup is 

constantly monitored and it stays within a safe range, only 

occasional uploads of average temperature data might occur. 

However, if the temperature exceeds a critical threshold, the 

system uploads the data to the cloud immediately. 

Table.4. Selective Data Upload Example 

Timestamp Temperature (°C) 
Upload  

Decision 

Cloud Upload  

Status 

2025-04-25  

12:00:00 
23.5 No No 

2025-04-25  

12:01:00 
23.6 No No 

2025-04-25  

12:02:00 
30.5 Yes Yes 

The Table.2 shows the process where only the temperature 

readings that exceed a certain threshold (e.g., 30°C) are uploaded 

to the cloud. For values within the normal range, the system 

decides not to send the data, thus saving bandwidth and power. 

3.5 CLOUD-BASED ANALYSIS AND FEEDBACK 

Once the selective data is uploaded to the cloud, it is analyzed 

for deeper insights, trends, and predictions. Cloud-based 

platforms, which typically have much greater processing power 

than the embedded devices, perform complex analytics, including 

anomaly detection, trend analysis, and predictive modeling. These 

platforms may use machine learning models to identify patterns 

or predict future values based on historical data. 

Once the analysis is complete, feedback is generated, which is 

sent back to the IoT devices for real-time actions. For instance, if 

the cloud analysis detects that a machine in a factory is likely to 

fail soon based on temperature trends, it may send a signal to the 

embedded system to trigger an alert or stop the machine. 

The feedback loop ensures that the system can take corrective 

actions or provide valuable insights to end-users in real-time. 

Table.5. Cloud-Based Feedback Example 

Timestamp Device ID 
Analysis  

Result 

Feedback  

Action 

2025-04-25  

12:00:00 
DHT11-01 Normal No Action 

2025-04-25  

12:01:00 
DHT11-01 Normal No Action 

2025-04-25  

12:02:00 
DHT11-01 Critical Anomaly Trigger Alarm 

As shown in Table.5, the cloud analyzes the temperature data 

and identifies a critical anomaly (e.g., 30.5°C). The feedback 

action is to trigger an alarm, which is communicated back to the 

device to alert the system. 

In order to optimize the communication process, particularly 

during selective data upload, we use a threshold-based rule to 

determine when to send data to the cloud. The system will upload 

data only if the difference between the current sensor value x(t) 

and the last known value x(t−1) exceeds a threshold Δ: 

 
True if | ( ) ( 1) |

Upload Decision
False otherwise

x t x t− −  
= 


 (1) 

This equation ensures that only significant changes in the data 

(such as anomalies or thresholds being exceeded) are sent to the 

cloud for analysis, reducing unnecessary data uploads and 

optimizing the use of bandwidth. 

4. EXPERIMENTAL VALIDATION 

4.1 TOOLS AND DEVICES  

• Simulation: MATLAB for signal modeling and 

transmission simulation 

• Hardware: ESP32 microcontrollers, Raspberry Pi 4 (8GB 

RAM) 

• Software: Arduino IDE, TensorFlow Lite for 

Microcontrollers, MQTT Broker (Mosquitto) 

• Development Machine: Intel Core i7 (11th Gen), 16GB 

RAM, Ubuntu 22.04 

The proposed method was compared against four existing IoT 

integration models: 

• CoAP-Based IoT – Higher efficiency in constrained 

networks but lacks real-time intelligence. 

• MQTT without ML – Low latency but limited intelligence. 

• Edge-Only Processing – Reduces latency but lacks global 

learning capability. 

• Cloud-Only Processing – High accuracy but suffers from 

increased latency and bandwidth issues. 

Table.6. Experimental Setup and Parameters 

Parameter Value / Description 

Microcontroller ESP32, 240MHz, 520KB SRAM 

Edge Device Raspberry Pi 4, 8GB RAM 

Communication Protocol MQTT v3.1 over TCP/IP 

Simulation Tool MATLAB R2023a 

ML Framework TensorFlow Lite for Microcontrollers 

Sensors 
DHT11 (temperature), 

HC-SR04 (distance) 

Power Supply 
5V USB/2A for ESP32,  

USB-C for Raspberry Pi 

Network Wi-Fi 2.4GHz 

4.2 PERFORMANCE METRICS  

• Latency (ms): Measures the time delay between data 

capture and actionable response. Reduced latency indicates 

better real-time performance. 
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• Energy Efficiency (mW): Tracks power consumption 

during operations. Lower values reflect better battery and 

energy management. 

• Inference Time (ms): Time taken by the embedded ML 

model to generate predictions. Shorter times are critical for 

real-time responsiveness. 

• Accuracy (%): Measures the correctness of the ML model 

in classifying or predicting events. Higher accuracy 

indicates more reliable intelligence. 

Table.7. Latency 

Number 

of 

Features 

CoAP-

Based 

IoT 

(ms) 

MQTT 

without 

ML (ms) 

Edge-Only 

Processing 

(ms) 

Cloud-Only 

Processing 

(ms) 

Proposed 

Method 

(ms) 

1000 150 120 90 200 70 

2000 180 140 100 210 80 

3000 210 160 110 220 90 

4000 230 180 120 230 100 

5000 250 200 130 240 110 

As shown in the table, the Proposed Method consistently 

outperforms the existing methods in terms of latency. The Edge-

Only Processing and MQTT without ML methods offer the next 

best performance but still lag behind due to the heavier reliance 

on centralized systems. Cloud-Only Processing shows the highest 

latency, as it requires all data to be processed remotely. 

Table.8. Energy Efficiency Comparison Table 

Number 

of 

Features 

CoAP-

Based 

IoT 

(mW) 

MQTT 

without 

ML 

(mW) 

Edge-Only 

Processing 

(mW) 

Cloud-Only 

Processing 

(mW) 

Proposed 

Method 

(mW) 

1000 80 100 150 250 60 

2000 85 110 160 260 65 

3000 90 120 170 270 70 

4000 95 130 180 280 75 

5000 100 140 190 290 80 

The Proposed Method exhibits the highest energy efficiency, 

primarily due to local processing and selective data transmission. 

In contrast, Cloud-Only Processing consumes the most power, as 

it involves heavy data transmission and centralized computation. 

Edge-Only Processing offers better energy efficiency than MQTT 

without ML and CoAP-Based IoT but remains less efficient than 

the proposed hybrid approach. 

Table.9. Inference Time Comparison Table 

Number 

of 

Features 

CoAP-

Based 

IoT 

(ms) 

MQTT 

without 

ML (ms) 

Edge-Only 

Processing 

(ms) 

Cloud-Only 

Processing 

(ms) 

Proposed 

Method 

(ms) 

1000 500 400 250 600 200 

2000 600 480 270 620 220 

3000 700 540 280 640 240 

4000 800 600 290 660 260 

5000 900 660 300 680 280 

The Proposed Method significantly reduces inference time 

due to local computation through TinyML models on embedded 

devices. Edge-Only Processing also performs well, but it still 

needs more time than the hybrid edge-cloud solution. Cloud-Only 

Processing takes the longest time due to the data transfer overhead 

and centralized analysis. 

Table.10. Accuracy Comparison Table 

Number 

of 

Features 

CoAP-

Based 

IoT (%) 

MQTT 

without 

ML (%) 

Edge-Only 

Processing 

(%) 

Cloud-Only 

Processing 

(%) 

Proposed 

Method 

(%) 

1000 85 80 90 95 98 

2000 84 82 92 96 99 

3000 83 85 93 97 99 

4000 82 86 94 98 99 

5000 81 87 95 99 99 

The Proposed Method achieves the highest accuracy, 

leveraging both local preprocessing and cloud-based analytics for 

enhanced decision-making. Edge-Only Processing and Cloud-

Only Processing deliver high accuracy as well, but the Proposed 

Method outperforms them due to the combined strengths of both 

edge and cloud. CoAP-Based IoT and MQTT without ML lag in 

accuracy due to their reliance on less sophisticated 

communication and processing models. 

5. CONCLUSION 

The proposed hybrid Edge-Cloud IoT Framework 

demonstrates clear advantages across multiple performance 

metrics when compared to existing methods. It significantly 

reduces latency, offering faster communication and decision-

making processes. Additionally, it leads to enhanced energy 

efficiency, as local processing reduces the need for constant data 

transmission. The inference time is also notably reduced, 

benefiting real-time applications by making quick decisions 

directly at the edge. In terms of accuracy, the proposed method 

consistently outperforms other models, as it combines the best 

aspects of both local and cloud processing. While Edge-Only 

Processing and Cloud-Only Processing provide benefits in 

specific contexts, they are limited by either computational power 

or data transmission requirements. MQTT without ML and 

CoAP-Based IoT offer some advantages in terms of energy 

efficiency and simplicity, but they lack the intelligence and 

scalability required for complex, real-time applications. Thus, the 

hybrid approach presents the most balanced solution, offering 

low-latency, energy-efficient, high-accuracy, and fast inference 

capabilities, making it ideal for resource-constrained 

environments and large-scale IoT applications. The integration of 

TinyML and selective data transmission further enhances its 

applicability in diverse IoT domains. 

REFERENCES 

[1] W. Villegas-Ch, J. Garcia-Ortiz and S. Sanchez-Viteri, 

“Towards Intelligent Monitoring in IoT: AI Applications for 

Real-Time Analysis and Prediction”, IEEE Access, Vol. 12, 

pp. 40368-40386, 2024. 



ISSN: 2395-1680 (ONLINE)                                 ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01 

2063 

[2] H. Kopetz and W. Steiner, “Real-Time Systems: Design 

Principles for Distributed Embedded Applications”, CRC 

Press, 2022. 

[3] L.M. Ang, K.P. Seng and M. Wachowicz, “Embedded 

Intelligence and the Data-Driven Future of Application-

Specific Internet of Things for Smart Environments”, 

International Journal of Distributed Sensor Networks, Vol. 

18, No. 6, pp. 1-10, 2022. 

[4] K.B. Adeusi, A.E. Adegbola, P. Amajuoyi, M.D. Adegbola 

and L.B. Benjamin, “The Potential of IoT to Transform 

Supply Chain Management Through Enhanced Connectivity 

and Real-Time Data”, World Journal of Advanced 

Engineering Technology and Sciences, Vol. 12, No. 1, pp. 

145-151, 2024. 

[5] E.B. Priyanka, C. Maheswari and S. Thangavel, “A Smart‐

Integrated IoT Module for Intelligent Transportation in Oil 

Industry”, International Journal of Numerical Modelling: 

Electronic Networks, Devices and Fields, Vol. 34, No. 3, pp. 

1-10, 2021. 

[6] R. Singh, R. Sharma, S.V. Akram, A. Gehlot, D. Buddhi, 

P.K. Malik and R. Arya, “Highway 4.0: Digitalization of 

Highways for Vulnerable Road Safety Development with 

Intelligent IoT Sensors and Machine Learning”, Safety 

Science, Vol. 143, pp. 1-8, 2021. 

[7] A. Morchid, I.G. Muhammad Alblushi, H.M. Khalid, R. El 

Alami, S.R. Sitaramanan and S.M. Muyeen, “High-

Technology Agriculture System to Enhance Food Security: 

A Concept of Smart Irrigation System using Internet of 

Things and Cloud Computing, Journal of the Saudi Society 

of Agricultural Sciences, Vol. 8, pp. 1-17, 2024. 

[8] Y. Khan, M.B.M. Su’ud, M.M. Alam, S.F. Ahmad, A.Y.B. 

Ahmad and N. Khan, “Application of Internet of Things 

(IoT) in Sustainable Supply Chain Management”, 

Sustainability, Vol. 15, No. 1, pp. 1-9, 2022. 

[9] J.K. Pandey, R. Jain, R. Dilip, M. Kumbhkar, S. Jaiswal, 

B.K. Pandey and D. Pandey, “Investigating Role of IoT in 

the Development of Smart Application for Security 

Enhancement”, IoT Based Smart Applications, pp. 219-243, 

2022. 

[10] M.E.E. Alahi, A. Sukkuea, F.W. Tina, A. Nag, W. 

Kurdthongmee, K. Suwannarat and S.C. Mukhopadhyay, 

“Integration of IoT-Enabled Technologies and Artificial 

Intelligence (AI) for Smart City Scenario: Recent 

Advancements and Future Trends”, Sensors, Vol. 23, No. 

11, pp. 1-6, 2023. 

[11] G. Sadaram, M. Sakuru, L.M. Karaka, M.S. Reddy, V. 

Bodepudi, S.B. Boppana and S.R. Maka, “Internet of Things 

(IoT) Cybersecurity Enhancement through Artificial 

Intelligence: A Study on Intrusion Detection Systems”, 

Universal Library of Engineering Technology, Vol. 9, pp. 1-

11, 2022. 

[12] J. Lee and K.I. Hwang, “YOLO with Adaptive Frame 

Control for Real-Time Object Detection Applications”, 

Multimedia Tools and Applications, Vol. 81, No. 25, pp. 

36375-36396, 2022. 

 


