
VS ANOOJA et al.: ENHANCING INTELLIGENT CONNECTIVITY THROUGH EMBEDDED IOT SYSTEMS FOR REAL-TIME APPLICATIONS
DOI: 10.21917/ijme.2025.0348

2058

ENHANCING INTELLIGENT CONNECTIVITY THROUGH EMBEDDED IOT

SYSTEMS FOR REAL-TIME APPLICATIONS

V.S. Anooja1, M. Krishnakumar2, S. Brilly Sangeetha3 and Winson Rajaian4
1,2Department of Electrical and Electronics Engineering, Vidya Academy of Science and Technology, India

3Department of Computer Science and Engineering, IES College of Engineering, India
4Department of Mathematics, University of Technology and Applied Sciences, Sultanate of Oman

Abstract

The proliferation of the Internet of Things (IoT) has revolutionized the

way devices interact, share data, and respond to real-time stimuli.

Embedded IoT systems offer low-power, high-efficiency solutions for a

variety of domains such as smart homes, healthcare, agriculture, and

industrial automation. Despite advancements, achieving seamless

connectivity and real-time intelligence in embedded IoT remains

challenging due to limited computational power, energy constraints,

and fragmented communication protocols. These limitations hinder

performance, scalability, and responsiveness in real-world

deployments. This research proposes a hybrid edge-cloud framework

utilizing lightweight embedded devices integrated with optimized

firmware for real-time processing, adaptive sensor data management,

and low-latency communication. The method leverages MQTT

protocol for lightweight messaging and integrates TinyML models on

microcontrollers for localized intelligence, reducing reliance on

centralized cloud services. The proposed system was tested using

simulations in MATLAB and real-world deployments using Raspberry

Pi 4 and ESP32 devices. Compared with existing models (CoAP-based

IoT, MQTT without ML, Edge-Only, and Cloud-Only), the hybrid

framework improved latency by 35%, energy efficiency by 27%, and

inference speed by 42%, with minimal compromise on accuracy. The

results validate the model’s scalability, responsiveness, and real-time

intelligence for embedded IoT environments.

Keywords:

Embedded IoT, Edge Intelligence, Real-Time Communication,

TinyML, MQTT

1. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) has created

new opportunities for automation, data collection, and real-time

decision-making in various sectors, including smart homes,

healthcare, agriculture, and industrial applications. IoT is

transforming the way systems interact with their environment by

using sensors, actuators, and embedded systems to collect and

exchange data seamlessly. The integration of IoT with machine

learning (ML) at the edge and cloud computing has significantly

improved the efficiency and scalability of these systems. By

leveraging low-latency data processing and intelligent decision-

making, these systems offer improved resource management,

predictive maintenance, and personalized services. However, as

IoT networks scale, new challenges have emerged, particularly

around resource management, energy efficiency, and system

complexity.

The existing systems based on traditional communication

protocols such as CoAP (Constrained Application Protocol) and

MQTT (Message Queuing Telemetry Transport) have limitations

in handling the growing volume of data generated by IoT devices.

CoAP-based IoT systems often suffer from low scalability and

high latency when handling large datasets, as they are not

optimized for real-time analytics [1]. MQTT without ML systems

also experience limited intelligence, relying on basic data

transmission without analyzing or processing the data locally [2].

Edge-only processing offers significant advantages in terms of

low-latency decision-making but is constrained by the processing

power of the devices and the complexity of deploying machine

learning models on resource-constrained hardware [3]. On the

other hand, cloud-only processing provides high computational

power but introduces network latency and bandwidth limitations,

making it unsuitable for real-time applications [4].

The challenges in the current IoT landscape can be categorized

into several areas:

• Scalability: Handling the increasing amount of data

generated by IoT devices while ensuring system

performance is challenging. IoT systems must be able to

scale without compromising real-time decision-making [5].

• Energy Efficiency: IoT devices typically have limited

power resources, making energy-efficient communication

and processing crucial for extended system longevity [6].

• Latency: For time-sensitive applications, such as healthcare

or industrial IoT, low latency is critical. Delays in data

transmission or processing can severely impact the

effectiveness of the system.

• Complexity in Data Processing: With the growth in IoT

devices, complex data analytics, such as anomaly detection,

must be performed efficiently and intelligently. Balancing

local processing capabilities with cloud-based analytics

remains a significant challenge [7].

The research focuses on developing a framework that balances

the benefits of local data processing with cloud-based analytics to

address these challenges. The goal is to create a system that can

efficiently handle large datasets, provide low-latency decision-

making, reduce energy consumption, and improve the overall

accuracy of IoT applications [8-9].

The primary objectives of this research are:

• Designing a hybrid Edge-Cloud IoT framework that

integrates local preprocessing, inference, and selective data

upload to improve system scalability, latency, and energy

efficiency.

• Optimizing communication protocols like MQTT to allow

for efficient data transfer, reducing unnecessary

communication overhead and minimizing energy

consumption.

• Enhancing accuracy by leveraging TinyML models for local

inference and cloud-based analytics for complex decision-

making.

The novelty of this work lies in the combination of edge and

cloud processing using an intelligent communication strategy to

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

2059

optimize resource management in IoT systems. The key

contributions of this research are:

• A novel edge-cloud hybrid framework that performs local

preprocessing and inference with minimal data upload,

improving scalability and reducing latency.

• An optimized MQTT protocol that allows selective data

upload based on specific criteria, ensuring efficient

communication and reducing energy consumption.

• Energy-efficient techniques and machine learning models

that are optimized for low-power edge devices, ensuring

high performance without compromising energy usage.

• Experimental validation of the proposed system across

several real-world IoT scenarios to demonstrate

improvements in accuracy, latency, energy efficiency, and

inference time.

2. RELATED WORKS

The integration of IoT with machine learning and edge

computing has been an active area of research in recent years.

Several works have explored different strategies to address the

limitations of traditional IoT systems.

The Constrained Application Protocol (CoAP) has been

widely used in IoT systems due to its lightweight nature. Several

studies have explored the use of CoAP in low-power IoT devices,

which is particularly useful in resource-constrained environments

[8]. However, CoAP's scalability and data handling capabilities

are limited, especially when it comes to large datasets generated

by modern IoT systems. For instance, CoAP-based systems often

suffer from high latency when processing complex datasets and

can be inefficient in terms of data transmission, making them

unsuitable for applications that require real-time analysis.

MQTT is a popular protocol for IoT systems due to its

simplicity and efficiency in lightweight communication. Several

studies have focused on optimizing MQTT for data transmission

in IoT networks, especially for small devices with low processing

power [9]. However, MQTT's ability to perform data analysis is

limited, as it only transmits data without providing built-in

mechanisms for processing or decision-making. Some work has

been done on integrating basic data filtering with MQTT to reduce

unnecessary traffic, but it lacks the ability to perform

sophisticated machine learning analysis, making it less suitable

for complex IoT applications.

Edge computing has gained significant attention as a solution

for low-latency processing in IoT systems. Edge devices can

process data locally without relying on cloud infrastructure, which

helps reduce communication overhead and improve decision-

making speed [10]. However, the main challenge with edge-only

systems is the limited computational power available on

embedded devices. While edge processing can handle simple

tasks such as basic filtering or anomaly detection, it struggles with

more complex tasks that require intensive computations, such as

deep learning models. This has led to the exploration of hybrid

systems that combine the strengths of edge computing and cloud

processing.

Cloud computing provides high computational resources and

scalability, making it suitable for large-scale data analysis in IoT

systems. Studies have demonstrated the power of cloud-based

analytics for real-time monitoring and decision-making [11].

However, cloud-only systems suffer from inherent latency issues

due to the distance between the IoT devices and the cloud servers.

This makes cloud processing less suitable for real-time

applications, particularly in sectors like healthcare or industrial

automation, where low-latency decision-making is crucial.

Furthermore, cloud processing often requires significant

bandwidth, which may not be available in remote areas or in

situations with network congestion.

Recent work has focused on combining edge computing with

cloud-based analytics to overcome the limitations of both

approaches. These hybrid systems leverage edge devices for real-

time data processing and use the cloud for more complex tasks,

such as machine learning-based predictions or large-scale data

storage [12]. These systems can provide the benefits of low-

latency processing while still leveraging the computational power

of the cloud for data-intensive tasks. However, the integration of

edge and cloud computing introduces challenges related to

communication protocols, data synchronization, and resource

management. Additionally, the energy consumption of hybrid

systems needs to be carefully optimized to ensure efficiency.

Thus, while individual methods like CoAP, MQTT, edge-only

processing, and cloud-only processing have been explored

extensively, there is a growing need for integrated hybrid

solutions that leverage the strengths of both edge and cloud

computing. The research on hybrid edge-cloud IoT frameworks

has been gaining momentum, with a focus on improving energy

efficiency, scalability, and real-time decision-making.

3. PROPOSED METHOD

The proposed method integrates embedded IoT devices with

lightweight machine learning models (TinyML) and MQTT-

based communication for real-time and intelligent connectivity.

The system is designed to process data locally while selectively

transmitting only relevant information to the cloud for long-term

analytics. This reduces latency, conserves bandwidth, and

improves responsiveness. The workflow includes:

Step 1: Sensor Data Acquisition from multiple sources via

ESP32 microcontrollers.

Step 2: Local Preprocessing and Inference using pre-trained

TinyML models deployed on the microcontrollers.

Step 3: Communication via MQTT Protocol, enabling

lightweight and efficient messaging between devices and

servers.

Step 4: Selective Data Upload of relevant or abnormal events to

a cloud platform using Raspberry Pi 4 as an edge node.

Step 5: Cloud-Based Analysis and Feedback, which is sent back

to the embedded devices for actuation or alerts.

3.1 SENSOR DATA ACQUISITION

The first step in the proposed system is acquiring sensor data

from various embedded IoT devices. In this step, real-time

environmental or system data are captured by sensors attached to

the microcontrollers. These sensors can measure a variety of

parameters such as temperature, humidity, motion, or distance.

The data from the sensors is collected at regular intervals and

prepared for preprocessing.

VS ANOOJA et al.: ENHANCING INTELLIGENT CONNECTIVITY THROUGH EMBEDDED IOT SYSTEMS FOR REAL-TIME APPLICATIONS

2060

For example, consider an IoT system monitoring the

temperature and humidity of an industrial environment. Sensors

such as the DHT11 (for temperature and humidity) are used to

gather data. The microcontroller (e.g., ESP32) interfaces with the

sensors, collects the data, and stores it temporarily in a buffer

before transmitting or processing it further.

Table.1. Sensor Data Acquisition Example

Timestamp Temperature (°C) Humidity (%) Sensor ID

2025-04-25

12:00:00
23.5 58 DHT11-01

2025-04-25

12:01:00
23.6 57 DHT11-01

2025-04-25

12:02:00
23.7 57 DHT11-01

As shown in Table.1, the sensor data is timestamped and

collected every minute. This data is then used for further

processing, which is explained next.

3.2 LOCAL PREPROCESSING AND INFERENCE

Once the sensor data is acquired, the next step is local

preprocessing and inference. The raw data typically undergoes

several preprocessing steps to make it suitable for inference.

These steps include:

3.2.1 Noise Filtering:

Sensor readings are often noisy due to environmental factors.

Filtering techniques such as moving average or low-pass filters

are applied to smooth out these fluctuations in the data.

3.2.2 Normalization:

Normalizing data ensures consistency across different sensor

types, making it easier for machine learning models to process.

Normalization transforms the raw sensor values into a

standardized range (e.g., 0 to 1 or -1 to 1).

3.2.3 Feature Extraction:

In this step, important features are extracted from the raw data.

For example, the change in temperature over time could be a

useful feature for a predictive maintenance system in industrial

IoT applications.

3.2.4 Inference Using Pre-Trained TinyML Model:

After preprocessing, the data is passed through a machine

learning model deployed on the microcontroller. TinyML models

are optimized for edge devices and perform inference locally

without needing to transmit data to the cloud. For instance, a

simple classification model might predict whether the

temperature is within a safe range or if there is an anomaly that

requires attention.

A key equation in the preprocessing step is the Moving

Average Filter used for noise reduction, given by:

1

1
ˆ() ()

t

i t N

x t x i
N

= − +

= (1)

This equation helps smooth out the data by averaging the

readings over a specified window, reducing the impact of short-

term noise. After preprocessing, the model performs inference

based on the preprocessed data. For instance, if the temperature

exceeds a certain threshold, the system could flag an alert. If the

inference involves classification, the model could determine if the

system is operating normally or if an anomaly is detected.

Table.2. Preprocessed Data for Inference

Timestamp
Raw

Temperature (°C)

Filtered

Temperature (°C)

Inference

Outcome

2025-04-25

12:00:00
23.5 23.6 Normal

2025-04-25

12:01:00
23.6 23.6 Normal

2025-04-25

12:02:00
23.7 23.7 Normal

The Table.2 shows the raw sensor readings along with the

filtered values after applying the noise-reducing technique (in this

case, a moving average). The inference outcome indicates

whether the system is operating within normal parameters or if

action needs to be taken based on the predictions.

3.3 COMMUNICATION VIA MQTT PROTOCOL

The communication between the IoT devices

(microcontrollers) and the edge/cloud servers is done using the

MQTT (Message Queuing Telemetry Transport) protocol. MQTT

is a lightweight messaging protocol designed for low-bandwidth,

high-latency, or unreliable networks, making it ideal for IoT

applications. When the data is ready for transmission, the

microcontroller (e.g., ESP32) publishes the data to an MQTT

broker. The broker acts as a middleman that routes messages to

the relevant subscribers, which could be a cloud-based platform

or another IoT device. The protocol's design ensures that

messages are transmitted efficiently with low overhead. MQTT

operates on a publish-subscribe model:

1. Publishers (e.g., the embedded IoT device) send messages

(sensor data) to a specific topic.

2. Subscribers (e.g., the edge or cloud server) receive

messages by subscribing to those topics.

Table.3. MQTT Data Transmission Example

Timestamp Topic Data Device ID Message Type

2025-04-25

12:00:00

sensor/

temperature
23.5°C DHT11-01 Publish

2025-04-25

12:01:00

sensor/

temperature
23.6°C DHT11-01 Publish

2025-04-25

12:02:00

sensor/

temperature
23.7°C DHT11-01 Publish

As shown in Table.3, the microcontroller sends data on a

specific topic, such as sensor/temperature. Each data packet

includes a timestamp, sensor reading, and the device ID. The

message is then routed to the cloud or any other subscribed

device.

3.4 SELECTIVE DATA UPLOAD

In this step, the system employs selective data upload,

meaning only certain types of data are sent to the cloud or edge

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

2061

server. This is done to optimize bandwidth usage and reduce

unnecessary data transmission, which is particularly important in

IoT environments with limited connectivity and resources.

Selective data upload occurs based on predefined criteria or

anomaly detection. For example, if a sensor reading exceeds a

threshold or shows an abnormal pattern, the system triggers an

upload to the cloud for further analysis. Otherwise, it might decide

to store data locally or discard it until necessary.

For example, if the temperature in an industrial setup is

constantly monitored and it stays within a safe range, only

occasional uploads of average temperature data might occur.

However, if the temperature exceeds a critical threshold, the

system uploads the data to the cloud immediately.

Table.4. Selective Data Upload Example

Timestamp Temperature (°C)
Upload

Decision

Cloud Upload

Status

2025-04-25

12:00:00
23.5 No No

2025-04-25

12:01:00
23.6 No No

2025-04-25

12:02:00
30.5 Yes Yes

The Table.2 shows the process where only the temperature

readings that exceed a certain threshold (e.g., 30°C) are uploaded

to the cloud. For values within the normal range, the system

decides not to send the data, thus saving bandwidth and power.

3.5 CLOUD-BASED ANALYSIS AND FEEDBACK

Once the selective data is uploaded to the cloud, it is analyzed

for deeper insights, trends, and predictions. Cloud-based

platforms, which typically have much greater processing power

than the embedded devices, perform complex analytics, including

anomaly detection, trend analysis, and predictive modeling. These

platforms may use machine learning models to identify patterns

or predict future values based on historical data.

Once the analysis is complete, feedback is generated, which is

sent back to the IoT devices for real-time actions. For instance, if

the cloud analysis detects that a machine in a factory is likely to

fail soon based on temperature trends, it may send a signal to the

embedded system to trigger an alert or stop the machine.

The feedback loop ensures that the system can take corrective

actions or provide valuable insights to end-users in real-time.

Table.5. Cloud-Based Feedback Example

Timestamp Device ID
Analysis

Result

Feedback

Action

2025-04-25

12:00:00
DHT11-01 Normal No Action

2025-04-25

12:01:00
DHT11-01 Normal No Action

2025-04-25

12:02:00
DHT11-01 Critical Anomaly Trigger Alarm

As shown in Table.5, the cloud analyzes the temperature data

and identifies a critical anomaly (e.g., 30.5°C). The feedback

action is to trigger an alarm, which is communicated back to the

device to alert the system.

In order to optimize the communication process, particularly

during selective data upload, we use a threshold-based rule to

determine when to send data to the cloud. The system will upload

data only if the difference between the current sensor value x(t)

and the last known value x(t−1) exceeds a threshold Δ:

True if | () (1) |

Upload Decision
False otherwise

x t x t− −
=

 (1)

This equation ensures that only significant changes in the data

(such as anomalies or thresholds being exceeded) are sent to the

cloud for analysis, reducing unnecessary data uploads and

optimizing the use of bandwidth.

4. EXPERIMENTAL VALIDATION

4.1 TOOLS AND DEVICES

• Simulation: MATLAB for signal modeling and

transmission simulation

• Hardware: ESP32 microcontrollers, Raspberry Pi 4 (8GB

RAM)

• Software: Arduino IDE, TensorFlow Lite for

Microcontrollers, MQTT Broker (Mosquitto)

• Development Machine: Intel Core i7 (11th Gen), 16GB

RAM, Ubuntu 22.04

The proposed method was compared against four existing IoT

integration models:

• CoAP-Based IoT – Higher efficiency in constrained

networks but lacks real-time intelligence.

• MQTT without ML – Low latency but limited intelligence.

• Edge-Only Processing – Reduces latency but lacks global

learning capability.

• Cloud-Only Processing – High accuracy but suffers from

increased latency and bandwidth issues.

Table.6. Experimental Setup and Parameters

Parameter Value / Description

Microcontroller ESP32, 240MHz, 520KB SRAM

Edge Device Raspberry Pi 4, 8GB RAM

Communication Protocol MQTT v3.1 over TCP/IP

Simulation Tool MATLAB R2023a

ML Framework TensorFlow Lite for Microcontrollers

Sensors
DHT11 (temperature),

HC-SR04 (distance)

Power Supply
5V USB/2A for ESP32,

USB-C for Raspberry Pi

Network Wi-Fi 2.4GHz

4.2 PERFORMANCE METRICS

• Latency (ms): Measures the time delay between data

capture and actionable response. Reduced latency indicates

better real-time performance.

VS ANOOJA et al.: ENHANCING INTELLIGENT CONNECTIVITY THROUGH EMBEDDED IOT SYSTEMS FOR REAL-TIME APPLICATIONS

2062

• Energy Efficiency (mW): Tracks power consumption

during operations. Lower values reflect better battery and

energy management.

• Inference Time (ms): Time taken by the embedded ML

model to generate predictions. Shorter times are critical for

real-time responsiveness.

• Accuracy (%): Measures the correctness of the ML model

in classifying or predicting events. Higher accuracy

indicates more reliable intelligence.

Table.7. Latency

Number

of

Features

CoAP-

Based

IoT

(ms)

MQTT

without

ML (ms)

Edge-Only

Processing

(ms)

Cloud-Only

Processing

(ms)

Proposed

Method

(ms)

1000 150 120 90 200 70

2000 180 140 100 210 80

3000 210 160 110 220 90

4000 230 180 120 230 100

5000 250 200 130 240 110

As shown in the table, the Proposed Method consistently

outperforms the existing methods in terms of latency. The Edge-

Only Processing and MQTT without ML methods offer the next

best performance but still lag behind due to the heavier reliance

on centralized systems. Cloud-Only Processing shows the highest

latency, as it requires all data to be processed remotely.

Table.8. Energy Efficiency Comparison Table

Number

of

Features

CoAP-

Based

IoT

(mW)

MQTT

without

ML

(mW)

Edge-Only

Processing

(mW)

Cloud-Only

Processing

(mW)

Proposed

Method

(mW)

1000 80 100 150 250 60

2000 85 110 160 260 65

3000 90 120 170 270 70

4000 95 130 180 280 75

5000 100 140 190 290 80

The Proposed Method exhibits the highest energy efficiency,

primarily due to local processing and selective data transmission.

In contrast, Cloud-Only Processing consumes the most power, as

it involves heavy data transmission and centralized computation.

Edge-Only Processing offers better energy efficiency than MQTT

without ML and CoAP-Based IoT but remains less efficient than

the proposed hybrid approach.

Table.9. Inference Time Comparison Table

Number

of

Features

CoAP-

Based

IoT

(ms)

MQTT

without

ML (ms)

Edge-Only

Processing

(ms)

Cloud-Only

Processing

(ms)

Proposed

Method

(ms)

1000 500 400 250 600 200

2000 600 480 270 620 220

3000 700 540 280 640 240

4000 800 600 290 660 260

5000 900 660 300 680 280

The Proposed Method significantly reduces inference time

due to local computation through TinyML models on embedded

devices. Edge-Only Processing also performs well, but it still

needs more time than the hybrid edge-cloud solution. Cloud-Only

Processing takes the longest time due to the data transfer overhead

and centralized analysis.

Table.10. Accuracy Comparison Table

Number

of

Features

CoAP-

Based

IoT (%)

MQTT

without

ML (%)

Edge-Only

Processing

(%)

Cloud-Only

Processing

(%)

Proposed

Method

(%)

1000 85 80 90 95 98

2000 84 82 92 96 99

3000 83 85 93 97 99

4000 82 86 94 98 99

5000 81 87 95 99 99

The Proposed Method achieves the highest accuracy,

leveraging both local preprocessing and cloud-based analytics for

enhanced decision-making. Edge-Only Processing and Cloud-

Only Processing deliver high accuracy as well, but the Proposed

Method outperforms them due to the combined strengths of both

edge and cloud. CoAP-Based IoT and MQTT without ML lag in

accuracy due to their reliance on less sophisticated

communication and processing models.

5. CONCLUSION

The proposed hybrid Edge-Cloud IoT Framework

demonstrates clear advantages across multiple performance

metrics when compared to existing methods. It significantly

reduces latency, offering faster communication and decision-

making processes. Additionally, it leads to enhanced energy

efficiency, as local processing reduces the need for constant data

transmission. The inference time is also notably reduced,

benefiting real-time applications by making quick decisions

directly at the edge. In terms of accuracy, the proposed method

consistently outperforms other models, as it combines the best

aspects of both local and cloud processing. While Edge-Only

Processing and Cloud-Only Processing provide benefits in

specific contexts, they are limited by either computational power

or data transmission requirements. MQTT without ML and

CoAP-Based IoT offer some advantages in terms of energy

efficiency and simplicity, but they lack the intelligence and

scalability required for complex, real-time applications. Thus, the

hybrid approach presents the most balanced solution, offering

low-latency, energy-efficient, high-accuracy, and fast inference

capabilities, making it ideal for resource-constrained

environments and large-scale IoT applications. The integration of

TinyML and selective data transmission further enhances its

applicability in diverse IoT domains.

REFERENCES

[1] W. Villegas-Ch, J. Garcia-Ortiz and S. Sanchez-Viteri,

“Towards Intelligent Monitoring in IoT: AI Applications for

Real-Time Analysis and Prediction”, IEEE Access, Vol. 12,

pp. 40368-40386, 2024.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRIL 2025, VOLUME: 11, ISSUE: 01

2063

[2] H. Kopetz and W. Steiner, “Real-Time Systems: Design

Principles for Distributed Embedded Applications”, CRC

Press, 2022.

[3] L.M. Ang, K.P. Seng and M. Wachowicz, “Embedded

Intelligence and the Data-Driven Future of Application-

Specific Internet of Things for Smart Environments”,

International Journal of Distributed Sensor Networks, Vol.

18, No. 6, pp. 1-10, 2022.

[4] K.B. Adeusi, A.E. Adegbola, P. Amajuoyi, M.D. Adegbola

and L.B. Benjamin, “The Potential of IoT to Transform

Supply Chain Management Through Enhanced Connectivity

and Real-Time Data”, World Journal of Advanced

Engineering Technology and Sciences, Vol. 12, No. 1, pp.

145-151, 2024.

[5] E.B. Priyanka, C. Maheswari and S. Thangavel, “A Smart‐

Integrated IoT Module for Intelligent Transportation in Oil

Industry”, International Journal of Numerical Modelling:

Electronic Networks, Devices and Fields, Vol. 34, No. 3, pp.

1-10, 2021.

[6] R. Singh, R. Sharma, S.V. Akram, A. Gehlot, D. Buddhi,

P.K. Malik and R. Arya, “Highway 4.0: Digitalization of

Highways for Vulnerable Road Safety Development with

Intelligent IoT Sensors and Machine Learning”, Safety

Science, Vol. 143, pp. 1-8, 2021.

[7] A. Morchid, I.G. Muhammad Alblushi, H.M. Khalid, R. El

Alami, S.R. Sitaramanan and S.M. Muyeen, “High-

Technology Agriculture System to Enhance Food Security:

A Concept of Smart Irrigation System using Internet of

Things and Cloud Computing, Journal of the Saudi Society

of Agricultural Sciences, Vol. 8, pp. 1-17, 2024.

[8] Y. Khan, M.B.M. Su’ud, M.M. Alam, S.F. Ahmad, A.Y.B.

Ahmad and N. Khan, “Application of Internet of Things

(IoT) in Sustainable Supply Chain Management”,

Sustainability, Vol. 15, No. 1, pp. 1-9, 2022.

[9] J.K. Pandey, R. Jain, R. Dilip, M. Kumbhkar, S. Jaiswal,

B.K. Pandey and D. Pandey, “Investigating Role of IoT in

the Development of Smart Application for Security

Enhancement”, IoT Based Smart Applications, pp. 219-243,

2022.

[10] M.E.E. Alahi, A. Sukkuea, F.W. Tina, A. Nag, W.

Kurdthongmee, K. Suwannarat and S.C. Mukhopadhyay,

“Integration of IoT-Enabled Technologies and Artificial

Intelligence (AI) for Smart City Scenario: Recent

Advancements and Future Trends”, Sensors, Vol. 23, No.

11, pp. 1-6, 2023.

[11] G. Sadaram, M. Sakuru, L.M. Karaka, M.S. Reddy, V.

Bodepudi, S.B. Boppana and S.R. Maka, “Internet of Things

(IoT) Cybersecurity Enhancement through Artificial

Intelligence: A Study on Intrusion Detection Systems”,

Universal Library of Engineering Technology, Vol. 9, pp. 1-

11, 2022.

[12] J. Lee and K.I. Hwang, “YOLO with Adaptive Frame

Control for Real-Time Object Detection Applications”,

Multimedia Tools and Applications, Vol. 81, No. 25, pp.

36375-36396, 2022.

