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Abstract 

System on Chip - Mobile Ad Hoc Networks (SoC-MANETs) are 

characterized by their decentralized architecture, node mobility, and 

frequent topology changes. Ensuring secure and reliable service 

discovery in such environments is critical but challenging due to node 

misbehavior and trust uncertainties. Traditional trust management 

mechanisms often fall short in detecting malicious behavior and 

adapting to network dynamics, especially under unreliable service 

conditions. This paper proposes a Deep Self-Organizing Control (Deep 

SOC)-based trust management framework that integrates deep 

learning with adaptive behavior profiling to enhance the reliability of 

service discovery. A Convolutional Neural Network (CNN) is employed 

to predict node trustworthiness based on real-time communication 

patterns, mobility behavior, and packet integrity. The proposed Deep 

SOC model was tested using NS-3 simulation with 100 nodes under 

varying mobility and attack scenarios. It achieved a Packet Delivery 

Ratio (PDR) of 92.8%, End-to-End Delay (E2ED) of 116 ms, Detection 

Accuracy of 95.4%, Trust Convergence Time of 8.4s, and Energy 

Consumption of 21.3J outperforming existing methods by 12–18% 

across metrics. 
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1. INTRODUCTION 

Mobile Ad Hoc Networks (SoC-MANETs) are self-

organizing networks that consist of mobile nodes that 

communicate wirelessly without the need for a centralized 

infrastructure. This inherent flexibility and autonomy make SoC-

MANETs particularly suitable for applications in dynamic and 

emergency environments, such as military communication, 

disaster recovery, and vehicular networks. However, the open 

nature and lack of centralized control in SoC-MANETs also 

introduce several challenges, especially in terms of security, trust, 

and resource management. 

In SoC-MANETs, trust management plays a critical role in 

ensuring the reliable and secure exchange of information among 

nodes. Nodes in these networks often rely on trust to determine 

which nodes are reliable and which may be malicious. In many 

cases, nodes form trust relationships based on prior interactions, 

which are then used to make decisions about routing, resource 

sharing, and service discovery. Trust is fundamental to the proper 

functioning of the network, as it allows nodes to cooperate and 

share information, and provides mechanisms to mitigate 

malicious behaviors. 

However, unreliable service discovery in SoC-MANETs is a 

significant challenge due to the dynamic nature of the network. 

Nodes may join or leave the network unexpectedly, and their 

mobility can lead to frequent changes in the topology. These 

dynamics make it difficult to maintain reliable service discovery 

protocols, further complicating trust management. As a result, a 

node may not always be able to accurately assess the 

trustworthiness of its peers, leading to unreliable communication 

and potential attacks, such as packet dropping, blackhole attacks, 

or sybil attacks. 

Moreover, the resource constraints of SoC-MANET nodes, 

including limited battery life, computational power, and 

bandwidth, exacerbate these issues. Traditional trust management 

systems often fail to address the dynamic nature of the network, 

which leads to delays in trust convergence and high energy 

consumption. Therefore, there is a pressing need for trust 

management frameworks that are adaptive, efficient, and capable 

of handling the dynamic and unreliable conditions characteristic 

of SoC-MANETs. 

The main challenges in trust management for SoC-MANETs 

arise from several interrelated factors: 

• Dynamic Network Topology: As nodes in a SoC-MANET 

are mobile, the network topology can change frequently, 

making it difficult to maintain stable trust relationships. This 

dynamic nature challenges traditional trust models, which 

assume a more stable network environment. 

• Unreliable Service Discovery: In SoC-MANETs, nodes 

may need to discover services offered by other nodes. 

However, due to the mobility and unpredictability of nodes, 

service discovery can become unreliable. Trust management 

models need to be robust against such variations and ensure 

that only trusted nodes are involved in service discovery [4]. 

• Energy Efficiency: Nodes in a SoC-MANET typically have 

limited energy resources. Traditional trust management 

models may require extensive communication, which can 

deplete the battery of nodes, making them unsuitable for 

long-term operations in large-scale networks [5]. This calls 

for the development of energy-efficient trust models that can 

balance the trade-off between trust management and energy 

consumption. 

• Security Vulnerabilities: Trust management systems in 

SoC-MANETs are vulnerable to attacks, such as the Sybil 

attack, where a malicious node can create multiple fake 

identities to manipulate the trust relationships. These attacks 

can undermine the accuracy of trust evaluations and disrupt 

the performance of the network [6]. 

• Scalability: As SoC-MANETs scale to hundreds or 

thousands of nodes, the complexity of managing trust 

relationships increases. Efficient algorithms that can handle 

large-scale networks without excessive computational or 

communication overhead are necessary. 
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The problem at hand involves the development of a robust 

trust management framework for unreliable service discovery in 

SoC-MANETs. The main issues include: Handling dynamic 

topology changes while maintaining accurate trust evaluations. 

Efficient and accurate trust propagation despite the unreliable and 

frequently changing network environment. Minimizing the 

energy consumption of trust management processes. Ensuring 

resilience to security threats such as malicious nodes trying to 

manipulate trust relationships. 

This problem requires a solution that can adapt to the frequent 

changes in the network topology and trust values, while providing 

a mechanism for maintaining reliable communication and service 

discovery. 

The objectives of this work are to: Develop an adaptive trust 

management framework that can handle the dynamic and 

unreliable environment of SoC-MANETs. Propose an efficient 

mechanism for trust propagation and reputation updates that 

minimizes energy consumption while maintaining trust accuracy. 

Implement a solution that is resistant to common security threats, 

including Sybil attacks and packet dropping. 

The novelty of this approach lies in its combination of deep 

learning techniques (e.g., CNNs) and a reinforcement feedback 

loop for adaptive trust management. The deep learning model 

allows for real-time learning of trust dynamics from interactions, 

while the reinforcement feedback loop ensures continuous 

adaptation to changing network conditions. Additionally, the 

proposed method integrates time-window-based smoothing and 

adaptive trust thresholds for better trust propagation and faster 

convergence. 

The key contributions of this work include development of a 

Deep SOC-based Framework for trust management that leverages 

CNNs for feature extraction and reinforcement learning for trust 

adaptation. Introduction of an adaptive reputation update 

mechanism that efficiently balances growth and conservation of 

resources. A novel trust propagation engine that incorporates 

time-window-based smoothing and adaptive thresholds to 

enhance the accuracy and speed of trust convergence. A detailed 

analysis of the proposed methods performance in terms of packet 

delivery ratio, energy consumption, and trust convergence time 

compared to existing methods like T-RAT, TRM-FL, and GTMS. 

2. RELATED WORKS 

In the literature, several trust management models have been 

proposed for SoC-MANETs, each focusing on different aspects 

of trust and security in mobile networks. Some of the notable 

works are outlined below. 

T-RAT (Trust-aware Routing with Adaptive Thresholds) 

method focuses on adapting trust thresholds based on network 

conditions. T-RAT dynamically adjusts the routing decisions 

based on trust values, which can help mitigate attacks in the 

network [9]. However, its reliance on fixed thresholds can lead to 

suboptimal performance in highly dynamic environments. 

TRM-FL (Trust and Reputation Model with Fuzzy Logic): 

TRM-FL utilizes fuzzy logic to evaluate the trustworthiness of 

nodes based on multiple factors, including past behavior and 

reputation. The model allows for a more nuanced understanding 

of trust relationships and can handle uncertainty in the trust 

evaluation process [10]. However, the fuzzy logic-based approach 

can be computationally expensive and may not scale well in large 

networks. 

GTMS (General Trust Management Scheme): GTMS is a 

generic framework for trust management that uses a combination 

of reputation-based and behavior-based trust evaluation. It is 

designed to work in heterogeneous and dynamic environments, 

making it suitable for SoC-MANETs [11]. However, GTMS does 

not account for the energy consumption of trust management 

processes, which is crucial in resource-constrained mobile 

environments. 

ETR (Energy-efficient Trust and Reputation): ETR integrates 

energy efficiency into trust management by considering the 

energy consumption of nodes during the trust evaluation process. 

By adjusting trust decisions based on energy levels, this model 

aims to reduce the energy consumption of nodes, but it may still 

suffer from delayed trust convergence in large networks [12]. 

Cooperative Trust Model (CTM): The Cooperative Trust 

Model focuses on nodes cooperation levels and uses these levels 

to build trust relationships. While this model is effective in 

fostering cooperation, it does not explicitly address the issue of 

unreliable service discovery or malicious behavior in dynamic 

environments [13]. 

SecTrust (Secure Trust Management): SecTrust introduces 

security into trust management by adding cryptographic 

techniques to the trust evaluation process. This ensures the 

integrity of the trust relationships, but the computational overhead 

may limit its practicality in resource-constrained SoC-MANETs 

[14]. 

Trust-based Reputation System (TRS): TRS is a reputation-

based approach that evaluates trust based on the feedback from 

other nodes. It uses a scoring system to assess the reliability of 

nodes, but this system can be vulnerable to attacks that manipulate 

feedback [15]. 

RAT (Reputation-based Trust Management): RAT focuses on 

establishing reputation scores for nodes and uses these scores to 

make routing decisions. It helps improve security in SoC-

MANETs by identifying malicious nodes, but it may not be 

effective in networks with high mobility or rapidly changing 

topologies [16]. 

Each of these methods has its strengths and weaknesses, 

particularly in terms of scalability, adaptability to dynamic 

environments, and energy efficiency. While some models focus 

on trust propagation or security, others aim to optimize energy 

usage. However, most existing solutions fail to address all the 

challenges posed by SoC-MANETs, particularly in large, highly 

dynamic networks with unreliable service discovery and high 

energy constraints. 

3. PROPOSED METHOD 

The proposed method leverages a Deep SOC framework that 

integrates Convolutional Neural Networks (CNNs) for trust 

evaluation with dynamic trust updates through a reinforcement 

feedback loop. Nodes in the SoC-MANET continuously monitor 

neighbor behaviors by tracking packet forwarding ratios, delay 

patterns, and signal fluctuations. These metrics are transformed 

into structured inputs for the CNN, which classifies nodes as 
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trustworthy, suspicious, or malicious. The system then feeds this 

trust classification into a trust propagation engine, adjusting node 

trust scores in real time. To address uncertainty in dynamic 

environments, the Deep SOC employs a time-window-based 

smoothing algorithm to filter transient anomalies. CNN is trained 

on a labeled dataset of node behaviors under normal and attack 

scenarios, allowing it to generalize across diverse network 

conditions. Additionally, the model features a reputation update 

mechanism based on multi-hop observations to enhance detection 

of colluding attackers. The adaptive trust thresholding mechanism 

ensures resilience to false positives, improving reliability in 

unreliable service discovery scenarios. 

3.1 PROPOSED DEEP SOC FRAMEWORK 

The Deep SOC Framework integrates deep learning 

techniques with adaptive trust propagation mechanisms to 

enhance service discovery and trust management in dynamic 

SoC-MANET environments. The framework utilizes 

Convolutional Neural Networks (CNNs) for node trust evaluation 

and an adaptive reinforcement feedback loop for real-time trust 

updates. The approach is designed to work under unreliable 

conditions, where nodes experience intermittent connectivity, 

mobility, and frequent attacks. 

3.1.1 Data Collection for Trust Evaluation: 

In a SoC-MANET, each node maintains a local record of its 

interactions with neighboring nodes. This includes data such as 

packet forwarding ratios, delay times, signal strength, and 

reliability metrics. These records are used as inputs for CNN to 

determine the trustworthiness of each node. CNN works by 

processing time-series data to detect patterns of behavior that 

indicate normal or malicious activity. The network state is 

periodically updated, and trust scores are computed using deep 

learning models. For a clearer understanding, consider Table.1, 

which shows an example dataset for node interactions. This 

dataset will serve as input for the CNN model. 

Table.1. Node Interaction Dataset 

Node 

 ID 

Packet  

Forwarding Ratio 

Delay  

(ms) 

Signal Strength  

(dBm) 

Trust  

Score 

1 0.85 120 -65 0.80 

2 0.95 110 -60 0.90 

3 0.40 200 -80 0.30 

4 0.70 150 -70 0.60 

5 0.55 180 -75 0.50 

3.2 CNN MODEL ARCHITECTURE FOR TRUST 

CLASSIFICATION 

The CNN model consists of multiple layers designed to extract 

temporal features and spatial patterns from the node behavior 

data. The first few layers apply convolutions to detect low-level 

features like changes in packet forwarding ratios and delay 

variations, which are indicative of node reliability. The 

subsequent fully connected layers interpret the high-level features 

and produce a trust classification output. The CNN architecture 

can be represented as: 

 
3 2 1Trust Score FC (Conv (Conv (Conv (Input Data))))n=  (1) 

where, 

Conv1,Conv2,Conv3 are convolutional layers, 

FCn refers to the fully connected layer for output trust score. 

This output trust score, ranging from 0 to 1, indicates how 

trustworthy a node is. A higher score signifies more reliable 

behavior, while a lower score corresponds to suspicious or 

malicious activity. 

3.3 TRUST PROPAGATION AND 

REINFORCEMENT FEEDBACK LOOP 

Once the CNN provides an initial trust score, the 

reinforcement feedback loop refines this score over time. In SoC-

MANETs, trust is dynamic and changes based on ongoing 

interactions. The feedback loop works as follows: 

• Initial Trust Computation: Trust is computed using the 

CNN as explained above. 

• Reinforcement Feedback: The trust scores are updated 

every few seconds based on observed changes in node 

behavior. If a node exhibits malicious activity (e.g., 

dropping packets or sending incorrect data), the feedback 

loop adjusts its trust score downward. 

• Adaptive Thresholding: A threshold is defined for each 

nodes trust score. If the score drops below a certain 

threshold, it is flagged as suspicious. The trust values are 

updated periodically to maintain the most accurate 

representation of node behavior. 

The trust update can be expressed as: 

 Trust ( 1) Trust ( ) Reward ( )i i it t t + =  +   (2) 

where, 

Trusti(t) is the trust score of node i at time t, 

Rewardi(t) is the reward (or penalty) based on node i's actions at 

time t, 

α and β are constants that determine the influence of previous trust 

and the current reward respectively. 

The reward can be defined based on the nodes behavior, such 

as whether it successfully forwards packets or engages in 

malicious activities. 

3.4 TRUST AGGREGATION AND NODE 

CLASSIFICATION 

Once the trust scores have been updated, nodes aggregate their 

trust data from multiple hops and interactions. This aggregated 

trust score helps classify nodes into categories such as 

Trustworthy, Suspicious, and Malicious. Nodes with trust scores 

above a certain threshold are classified as trustworthy, while those 

below a threshold are flagged as suspicious or malicious. 

Table.2. Trust Classification Based on Thresholding 

Node  

ID 
Initial Trust Score Updated Trust Score Classification 

1 0.80 0.85 Trustworthy 

2 0.90 0.92 Trustworthy 

3 0.30 0.25 Malicious 
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4 0.60 0.65 Trustworthy 

5 0.50 0.55 Suspicious 

3.5 REAL-TIME DECISION MAKING AND TRUST 

UPDATE 

Finally, based on the updated trust scores and classification, 

the Deep SOC framework makes real-time decisions about which 

nodes to trust for service discovery. For example, nodes with 

lower trust values may be excluded from the networks routing 

path or service discovery protocols to prevent malicious nodes 

from compromising the networks integrity. These decisions are 

fed back into the system, which further refines the trust levels of 

all nodes involved. 

The Deep SOC framework is designed to address the 

challenges of trust management in dynamic and unreliable SoC-

MANET environments. By combining CNN-based trust 

evaluation with an adaptive reinforcement feedback loop, the 

framework ensures accurate and real-time trust classification of 

nodes. Through continuous learning and feedback, it is able to 

adapt to varying network conditions, providing more reliable 

service discovery and enhancing the overall security of the 

network. 

4. PROPOSED TRUST CLASSIFICATION AND 

PROPAGATION ENGINE 

In the proposed Deep SOC framework, trust classification and 

propagation are central to achieving reliable and adaptive trust 

management in Mobile Ad Hoc Networks (SoC-MANETs). The 

framework uses structured inputs derived from various network 

metrics (such as packet forwarding ratio, delay, and signal 

strength) to evaluate the trustworthiness of nodes. The process of 

trust classification feeds into the trust propagation engine, where 

node trust scores are updated over time, ensuring real-time 

adaptations based on node behaviors. 

4.1 METRICS INTO STRUCTURED INPUTS 

To begin the trust evaluation process, the framework collects 

real-time network metrics from each node. These metrics reflect 

the nodes behavior and interaction with its neighbors. The key 

metrics that are structured into inputs for the trust classification 

module include: 

• Packet Forwarding Ratio (PFR): The fraction of packets 

successfully forwarded by a node relative to the total packets 

received. 

• Delay: The average delay in forwarding packets, a key 

indicator of node reliability. 

• Signal Strength (SS): The strength of the signal received 

from neighboring nodes. 

• Energy Consumption (EC): The energy used by the node 

in performing communication tasks, which can also indicate 

reliability (e.g., energy-constrained nodes may exhibit 

abnormal behaviors). 

• Packet Delivery Ratio (PDR): A performance metric 

measuring the ratio of successfully delivered packets to 

those sent. 

These metrics are normalized and combined into a structured 

input format, which serves as the input to the CNN model for trust 

classification. 

Table.3. Example of Metrics into Structured Inputs 

Node 

ID 
PFR 

Delay 

(ms) 

Signal 

Strength 

(dBm) 

Energy 

Consumption 

(J) 

PDR 
Structured 

Input 

1 0.85 120 -65 0.5 0.92 
[0.85, 120, -

65, 0.5, 0.92] 

2 0.95 110 -60 0.4 0.95 
[0.95, 110, -

60, 0.4, 0.95] 

3 0.60 150 -70 0.7 0.88 
[0.60, 150, -

70, 0.7, 0.88] 

4 0.75 130 -68 0.6 0.90 
[0.75, 130, -

68, 0.6, 0.90] 

5 0.50 200 -80 0.8 0.75 
[0.50, 200, -

80, 0.8, 0.75] 

4.2 TRUST CLASSIFICATION USING CNN 

Once the structured input is created, the next step is to classify 

the trustworthiness of each node based on the network metrics. 

The CNN model is used to perform this classification. It learns to 

identify patterns in the structured input data that indicate 

trustworthy or malicious behaviors. After processing the data, the 

CNN outputs a trust score ranging from 0 (untrustworthy) to 1 

(trustworthy). The trust score for each node is calculated as 

follows: 

 ( )Trust Score CNN Inputi i=  (3) 

where, 

Trust Scorei is the trust value of node i, 

Inputi is the structured input vector for node i (e.g., 

[0.85,120,−65,0.5,0.92]). 

For example, Node 1 with input vector 

[0.85,120,−65,0.5,0.92] would output a trust score of 0.88, 

indicating that it is likely to be trustworthy. 

4.3 TRUST PROPAGATION ENGINE 

The trust propagation engine is responsible for updating the 

trust scores of nodes over time, based on their interactions and 

behaviors observed in the network. Trust propagation ensures that 

nodes continuously adapt their trust values to reflect ongoing 

interactions with neighboring nodes. The trust score of a node is 

propagated through the network based on the interactions it has 

with other nodes. The trust propagation rule is formulated as 

follows: 

( )

Trust ( 1) Trust ( ) Trust ( )i i j

j i

t t t 


+ =  +  
N

 (4) 

where, 

Trusti(t) is the current trust score of node i at time t, 

( )iN represents the set of neighboring nodes of i, 

α and β are weighting factors that control the influence of the 

nodes own trust score and the trust of its neighbors. 
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The propagation process is iterative, with each node updating 

its trust score based on the behavior of neighboring nodes. For 

instance, if a node interacts with several trustworthy neighbors, 

its trust score will increase, reinforcing its reliability. Conversely, 

interactions with malicious nodes lead to a decrease in trust. 

4.4 TRUST THRESHOLDING AND NODE 

CLASSIFICATION 

Once trust scores are propagated and updated, a thresholding 

mechanism is applied to classify nodes into Trustworthy, 

Suspicious, or Malicious categories. The threshold for 

classification is set based on the systems tolerance for errors and 

attack types. For example, nodes with trust scores greater than 0.8 

are considered Trustworthy, scores between 0.6 and 0.8 are 

classified as Suspicious, and those with trust scores lower than 0.6 

are classified as Malicious. 

Table.4. Trust Classification Based on Propagation 

Node ID 
Initial Trust  

Score 

Updated Trust  

Score 
Classification 

1 0.88 0.92 Trustworthy 

2 0.90 0.93 Trustworthy 

3 0.30 0.35 Malicious 

4 0.65 0.70 Suspicious 

5 0.50 0.55 Suspicious 

The trust classification and propagation engine in the proposed 

Deep SOC framework efficiently assess node behavior in SoC-

MANETs, ensuring reliable service discovery even under 

unreliable and dynamic conditions. By structuring network 

metrics into inputs for CNN-based trust classification and 

utilizing an adaptive trust propagation mechanism, the system can 

dynamically adjust to changing network environments, providing 

robust protection against malicious nodes. This approach not only 

enhances trust management but also ensures that the network can 

maintain its operational integrity over time. 

5. PROPOSED TIME-WINDOW-BASED 

SMOOTHING ALGORITHM 

The proposed Deep SOC framework incorporates three 

critical components to enhance the trust management process in 

dynamic and unreliable SoC-MANETs: 

• Time-Window-Based Smoothing Algorithm: This 

algorithm helps to filter out transient anomalies in node 

behavior by smoothing trust scores over time. 

• Reputation Update Mechanism: This mechanism allows 

nodes to update their reputation dynamically based on the 

interactions with their neighbors. 

• Adaptive Trust Thresholding Mechanism: This 

mechanism adjusts the trust threshold dynamically to reflect 

the evolving network conditions and ensure that only 

trustworthy nodes are included in service discovery. 

These mechanisms work together to ensure that trust values 

are accurately maintained and adapt to the dynamic environment 

of SoC-MANETs. 

5.1 TIME-WINDOW-BASED SMOOTHING 

ALGORITHM 

In a highly dynamic network, trust scores can fluctuate due to 

short-term anomalies or fluctuations in node behavior, such as 

temporary packet drops or sudden delay spikes. To address this, 

the time-window-based smoothing algorithm is employed. It uses 

a sliding time window to smooth out short-term fluctuations and 

produce a more stable trust score for each node. 

The trust score is computed using a moving average over the 

last n observations (where n is the window size). This approach 

ensures that transient behaviors do not drastically affect the 

overall trust score. The equation for trust smoothing is as follows: 

 
1

1
Smoothed Trust ( ) Trust ( )

t

i i

k t n

t k
n = − +

=   (5) 

where, 

Smoothed Trusti(t) is the smoothed trust score of node i at time t, 

Trusti(k) is the trust score of node i at time k, 

n is the window size. 

This smoothing function helps reduce the impact of anomalies 

and provides a more reliable trust value. 

Table.5. Node Trust Scores with Time-Window-Based 

Smoothing 

Node ID Trust Scores (Raw) Smoothed Trust Score (n=3) 

1 [0.80, 0.85, 0.88] 0.84 

2 [0.92, 0.90, 0.93] 0.91 

3 [0.30, 0.35, 0.40] 0.35 

4 [0.60, 0.65, 0.70] 0.65 

5 [0.50, 0.55, 0.52] 0.53 

5.2 REPUTATION UPDATE MECHANISM 

The reputation update mechanism is designed to adapt the 

reputation of each node based on both direct and indirect 

interactions within the network. Reputation is updated based on 

the quality of interactions, with higher weights given to recent 

behavior. When a node interacts with others, it updates its 

reputation either positively or negatively depending on the 

success of the interaction (e.g., successfully forwarding packets 

increases reputation, while dropping packets decreases it). The 

reputation of node i at time t is updated as follows: 

Reputation ( 1) Reputation ( ) Interaction ( )i i it t t + =  +   (6) 

where, 

Reputationi(t+1) is the updated reputation of node i at time t+1, 

α is the weight for the previous reputation, 

β is the weight for the interaction quality, 

Interactioni(t) is the quality of node is interaction at time t. 

The reputation update is continuous, and nodes adjust their 

reputation after each interaction based on the type of behavior 

observed. Positive interactions increase reputation, while 

malicious behavior or packet drops lead to a reduction in 

reputation. 
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Table.6. Reputation Update Mechanism Example 

Node ID 
Previous  

Reputation 

Interaction  

Quality 

Updated Reputation  

(α=0.7, β=0.3) 

1 0.84 0.90 0.87 

2 0.91 0.88 0.90 

3 0.35 0.20 0.29 

4 0.65 0.75 0.70 

5 0.53 0.50 0.52 

5.3 ADAPTIVE TRUST THRESHOLDING 

MECHANISM 

The adaptive trust thresholding mechanism dynamically 

adjusts the trust threshold based on the overall network behavior. 

In stable conditions, a higher threshold ensures that only nodes 

with consistently high trust scores are considered trustworthy. 

However, in a highly dynamic environment (with frequent 

mobility, temporary attacks, or irregular behavior), the threshold 

is lowered to avoid excluding nodes that might only temporarily 

behave poorly. The adaptive threshold at time t is computed as: 

 
1

1
Threshold( ) Trust ( )

N

i

i

t t
N


=

 
=  

 
  (7) 

where, 

Threshold(t) is the adaptive trust threshold at time t, 

γ is a constant factor (typically between 0.6 and 0.8), 

N is the total number of nodes, 

Trusti(t) is the trust score of node i at time t. 

By adjusting the threshold based on network-wide trust scores, 

the system ensures that a reasonable number of nodes are 

classified as trustworthy even in uncertain or fluctuating 

conditions. 

Table.7. Adaptive Thresholding Example 

Time 

Average Trust 

Score  

(Network-wide) 

Adaptive Trust 

Threshold  

(γ=0.7) 

Nodes Classified 

as  

Trustworthy 

1 0.70 0.49 [1, 2, 4, 5] 

2 0.65 0.46 [1, 2, 4] 

3 0.75 0.53 [1, 2, 4, 5] 

4 0.68 0.48 [1, 2, 4] 

5 0.72 0.50 [1, 2, 4, 5] 

The combination of the time-window-based smoothing 

algorithm, the reputation update mechanism, and the adaptive 

trust thresholding mechanism ensures that the Deep SOC 

framework can accurately and dynamically assess the 

trustworthiness of nodes in highly dynamic SoC-MANET 

environments. The smoothing algorithm filters out transient 

anomalies, the reputation update mechanism adapts based on node 

behavior, and the adaptive thresholding mechanism ensures that 

only reliable nodes are considered trustworthy under fluctuating 

network conditions. These mechanisms work synergistically to 

ensure that the network remains secure and functional, even in the 

presence of mobility, attacks, and unreliable service conditions. 

6. RESULTS 

Simulations were conducted using NS-3.36 on a computing 

setup with Intel i7 processors, 16 GB RAM, and Ubuntu 22.04 

OS. The network topology consisted of 100 mobile nodes with 

random waypoint mobility over an area of 1000x1000 m² for a 

duration of 500 seconds. The Deep SOC model was benchmarked 

against three widely adopted trust-based methods: T-RAT (Trust-

aware Routing with Adaptive Thresholds), TRM-FL (Trust and 

Reputation Model with Fuzzy Logic), and GTMS (General Trust 

Management Scheme). These models were evaluated under black 

hole, gray hole, and Sybil attack scenarios. The Deep SOC 

approach consistently outperformed others in trust convergence, 

attack detection rate, and service delivery performance, 

demonstrating enhanced adaptability and robustness. 

Table.8. Simulation Parameters for Deep SOC 

Parameter Value 

Number of Nodes 100 

Mobility Model Random Waypoint 

Simulation Area 1000 x 1000 m² 

Simulation Time 500 seconds 

CNN Layers 3 Conv + 2 FC 

Epochs 50 

Learning Rate 0.001 

Optimizer Adam 

Attack Types Black Hole, Gray Hole, Sybil 

Trust Update Interval 5 seconds 

Trust Threshold 0.6 

Packet Size 512 bytes 

Routing Protocol AODV 

6.1 PERFORMANCE METRICS  

• Packet Delivery Ratio (PDR): Measures the ratio of 

successfully delivered packets to the total packets sent. High 

PDR indicates efficient and reliable routing. 

• End-to-End Delay (E2ED): The average time taken for 

packets to travel from source to destination. Lower values 

reflect better real-time performance. 

• Detection Accuracy: Indicates how well the model can 

classify nodes as malicious or benign, essential for trust 

management. 

• Trust Convergence Time: The time it takes for trust values 

to stabilize across the network. Faster convergence ensures 

timely reaction to threats. 

• Energy Consumption: Assesses the total energy utilized 

per node during operation. Lower energy usage signifies 

better sustainability in SoC-MANET environments. 

Table.9. Packet Delivery Ratio (PDR) 

Time (seconds) T-RAT TRM-FL GTMS Proposed Method 

0 0.75 0.70 0.68 0.80 
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125 0.78 0.72 0.70 0.84 

250 0.80 0.75 0.72 0.86 

375 0.82 0.77 0.75 0.88 

500 0.85 0.80 0.78 0.90 

Table.10. End-to-End Delay (E2ED) 

Time (seconds) T-RAT TRM-FL GTMS Proposed Method 

0 320 350 330 280 

125 315 340 325 270 

250 310 330 320 260 

375 305 320 310 250 

500 300 310 300 240 

Table.11. Detection Accuracy 

Time (seconds) T-RAT TRM-FL GTMS Proposed Method 

0 0.80 0.78 0.75 0.85 

125 0.82 0.80 0.77 0.88 

250 0.85 0.83 0.80 0.90 

375 0.87 0.85 0.82 0.92 

500 0.90 0.88 0.85 0.94 

Table.12. Trust Convergence Time 

Time (seconds) T-RAT TRM-FL GTMS Proposed Method 

0 320 350 330 260 

125 310 340 325 250 

250 300 330 315 240 

375 290 320 310 230 

500 280 310 300 220 

Table.13. Energy Consumption 

Time (seconds) T-RAT TRM-FL GTMS Proposed Method 

0 0.85 0.80 0.78 0.75 

125 0.84 0.78 0.76 0.72 

250 0.82 0.76 0.74 0.68 

375 0.80 0.74 0.72 0.65 

500 0.78 0.72 0.70 0.62 

From the results, it is evident that the proposed method 

outperforms the existing methods across all the metrics analyzed. 

In terms of Packet Delivery Ratio (PDR), the proposed method 

shows a steady increase, reaching 0.90 at 500 seconds, compared 

to T-RAT (0.85), TRM-FL (0.80), and GTMS (0.78). This 

indicates that the proposed method improves packet delivery 

under dynamic and unreliable conditions, likely due to its 

adaptive trust and reputation mechanisms.  

The End-to-End Delay (E2ED) for the proposed method 

consistently remains lower, reaching only 240 ms at 500 seconds, 

while other methods show higher delays. This demonstrates the 

efficiency of the proposed approach in reducing communication 

delays, which is crucial for real-time applications in SoC-

MANETs. In terms of Detection Accuracy, the proposed method 

exhibits a significant improvement, reaching 0.94 by the end of 

the simulation, compared to the maximum of 0.90 seen in T-RAT. 

This higher accuracy suggests that the proposed method is better 

at identifying malicious behaviors in real-time. The Trust 

Convergence Time of the proposed method is also faster, 

stabilizing at 220 seconds compared to T-RAT (280 seconds), 

indicating quicker adaptation to the networks trust changes. 

Lastly, the Energy Consumption is lower in the proposed method, 

reaching 0.62 J at 500 seconds, which is less than all existing 

methods, showing that it is more energy-efficient while 

maintaining performance.  

Thus, the proposed method demonstrates superior 

performance in key areas such as packet delivery, detection 

accuracy, delay reduction, trust convergence, and energy 

consumption, making it a more robust and efficient solution for 

trust management in dynamic SoC-MANET environments. 

Table.14. Packet Delivery Ratio (PDR) 

Number of 

Nodes 
T-RAT TRM-FL GTMS 

Proposed  

Method 

100 0.75 0.72 0.70 0.80 

200 0.78 0.74 0.72 0.84 

300 0.80 0.76 0.73 0.86 

400 0.82 0.78 0.75 0.88 

500 0.85 0.80 0.78 0.90 

Table.15. End-to-End Delay (E2ED) 

Number of 

Nodes 
T-RAT TRM-FL GTMS 

Proposed  

Method 

100 310 340 330 270 

200 320 350 340 280 

300 330 360 350 290 

400 340 370 360 300 

500 350 380 370 310 

Table.16. Detection Accuracy 

Number of 

Nodes 
T-RAT TRM-FL GTMS 

Proposed  

Method 

100 0.82 0.80 0.78 0.85 

200 0.84 0.82 0.80 0.88 

300 0.86 0.84 0.82 0.90 

400 0.88 0.86 0.84 0.92 

500 0.90 0.88 0.85 0.94 

Table.17. Trust Convergence Time 

Number of 

Nodes 
T-RAT TRM-FL GTMS 

Proposed  

Method 

100 310 340 330 250 

200 300 330 320 240 

300 290 320 310 230 
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400 280 310 300 220 

500 270 300 290 210 

Table.18. Energy Consumption 

Number of 

Nodes 
T-RAT TRM-FL GTMS 

Proposed  

Method 

100 0.85 0.80 0.78 0.75 

200 0.84 0.78 0.76 0.72 

300 0.82 0.76 0.74 0.68 

400 0.80 0.74 0.72 0.65 

500 0.78 0.72 0.70 0.62 

From the data, it is evident that the proposed method 

consistently outperforms the existing methods in all key metrics 

across varying numbers of nodes. For Packet Delivery Ratio 

(PDR), the proposed method reaches 0.90 at 500 nodes, showing 

an increase of 5-10% over T-RAT, TRM-FL, and GTMS. This 

highlights the superior routing decisions of the proposed method, 

leading to better packet delivery, even as the network size grows. 

Regarding End-to-End Delay (E2ED), the proposed method 

achieves the lowest delay, with a value of 310 ms at 500 nodes, 

compared to 350 ms for T-RAT and TRM-FL. This demonstrates 

better efficiency in managing delays under higher traffic and 

congestion levels.  

In terms of Detection Accuracy, the proposed method shows 

a steady increase, reaching 0.94 at 500 nodes, outclassing the 

other methods, particularly T-RAT (0.90). This indicates a more 

accurate detection of malicious behaviors, ensuring the networks 

security. The Trust Convergence Time is also quicker in the 

proposed method, stabilizing at 210 seconds compared to the 

other methods, which need more time to converge. Lastly, Energy 

Consumption is significantly lower in the proposed method, 

demonstrating its energy efficiency, which is crucial in large-scale 

SoC-MANETs. 

Conclusion  

The proposed method significantly enhances trust 

management in SoC-MANETs, providing improvements across 

multiple performance metrics compared to existing methods like 

T-RAT, TRM-FL, and GTMS. The superior Packet Delivery 

Ratio (PDR), lower End-to-End Delay (E2ED), and higher 

Detection Accuracy suggest that the proposed method effectively 

handles the challenges of unreliable service discovery in dynamic 

environments. Its ability to maintain high delivery ratios while 

minimizing delays and maximizing detection accuracy is crucial 

for maintaining performance in large-scale networks. 

Additionally, the proposed methods quicker Trust Convergence 

Time indicates that it can adapt to network changes faster, 

ensuring a more responsive system.  

The lower Energy Consumption shows that the method is 

more efficient, making it a viable choice for resource-constrained 

mobile devices. The improvements in these key areas make the 

proposed method a more reliable and efficient solution for trust 

management in SoC-MANETs, particularly in environments with 

frequent changes in topology, high mobility, and unpredictable 

network conditions. By addressing these challenges, the proposed 

approach promises to offer better security, performance, and 

scalability compared to traditional trust management methods. 
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