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Abstract 

Microstrip circuits form the backbone of modern high-frequency 

communication systems, offering compact and efficient solutions for 

signal processing and transmission. However, the design of these 

circuits is challenging due to the intricate interplay of electromagnetic 

(EM) parameters, material properties, and circuit dimensions. 

Traditional EM simulation methods, while accurate, are 

computationally intensive and time-consuming, limiting their 

applicability for rapid prototyping and optimization. To address these 

challenges, this study integrates deep learning techniques with 

electromagnetic simulations to enhance microstrip circuit design 

efficiency. A Recurrent Neural Network (RNN)-based framework is 

proposed to predict the frequency-dependent behavior of microstrip 

circuits, leveraging temporal data from iterative EM simulations. The 

RNN model is trained on a diverse dataset of simulated circuit 

configurations, capturing the relationships between physical 

parameters, design constraints, and performance metrics. The 

proposed approach significantly reduces computational overhead by 

approximating the results of full-wave EM simulations while 

maintaining high accuracy. Validation against benchmark EM 

simulation tools shows that the RNN model achieves over 95% 

prediction accuracy with a 70% reduction in simulation time. 

Additionally, this framework enables real-time optimization of circuit 

designs, accelerating the iterative design process without 

compromising performance. 
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1. INTRODUCTION 

Microstrip circuits have become indispensable in modern 

high-frequency communication systems, offering compact, 

lightweight, and cost-effective solutions for signal processing, 

impedance matching, and filtering. These circuits are used 

extensively in wireless communication devices, satellite systems, 

and radar applications due to their versatility and ease of 

fabrication [1-3]. Electromagnetic (EM) simulations play a vital 

role in their design, enabling engineers to predict circuit 

performance under varying conditions. However, the inherent 

complexity of electromagnetic interactions, combined with the 

need for precise modeling of circuit geometries and materials, 

demands substantial computational resources and time. 

The design of microstrip circuits presents several challenges. 

First, achieving accurate performance predictions requires 

solving Maxwell's equations over the circuit's geometry, a process 

that involves computationally expensive full-wave simulations 

[4]. Second, the iterative nature of design optimization—where 

parameters such as width, length, and substrate properties are 

adjusted to meet specific performance goals—further amplifies 

the computational burden [5]. Finally, integrating these circuits 

into larger systems necessitates considerations for mutual 

coupling, cross-talk, and non-idealities, which complicate the 

simulation process [6]. 

Current approaches to microstrip circuit design rely heavily on 

conventional EM simulation tools, which are accurate but 

computationally intensive. This limits their applicability for real-

time optimization and rapid prototyping. Moreover, the lack of 

predictive models capable of generalizing across a wide range of 

design configurations hampers efficiency. Designers often need 

to perform multiple iterations of simulation and manual 

adjustment, slowing down the development process and 

increasing costs [7-10]. 

This research aims to: 

• Develop a deep learning-based framework that integrates 

with EM simulations to predict microstrip circuit 

performance. 

• Reduce computational time and resources required for 

iterative design optimization while maintaining high 

prediction accuracy. 

Unlike previous methods that rely solely on traditional 

simulation or machine learning in isolation, this study combines 

Recurrent Neural Networks (RNNs) with EM simulation data to 

create a predictive framework. The temporal capabilities of RNNs 

are leveraged to model the frequency-dependent behavior of 

microstrip circuits, enabling accurate predictions across a range 

of configurations. 

2. RELATED WORKS 

Several studies have explored the use of machine learning 

techniques for electromagnetic applications. For instance, 

Support Vector Machines (SVMs) and Gaussian Process 

Regression (GPR) have been employed to predict the 

performance of microwave circuits, demonstrating significant 

potential in reducing simulation time [7]. However, these methods 

are often limited by their inability to effectively model temporal 

dependencies in frequency responses, making them less suitable 

for broadband applications [8]. 

In recent years, neural networks have gained traction in this 

domain. Convolutional Neural Networks (CNNs) have been used 

to optimize antenna designs by mapping input geometries to 

performance metrics. While effective for static parameters, CNNs 

struggle to capture sequential dependencies inherent in EM 
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simulations [9]. Similarly, feedforward neural networks have 

been applied to predict scattering parameters of microwave 

devices, but these models often require extensive data 

preprocessing and are sensitive to noise [10]. 

Recurrent Neural Networks (RNNs), with their inherent 

ability to process sequential data, have shown promise in time-

series prediction tasks. For example, studies have demonstrated 

the use of Long Short-Term Memory (LSTM) networks to predict 

time-varying parameters in electrical systems [11]. However, 

their application in microstrip circuit design remains relatively 

unexplored. This gap provides an opportunity to develop models 

tailored to the unique requirements of electromagnetic 

simulations. 

Hybrid approaches have also been investigated. For instance, 

combining machine learning with surrogate models, such as 

Kriging or Radial Basis Function (RBF) models, has shown 

potential in accelerating the optimization process [12]. Despite 

these advances, existing methods often focus on specific aspects 

of the design process and fail to offer a comprehensive solution 

that integrates prediction and optimization. 

The proposed work addresses these limitations by utilizing 

RNNs to capture the temporal characteristics of EM simulation 

data, offering a more holistic and efficient approach to microstrip 

circuit design. This integration not only reduces computational 

overhead but also enhances the ability to generalize across diverse 

design configurations, paving the way for real-time optimization 

and prototyping. 

3. PROPOSED METHOD 

The proposed method integrates deep learning with 

electromagnetic (EM) simulations to enhance the design and 

optimization of microstrip circuits. A Recurrent Neural Network 

(RNN)-based framework is developed to predict the performance 

of microstrip circuits based on their design parameters and 

frequency-dependent behaviors. The approach begins with the 

generation of a comprehensive dataset using full-wave EM 

simulations, capturing a wide range of circuit configurations and 

corresponding performance metrics. The dataset is preprocessed 

to normalize parameters such as substrate thickness, dielectric 

constant, circuit dimensions, and frequency responses. The RNN 

model, specifically employing Long Short-Term Memory 

(LSTM) layers, is trained on this dataset to capture temporal 

dependencies in the frequency-response data. Once trained, the 

RNN predicts circuit performance metrics, such as return loss and 

insertion loss, for new configurations, significantly reducing the 

reliance on computationally intensive simulations. The predicted 

results are validated against actual EM simulations to ensure 

accuracy. Additionally, the framework incorporates a design 

optimization module, where predictions guide iterative 

adjustments to achieve desired performance goals in real time. 

This method streamlines the microstrip circuit design process, 

enabling faster prototyping and improved efficiency without 

compromising accuracy. 

3.1 DATA GENERATION 

The data generation process begins with the creation of a 

comprehensive dataset by simulating various microstrip circuit 

designs using full-wave electromagnetic (EM) simulation tools. 

These simulations capture the performance metrics for a diverse 

range of circuit configurations, ensuring the dataset covers a wide 

design space. The generated dataset serves as the foundation for 

training the Recurrent Neural Network (RNN) model. 

3.2 SIMULATION OF MICROSTRIP CIRCUIT 

DESIGNS 

For each circuit design, critical input parameters such as 

substrate thickness, dielectric constant, conductor width, and 

conductor length are varied within predefined ranges. These 

ranges are chosen based on typical microstrip circuit design 

specifications and application requirements. The EM simulations 

compute the output performance metrics, such as return loss 

(S11), insertion loss (S21), and bandwidth, across a range of 

operating frequencies. This ensures the dataset includes temporal 

information about the frequency-dependent behavior of the 

circuits. 

Table.1. Input Parameters for Circuit Design 

Design  

ID 

Substrate  

Thickness  

(mm) 

Dielectric  

Constant  

(εr) 

Conductor  

Width  

(mm) 

Conductor  

Length  

(mm) 

Operating  

Frequency  

(GHz) 

D1 1.5 4.4 3.0 12.0 1.0-10.0 

D2 2.0 2.2 2.5 15.0 1.0-10.0 

D3 1.2 6.0 2.8 10.0 1.0-10.0 

Table.2. Output Performance Metrics 

Design  

ID 

Frequency  

(GHz) 

Return Loss  

(S11, dB) 

Insertion Loss  

(S21, dB) 

Bandwidth  

(MHz) 

D1 1.0 -12.5 -0.8 250 

D1 2.0 -15.2 -0.6 300 

D2 1.0 -10.8 -1.2 200 

D2 2.0 -13.4 -1.0 280 

3.3 FREQUENCY SAMPLING 

The frequency range for each simulation is divided into 

discrete intervals (e.g., 1 GHz steps) to capture the circuit's 

performance across multiple operating points. This granularity 

ensures the RNN model can accurately predict the frequency-

dependent responses. 

3.3.1 Dataset Diversity: 

To ensure the dataset generalizes well, simulations include 

various combinations of substrate materials, dimensions, and 

operating conditions. This diversity helps the RNN model learn 

complex relationships between input parameters and performance 

metrics, making it capable of handling unseen configurations 

during real-time application. 

This data generation approach ensures the creation of a robust, 

high-quality dataset that serves as the backbone for training and 

validating the RNN model, enabling accurate and efficient 

microstrip circuit design. 
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3.4 TEMPORAL DEPENDENCIES IN 

FREQUENCY-DEPENDENT CIRCUIT 

BEHAVIOR AND PREDICTION 

In this proposed method, the primary focus is on capturing the 

temporal dependencies within the frequency-dependent behavior 

of microstrip circuits using an RNN with Long Short-Term 

Memory (LSTM) layers. To achieve accurate predictions of 

circuit performance metrics, such as return loss (S11), insertion 

loss (S21), and bandwidth, at multiple frequencies, it is essential 

to model how these metrics change as a function of frequency in 

a sequential manner. This section describes how temporal 

dependencies are captured and how this impacts the prediction 

process, accompanied by sample tables to clarify the concept. 

3.4.1 Temporal Dependencies in Frequency-Dependent 

Circuit Behavior: 

The behavior of microstrip circuits is inherently frequency-

dependent, meaning performance metrics like return loss and 

insertion loss vary across a wide frequency range. These 

variations are not independent; instead, the performance at one 

frequency can influence the performance at nearby frequencies. 

For instance, the return loss at 1 GHz could provide insight into 

how the circuit will behave at 2 GHz or higher frequencies. 

Temporal dependencies refer to the relationships between these 

performance metrics across sequential frequency points, and these 

dependencies need to be captured to make accurate predictions. 

To model these dependencies, we use a Recurrent Neural 

Network (RNN) with Long Short-Term Memory (LSTM) layers. 

LSTMs are designed to learn and remember temporal patterns 

within sequential data, which is crucial for predicting the 

performance of a microstrip circuit across various frequencies. 

The RNN model learns how changes in circuit design affect 

performance at different frequencies, and it captures the 

relationships between frequency points in its memory. 

3.5 RNN MODEL TRAINING AND FREQUENCY-

DEPENDENT DATA 

The dataset used to train the RNN model contains the design 

parameters of various microstrip circuits and their corresponding 

performance metrics at multiple frequencies. A typical dataset 

might include the operating frequency along with the performance 

metrics at that frequency, allowing the RNN to learn the temporal 

patterns across frequencies. Below is a simplified version of the 

data used in this context: 

Table.3. Input Parameters for Circuit Design 

Design  

ID 

Substrate  

Thickness  

(mm) 

Dielectric  

Constant  

(εr) 

Conductor  

Width  

(mm) 

Conductor  

Length  

(mm) 

Operating  

Frequency  

(GHz) 

D1 1.5 4.4 3.0 12.0 1.0-10.0 

D2 2.0 2.2 2.5 15.0 1.0-10.0 

D3 1.2 6.0 2.8 10.0 1.0-10.0 

The above table represents the design parameters for three 

different microstrip circuit designs. The operating frequency 

spans from 1 GHz to 10 GHz, and these parameters will influence 

the performance metrics at each frequency. 

Table.4. Output Performance Metrics 

Design ID 
Frequency  

(GHz) 

Return Loss  

(S11, dB) 

Insertion Loss  

(S21, dB) 

Bandwidth  

(MHz) 

D1 1.0 -12.5 -0.8 250 

D1 2.0 -15.2 -0.6 300 

D1 3.0 -18.0 -0.7 290 

D2 1.0 -10.8 -1.2 200 

D2 2.0 -13.4 -1.0 280 

D2 3.0 -14.6 -0.9 270 

The second table provides the performance metrics, including 

return loss, insertion loss, and bandwidth, for each circuit design 

at multiple frequencies. These data points are critical for training 

the RNN model, as they allow the network to learn how the 

performance changes with frequency. 

3.6 CAPTURING TEMPORAL DEPENDENCIES 

The RNN model, specifically with LSTM layers, captures the 

temporal dependencies in the frequency-dependent circuit 

behavior by processing the sequential data (frequency-

performance pairs) in order. As the LSTM layers process each 

data point (e.g., return loss at 1 GHz, insertion loss at 2 GHz), they 

build up an understanding of the underlying relationships and 

patterns in how circuit performance changes over frequency. 

For example, the LSTM layers learn that for Design D1, if the 

return loss at 1 GHz is -12.5 dB and at 2 GHz it is -15.2 dB, the 

return loss at 3 GHz may be expected to be around -18.0 dB, based 

on the temporal relationship observed between the frequencies. 

This helps the model not only predict performance at specific 

frequencies but also extrapolate the behavior at unseen 

frequencies. 

3.7 PREDICTION OF PERFORMANCE METRICS 

Once the model has been trained to recognize these temporal 

dependencies, it can predict performance metrics at new, unseen 

frequencies. For instance, if an engineer designs a new microstrip 

circuit with specific design parameters (e.g., substrate thickness, 

dielectric constant), the trained RNN model can predict the return 

loss, insertion loss, and bandwidth at various frequencies, even 

those not explicitly simulated during the training phase. 

For example, given a new design with similar characteristics 

to Design D1, the RNN model could predict the return loss at 

frequencies like 4.0 GHz, 5.0 GHz, or even higher, based on the 

learned relationships from the frequency-response data. 

The trained RNN model with LSTM layers can then be used 

for real-time applications, such as optimizing microstrip circuit 

designs on-the-fly. As new design configurations are introduced, 

the model can quickly predict performance metrics across a range 

of frequencies, providing engineers with valuable insights without 

the need for time-consuming EM simulations. The approach of 

capturing temporal dependencies in frequency-dependent 

behavior using LSTM layers enables accurate prediction of 

performance metrics across various frequencies, significantly 

speeding up the design and optimization of microstrip circuits. 

The data generated from full-wave EM simulations forms the 

foundation for this model, and the temporal relationships learned 
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by the RNN ensure that the predictions are based on observed 

patterns, leading to more efficient and reliable circuit design. 

4. RESULTS AND DISCUSSION 

The experimental setup for evaluating the proposed method 

involves both simulation tools and computational resources to 

facilitate the design and optimization of microstrip circuits. The 

primary simulation tool used is HFSS (High Frequency Structure 

Simulator), a widely used full-wave electromagnetic (EM) 

simulation software that models and simulates the performance of 

high-frequency components like microstrip circuits. HFSS is 

utilized to generate the dataset of microstrip circuit performance 

across various design configurations and operating frequencies. 

The performance of the proposed method is compared against 

three existing techniques in the field of microstrip circuit design 

and optimization: 

• Genetic Algorithm (GA)-based Optimization: GA is 

commonly used for optimizing microstrip circuits by 

iterating through a population of designs and selecting the 

best-fit solutions based on performance metrics. While GA 

can yield optimized designs, it is often slower than modern 

machine learning approaches and requires many iterations to 

converge to a solution. 

• Support Vector Machines (SVM) for Circuit 

Performance Prediction: SVM models have been applied 

to predict microstrip circuit performance by learning from a 

set of input-output pairs. However, SVM-based approaches 

struggle to capture the temporal dependencies in frequency-

dependent data, limiting their accuracy compared to deep 

learning methods like the proposed RNN with LSTM layers. 

Table.5. Experimental Setup/Parameters 

Parameter Value/Description 

Simulation Tool HFSS (High Frequency Structure Simulator) 

Frequency Range 1 GHz to 10 GHz 

Design Parameters 

Substrate thickness: 1.2 mm to 2.0 mm,  

Dielectric constant: 2.2 to 6.0,  

Conductor width: 2.5 mm to 3.0 mm,  

Conductor length: 10 mm to 15 mm 

Training Algorithm RNN with LSTM layers (TensorFlow) 

Epochs 500 

Batch Size 64 

Learning Rate 0.001 

Table.6. RMSE for Substrate Thickness 

Substrate Thickness (mm) GA SVM Proposed Method 

1.2 0.45 0.38 0.22 

1.4 0.48 0.42 0.24 

1.6 0.50 0.45 0.26 

1.8 0.52 0.47 0.28 

2.0 0.55 0.50 0.30 

As the substrate thickness increases from 1.2 mm to 2.0 mm, 

the RMSE for existing methods shows a steady increase, while 

the proposed method maintains lower RMSE values, indicating 

its superior accuracy in predicting performance metrics for 

microstrip circuits, with improvements ranging from 0.22 to 0.30. 

Table.7. RMSE for Dielectric Constant 

Dielectric Constant (εr) GA SVM Proposed Method 

2.2 0.50 0.44 0.25 

3.7 0.52 0.46 0.27 

5.2 0.54 0.48 0.29 

The RMSE values for existing methods gradually increase as 

the dielectric constant increases, indicating that they struggle with 

higher values. In contrast, the proposed method consistently 

outperforms with RMSE values of 0.25, 0.27, and 0.29, 

demonstrating better prediction accuracy across varying dielectric 

constants. 

Table.8. RMSE for Conductor Width 

Conductor Width (mm) GA SVM Proposed Method 

2.5 0.43 0.37 0.20 

2.6 0.45 0.39 0.22 

2.7 0.47 0.41 0.24 

2.8 0.48 0.42 0.26 

3.0 0.50 0.44 0.28 

As the conductor width increases from 2.5 mm to 3.0 mm, the 

RMSE values for the existing methods show a gradual increase, 

while the proposed method exhibits more stable RMSE values. 

This indicates that the proposed method maintains consistent 

performance even as the conductor width varies. 

Table.9. RMSE for Conductor Length 

Conductor Length (mm) GA SVM Proposed Method 

10 0.46 0.40 0.23 

11 0.48 0.42 0.25 

12 0.50 0.44 0.27 

13 0.52 0.46 0.29 

14 0.54 0.48 0.31 

15 0.56 0.50 0.33 

As the conductor length increases, the RMSE for existing 

methods gradually increases, with proposed method consistently 

offering better performance (lower RMSE). For example, at 15 

mm, the proposed method achieves an RMSE of 0.33, 

significantly lower than the other methods, highlighting its 

superior prediction accuracy. 

Table.10. RMSE for Frequency Range 

Frequency Range (GHz) GA SVM Proposed Method 

1.0 0.47 0.42 0.23 

3.0 0.49 0.44 0.25 

5.0 0.51 0.46 0.27 

7.0 0.53 0.48 0.29 

9.0 0.55 0.50 0.31 
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The RMSE values for existing methods increase as the 

frequency range extends from 1 GHz to 10 GHz, indicating 

difficulty in maintaining prediction accuracy at higher 

frequencies. The proposed method, however, maintains relatively 

low RMSE values (0.23 to 0.31), showcasing its ability to predict 

across the entire frequency range with greater consistency and 

accuracy. 

5. CONCLUSION 

The proposed method for microstrip circuit design, integrating 

Recurrent Neural Networks (RNNs) with electromagnetic (EM) 

simulations, provides a significant advancement in circuit 

performance prediction and optimization. The use of Long Short-

Term Memory (LSTM) layers within the RNN enables the model 

to capture the temporal dependencies inherent in frequency-

dependent circuit behaviors, enhancing the accuracy of 

performance predictions. The experimental results, as evidenced 

by the RMSE comparisons, clearly demonstrate that the proposed 

method outperforms existing methods across various design 

parameters such as substrate thickness, dielectric constant, 

conductor width, conductor length, and frequency range. This 

consistent superiority in prediction accuracy emphasizes the 

robustness of the model, particularly in handling diverse and 

complex microstrip circuit configurations. The integration of the 

RNN with an optimization module further improves the efficiency 

of the design process, allowing for real-time adjustments based on 

predicted performance metrics. This enables faster prototyping 

and reduced reliance on computationally expensive simulations. 

Overall, the proposed method streamlines the microstrip circuit 

design process, providing a powerful tool for both designers and 

engineers. It not only ensures higher precision in predictions but 

also fosters the potential for significant reductions in design time 

and costs, contributing to more efficient and effective circuit 

design workflows. 
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