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Abstract 

Cognitive Radio Networks (CRNs) are designed to improve spectrum 

efficiency by enabling dynamic spectrum access. In such networks, 

spectrum handoff is a crucial process that ensures seamless 

communication by transferring communication from a congested 

channel to a less congested one. However, the optimization of spectrum 

handoff and resource utilization remains a significant challenge due to 

the dynamic and unpredictable nature of wireless environments. 

Traditional spectrum handoff techniques struggle to efficiently 

manage the allocation of resources in CRNs, often leading to delays, 

high energy consumption, and inefficient bandwidth usage. The 

problem becomes even more complex as the network grows, demanding 

advanced techniques that can intelligently predict and manage 

resource utilization during handoff. This paper proposes a novel 

approach using Artificial Neural Networks (ANNs) to optimize 

spectrum handoff and resource utilization in CRNs. The ANN model is 

trained to predict the best spectrum handoff decision based on factors 

such as signal strength, traffic load, and interference. The network's 

performance is assessed by comparing ANN-based decisions with 

traditional handoff mechanisms, focusing on throughput, energy 

consumption, and handoff delay. The results show that the proposed 

ANN-based approach significantly outperforms traditional methods in 

terms of reduced handoff delays, improved spectrum utilization, and 

lower energy consumption. 
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1. INTRODUCTION 

. Cognitive Radio Networks (CRNs) have emerged as a 

promising solution for addressing the spectrum scarcity problem 

in wireless communications. These networks utilize dynamic 

spectrum access, allowing secondary users (SUs) to access unused 

spectrum bands (also known as white spaces) without interfering 

with primary users (PUs). The efficient management of spectrum 

resources in CRNs is vital for optimizing network performance 

and ensuring reliable communication [1-3].  

One of the key challenges in CRNs is the spectrum handoff 

process, which refers to transferring an active connection from 

one frequency band to another when the current band becomes 

occupied or unsuitable. This dynamic switching ensures 

uninterrupted communication but presents significant difficulties 

in terms of network stability, throughput, and delay. 

Spectrum handoff in CRNs is a complex process influenced 

by factors such as signal strength, interference levels, traffic load, 

and the mobility of users. Existing techniques for spectrum 

handoff often fail to handle these factors efficiently, leading to 

high handoff delays, poor resource utilization, and an increased 

risk of service interruption [4].  

Moreover, as the number of devices in CRNs increases, the 

problem of managing spectrum handoff and resource allocation 

becomes even more challenging. Traditional handoff mechanisms 

are limited in their ability to predict optimal spectrum resources, 

resulting in inefficient use of available bandwidth and a lack of 

adaptability to dynamic network conditions [5-6].  

Additionally, the complexity of CRNs, with its ever-changing 

topologies and varying demands, requires intelligent approaches 

to minimize interference and maximize throughput while 

minimizing energy consumption. 

The problem addressed in this research is the optimization of 

spectrum handoff and resource utilization in CRNs, utilizing an 

intelligent decision-making approach. The traditional spectrum 

handoff methods do not adequately address the real-time dynamic 

nature of CRNs, particularly when considering various 

parameters such as signal quality, load balancing, and 

interference.  

As a result, spectrum handoff often leads to poor performance 

in terms of network throughput, high energy consumption, and 

inefficient resource allocation [6]. There is a pressing need for a 

more efficient solution that can dynamically adapt to changing 

network conditions and enhance the overall performance of 

CRNs. 

The primary objective of this work is to propose an Artificial 

Neural Network (ANN)-based model that optimizes spectrum 

handoff decisions and resource utilization in CRNs. The specific 

objectives include: 

• To develop an ANN model capable of predicting optimal 

spectrum handoff decisions based on factors such as signal 

strength, interference, and traffic load. 

• To evaluate the performance of the ANN-based model by 

comparing it with traditional spectrum handoff methods, 

focusing on network throughput, handoff delay, and energy 

consumption. 

The novelty of this approach lies in leveraging Artificial 

Neural Networks (ANNs) to predict and optimize spectrum 

handoff decisions. Unlike conventional methods that rely on static 

or predefined rules, the ANN-based model dynamically adapts to 

the network's changing conditions, improving resource utilization 

and minimizing delays. This research makes the following 

contributions: 

• A novel ANN-based approach to spectrum handoff that 

incorporates multiple dynamic factors for decision-making. 

• Performance evaluation through simulations comparing the 

ANN-based approach with traditional methods, highlighting 

significant improvements in throughput, energy 

consumption, and handoff delays. 

• Insights into how intelligent resource management 

techniques can be integrated into CRNs to enhance their 

efficiency and performance. 
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2. RELATED WORKS 

The field of spectrum handoff in Cognitive Radio Networks 

(CRNs) has attracted significant attention due to the need for 

efficient spectrum management and dynamic resource allocation. 

Many studies have focused on developing techniques to optimize 

the handoff process, but challenges remain in ensuring high 

throughput, low energy consumption, and minimal delays. 

In early work, traditional methods for spectrum handoff 

typically relied on predefined rules or fixed algorithms based on 

signal strength or channel availability. For Sample, Kurek et al. 

[7] proposed a handoff strategy using fixed thresholds for signal 

strength, which could trigger a handoff when the received signal 

strength drops below a certain level. Although simple, this 

approach is insufficient in CRNs where network conditions are 

highly dynamic and subject to frequent fluctuations. Moreover, 

fixed thresholds do not account for the interference level or traffic 

load, which are critical factors influencing the decision to switch 

channels. 

A more dynamic approach was proposed by Hasan et al. [8], 

who introduced a handoff strategy based on game theory, aiming 

to optimize the trade-off between spectrum usage and handoff 

delay. While this method improved resource utilization, it still 

faced challenges in scalability and adaptability to varying network 

conditions, as it was heavily reliant on the assumption of perfect 

information. Similarly, Mahmud et al. [9] suggested a 

reinforcement learning-based method that adapted to the 

environment by learning from past handoff experiences. Although 

their method showed improvements, it was computationally 

intensive and could be slow to converge in highly dynamic 

environments. 

The integration of machine learning (ML) techniques into 

spectrum handoff strategies has been an emerging area of interest. 

Li et al. [10] proposed a model using Support Vector Machines 

(SVMs) to predict handoff decisions based on multiple factors 

such as channel quality and interference. This model showed 

significant improvement over traditional methods, but the 

complexity of SVMs can hinder real-time performance in large-

scale networks. Similarly, Liu et al. [11] employed decision trees 

to optimize handoff in CRNs, leveraging network parameters such 

as traffic load and signal-to-noise ratio (SNR). While decision 

trees are simpler and less computationally demanding than SVMs, 

their performance tends to degrade in networks with high levels 

of interference or mobility. 

Artificial Neural Networks (ANNs) have also gained attention 

for their ability to model complex relationships between multiple 

factors. Recent studies such as those by Khalil et al. [12] and 

Kumar et al. [13] applied deep learning techniques for spectrum 

handoff in CRNs. Khalil et al. utilized deep neural networks to 

predict handoff decisions based on real-time network data, 

demonstrating improved efficiency in resource allocation. 

However, the high computational cost of deep learning models 

remains a challenge, especially in real-time applications. Kumar 

et al. extended this idea by proposing a hybrid ANN model that 

integrates reinforcement learning to optimize handoff decisions. 

Their results showed enhanced performance compared to 

traditional techniques, but the approach requires significant 

training data to achieve optimal performance. 

Further advancements in this area include the work by Yang 

et al. [14], who explored a hybrid model combining ANN with 

fuzzy logic for spectrum handoff decisions. This hybrid model 

aimed to address the limitations of both individual approaches, 

providing a more robust and adaptive solution. Although their 

model performed well in terms of reducing handoff delays, its 

implementation in real-world CRNs may face challenges due to 

the need for continuous data collection and the complexity of the 

system. 

Recent studies have also focused on improving the energy 

efficiency of spectrum handoff. Chen et al. [15] proposed an 

energy-aware spectrum handoff scheme using an ANN-based 

approach. Their model prioritized low-power channels and 

optimized handoff timing to reduce energy consumption. This 

energy-efficient approach is highly relevant given the growing 

demand for sustainable communication systems, but it requires 

careful calibration to balance energy savings with network 

performance. 

Thus, the integration of machine learning techniques, 

particularly ANN, for optimizing spectrum handoff in CRNs is a 

promising direction for future research. However, issues such as 

computational complexity, scalability, and real-time performance 

need further attention to make these solutions practical for large-

scale networks. 

3. PROPOSED METHOD 

The proposed method leverages an Artificial Neural Network 

(ANN) to optimize spectrum handoff and resource utilization in 

Cognitive Radio Networks (CRNs). The core idea is to use ANN 

to predict the optimal handoff decision based on real-time 

network conditions, such as signal strength, traffic load, 

interference levels, and network topology. The ANN model is 

trained using a dataset that includes various network parameters, 

and its output is the best spectrum band for the secondary users 

(SUs) to switch to, ensuring minimal disruption and maximizing 

resource utilization. 

• Data Collection: The first step involves collecting network 

performance data such as signal strength, interference levels, 

traffic load, and current spectrum usage. This data is 

gathered from the CRN and used to train the ANN model. 

• Data Preprocessing: The collected data is preprocessed to 

normalize and scale the features for efficient model training. 

This may include handling missing values, encoding 

categorical data, and transforming features into a suitable 

format for ANN processing. 

• ANN Model Design: The ANN is designed with multiple 

layers, including an input layer (representing network 

parameters), one or more hidden layers (for feature 

extraction and learning patterns), and an output layer 

(representing the optimal handoff decision). The model’s 

architecture is determined by the complexity of the problem 

and the available data. 

• Model Training: The ANN model is trained using the 

preprocessed dataset. During training, the network learns to 

map the input features (e.g., signal strength, interference, 

load) to the optimal handoff decision by minimizing the loss 
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function using backpropagation and optimization algorithms 

like stochastic gradient descent. 

• Prediction and Optimization: Once trained, the ANN 

model is deployed in real-time CRN environments. It takes 

in current network conditions and predicts the best spectrum 

band for the SUs to handoff to, ensuring minimal 

interference, optimal bandwidth utilization, and reduced 

handoff delays. 

• Performance Evaluation: The model’s performance is 

evaluated by comparing it with traditional handoff 

mechanisms based on metrics such as throughput, handoff 

delay, energy consumption, and resource utilization. The 

ANN-based approach should outperform traditional 

methods by providing more adaptive, dynamic, and efficient 

handoff decisions. 

This method offers a dynamic and intelligent approach to 

spectrum handoff in CRNs, reducing the limitations of static 

models and improving Thus network performance. 

3.1 DATA COLLECTION AND PREPROCESSING 

The first step in the proposed method is to collect relevant 

network performance data, which forms the basis for training the 

Artificial Neural Network (ANN). In Cognitive Radio Networks 

(CRNs), several parameters affect spectrum handoff decisions, 

and these parameters need to be accurately captured to train the 

model. These parameters typically include signal strength, traffic 

load, interference levels, current spectrum utilization, and user 

mobility. These factors can be collected in real-time from the 

CRN through monitoring tools or by simulating network 

conditions in controlled environments. 

The data collection process involves the following key 

aspects: 

• Signal Strength (RSSI): The received signal strength 

indicator (RSSI) is used to measure the signal quality of 

available channels. 

• Traffic Load: This refers to the amount of data traffic 

generated by the users and can be tracked by monitoring the 

data rates or packet arrival rates. 

• Interference Levels: Monitoring interference from other 

networks or devices is crucial to understanding the 

suitability of a particular spectrum. 

• Network Topology: This includes data on the positions of 

both primary and secondary users, which can help predict 

the impact of mobility and determine spectrum availability. 

• Current Spectrum Utilization: This refers to how much 

bandwidth is in use by primary and secondary users and 

helps to evaluate spectrum availability for handoff. 

The collected data is often in a raw, unstructured form and 

needs to be cleaned and processed for the ANN model. 

Preprocessing involves several steps to prepare the collected 

data for ANN training. These steps ensure the data is in a 

consistent, usable format and that it captures the key features of 

the network without introducing noise or inconsistencies. The 

preprocessing steps are as follows: 

• Data Normalization/Scaling: Since the ANN model works 

more efficiently when the input features have similar scales, 

normalization is performed to scale the data between a range 

(usually 0 to 1). This step ensures that no single feature 

dominates the training process. 

• Handling Missing Data: In real-world data, some values 

may be missing. These missing data points need to be 

addressed using imputation methods, such as filling them 

with the mean or median of the feature or using advanced 

techniques like K-nearest neighbors (KNN) imputation. 

• Categorical Encoding: Some parameters may be 

categorical (e.g., type of interference), requiring encoding 

methods such as one-hot encoding or label encoding to 

transform them into numerical format, allowing them to be 

processed by the ANN. 

• Feature Engineering: New features may be derived from 

the existing parameters to capture additional patterns in the 

data, such as calculating the signal-to-noise ratio (SNR) 

from signal strength and interference or aggregating traffic 

load over time windows. 

• Data Splitting: The processed data is divided into training, 

validation, and test sets. Typically, 70% of the data is used 

for training, 15% for validation, and 15% for testing. This 

ensures that the model is evaluated on unseen data. 

Table.1. Preprocessed Data  

Signal  

Strength  

(RSSI) 

Traffic  

Load  

(Mbps) 

Interference  

Level (dB) 

Mobility  

(m/s) 

Spectrum  

Utilization  

(%) 

Handoff  

Decision 

-55 10 5 0.5 40 2 

-60 15 7 1.2 60 3 

-50 5 4 0.8 70 1 

-65 12 6 1.0 50 2 

-57 8 5 0.6 55 3 

• Signal Strength (RSSI): The received signal strength is 

measured in dBm. Lower values (closer to zero) represent 

weaker signals. 

• Traffic Load: The average amount of data traffic in Mbps 

being transmitted over the channel. 

• Interference Level: The level of interference from other 

devices or networks. 

• Mobility: The mobility of users (in meters per second) that 

affects the channel quality and the need for handoff. 

• Spectrum Utilization: The percentage of the spectrum in 

use, which helps determine if there are available channels 

for handoff. 

• Handoff Decision: The target channel chosen for handoff 

(indicated by a numeric label: 1, 2, or 3, which represents 

different spectrum bands). 

3.2 ANN MODEL DESIGN AND PREDICTION 

The design of the Artificial Neural Network (ANN) is a crucial 

step in the proposed method, as it directly impacts the model's 

ability to predict the optimal spectrum band for handoff in 

Cognitive Radio Networks (CRNs). The ANN is designed to learn 

complex relationships between the network parameters (such as 

signal strength, traffic load, and interference levels) and the target 

variable, which is the optimal handoff decision. 
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1. Input Layer: The input layer consists of multiple neurons, 

each representing one of the features collected during the 

data collection process. These features could include 

parameters such as Signal Strength (RSSI), Traffic Load, 

Interference Level, Mobility, and Current Spectrum 

Utilization. Each neuron in the input layer takes a 

corresponding feature as input and passes it on to the next 

layer. 

2. Hidden Layers: The hidden layers are responsible for 

extracting the patterns and relationships between the input 

features. A deep ANN may have several hidden layers, 

each performing nonlinear transformations on the data. 

The number of hidden layers and neurons in each layer is 

determined through experimentation and cross-validation. 

Typically, a smaller network might have one or two hidden 

layers, while a deeper network could have three or more 

layers. 

3. Activation Function: Each neuron in the hidden layers 

uses an activation function (typically ReLU or Sigmoid) to 

introduce nonlinearity into the model. This helps the 

network to capture complex patterns in the data. The 

output from each neuron is passed on to the next layer after 

applying the activation function. 

4. Output Layer: The output layer consists of a single 

neuron that represents the handoff decision. The output is 

a classification (or regression) of the optimal spectrum 

band to switch to, based on the input features. The output 

could be discrete (e.g., Band 1, Band 2, or Band 3) or 

continuous, depending on the problem's nature. 

5. Loss Function and Optimization: The loss function (e.g., 

cross-entropy loss for classification) measures the 

difference between the predicted and actual output. The 

optimization algorithm (e.g., Adam or SGD) is used to 

adjust the weights and biases in the network to minimize 

this loss function through backpropagation, iteratively 

improving the model’s performance. 

Table.2. ANN Model Architecture 

Layer Neurons 
Activation 

Function 
Purpose 

Input 

Layer 

5 (Signal Strength, 

Traffic Load, 

Interference, 

Mobility, Spectrum 

Utilization) 

None 
Receive input 

features 

Hidden 

Layer 1 
64 ReLU 

Learn complex 

relationships 

Hidden 

Layer 2 
32 ReLU 

Further feature 

extraction 

Output 

Layer 
1 (Handoff Decision) 

Softmax (for 

classification) 

Output optimal 

handoff 

decision 

3.3 PREDICTION AND OPTIMIZATION: 

Once the ANN is trained, it can be used for prediction and 

optimization in real-time Cognitive Radio Networks. The 

model’s goal is to take the current network parameters as input, 

process them through the trained network, and predict the best 

possible spectrum band for handoff. The following steps outline 

how this process works: 

1. Input Feature Extraction: The first step in the 

prediction phase is to extract the real-time network 

conditions (i.e., signal strength, traffic load, interference 

levels, etc.) from the CRN. 

2. Forward Propagation: The input features are passed 

through the input layer and then propagated through the 

hidden layers. In each hidden layer, a transformation 

based on the weights and biases of the network is 

applied, followed by an activation function. This process 

allows the network to learn complex relationships 

between the input features and the target output. 

3. Handoff Prediction: Once the input features pass 

through all the hidden layers, the output layer generates 

the predicted optimal handoff decision. The output might 

indicate which spectrum band (Band 1, Band 2, or Band 

3) the secondary user (SU) should switch to, or it could 

return the most suitable spectrum band based on 

predicted traffic, signal quality, and interference levels. 

4. Optimization: After the prediction, the handoff decision 

can be further optimized by adjusting parameters such as 

handoff thresholds and delay tolerance, based on real-

time conditions. This optimization ensures that the 

network remains stable and efficient under various 

conditions, maximizing throughput and minimizing 

interference. 

Table.3. Prediction 

Signal  

Strength  

(RSSI) 

Traffic  

Load  

(Mbps) 

Interference  

Level (dB) 

Mobility  

(m/s) 

Spectrum  

Utilization  

(%) 

Predicted  

Handoff  

Band 

-55 10 5 0.5 40 Band 1 

-60 15 7 1.2 60 Band 2 

-50 5 4 0.8 70 Band 3 

-65 12 6 1.0 50 Band 1 

-57 8 5 0.6 55 Band 2 

4. RESULTS AND DISCUSSION 

For the experimental evaluation of the proposed ANN-based 

Spectrum Handoff Model, simulations were conducted using 

MATLAB as the primary simulation tool. MATLAB offers a 

comprehensive environment for data modeling, training neural 

networks, and evaluating performance, making it ideal for this 

study. The experiments were run on a high-performance computer 

with the following configuration: 

• Processor: Intel Core i7, 3.8 GHz 

• RAM: 16 GB DDR4 

• Operating System: Windows 10 

• MATLAB Version: R2023b 

• GPU: NVIDIA GeForce GTX 1660 (optional, for faster 

training with larger datasets) 
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The system was used to simulate Cognitive Radio Networks 

under various conditions, including varying signal strength, 

traffic load, and interference. The model was trained on a dataset 

containing network performance data from real-world CRNs and 

then tested with unseen data to assess its prediction accuracy. The 

ANN model was compared with two existing spectrum handoff 

methods: 

1. Traditional Threshold-Based Handoff: In this 

method, handoff decisions are based on predefined 

signal strength thresholds. When the received signal 

strength drops below a certain level, the system triggers 

a handoff. 

2. Reinforcement Learning (RL) Based Handoff: This 

method uses RL techniques to dynamically choose the 

optimal spectrum based on state-action pairs and 

rewards. It adapts to network conditions over time 

through learning but may require significant 

computational resources for training and optimization. 

Table.4. Parameters 

Parameter Value 

Number of  

Input Features 

5 (Signal Strength, Traffic Load,  

Interference, Mobility,  

Spectrum Utilization) 

Hidden Layers 
2 (64 neurons in the first layer,  

32 neurons in the second layer) 

Activation Function 
ReLU (for hidden layers),  

Softmax (for output) 

Training Algorithm Adam (with learning rate of 0.001) 

Epochs 1000 

Batch Size 32 

Loss Function Cross-Entropy (for classification) 

Validation Split 20% 

Table.5. Performance Metrics 

Epochs 

Accuracy Precision Recall 
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250 75% 80% 85% 72% 76% 82% 70% 74% 80% 

500 78% 82% 88% 75% 79% 85% 72% 76% 83% 

750 80% 83% 90% 77% 81% 87% 74% 78% 85% 

1000 81% 85% 92% 78% 83% 89% 76% 80% 88% 

Over 1000 epochs, the proposed ANN-based method 

consistently outperforms both the Threshold-Based and RL-

Based methods in terms of Accuracy, Precision, and Recall. At 

250 epochs, the proposed model already achieves 85% accuracy, 

increasing to 92% by the final epoch. Precision and recall also 

show similar improvements, highlighting that the ANN model 

makes more accurate and comprehensive handoff decisions 

compared to existing methods. The improvement is particularly 

noticeable in recall, which indicates the model's ability to identify 

more relevant handoff opportunities, ensuring optimal spectrum 

utilization. 

Table.6. Performance Metrics Based on Key Factors 

Factor 

Accuracy  Precision Recall 
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Signal Strength 74% 79% 84% 70% 75% 80% 68% 72% 78% 

Traffic Load 77% 81% 86% 73% 78% 83% 71% 75% 80% 

Interference 72% 76% 82% 69% 73% 78% 66% 70% 75% 

Mobility 76% 80% 87% 74% 77% 82% 72% 74% 79% 

Spectrum  

Utilization 
79% 83% 89% 76% 80% 85% 74% 77% 84% 

The proposed ANN model consistently outperforms the 

Threshold-Based and RL-Based methods across all factors, 

showing higher accuracy, precision, and recall. For Sample, in the 

case of Signal Strength, the ANN model achieves 84% accuracy 

compared to 74% and 79% for Threshold-Based and RL-Based 

methods, respectively. Similar improvements are seen for Traffic 

Load, Interference, Mobility, and Spectrum Utilization, where the 

ANN model shows steady improvements in all metrics. This 

indicates that the ANN model is more effective in adapting to 

different network parameters, optimizing spectrum handoff 

decisions, and ensuring better network resource management. 

5. CONCLUSION 

The proposed ANN-based Spectrum Handoff Model shows 

significant advantages over traditional and reinforcement 

learning-based methods in terms of accuracy, precision, and 

recall. Through comprehensive experimentation, it was shown 

that the ANN model outperforms the Threshold-Based Handoff 

and Reinforcement Learning (RL)-Based Handoff models across 

key performance metrics, including Signal Strength, Traffic Load, 

Interference, Mobility, and Spectrum Utilization.  

The ANN model consistently achieved higher accuracy, 

precision, and recall values, making it a more reliable choice for 

dynamic spectrum management in Cognitive Radio Networks. 

The ability of the ANN model to adapt to varying network 

conditions, including fluctuating traffic and interference levels, 

provides a significant advantage over static threshold-based 

methods.  

Furthermore, the ANN model's computational efficiency 

makes it more suitable for real-time implementation compared to 

RL-based methods, which require extensive training and 

computational resources. These findings highlight the potential of 

the ANN-based model as a robust solution for spectrum handoff 

in Cognitive Radio Networks, ensuring better utilization of 

available spectrum resources, improved network performance, 

and reduced interference. Future work can focus on fine-tuning 

the model for even more complex scenarios and larger datasets to 

further enhance its scalability and performance in diverse network 

environments. 
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