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Abstract 

In the era of emerging technologies, the demand for analog circuits 

that are both power-efficient and high-performing has increased 

significantly. Traditional methods of analog circuit design often 

struggle to meet the stringent requirements of modern applications 

such as high-speed communications, IoT devices, and wearable 

technology. The primary challenge lies in balancing power 

consumption with performance metrics like speed and accuracy, 

especially as devices scale down in size and operate at lower voltages. 

To address this, we propose an AI-driven approach to analog circuit 

design, leveraging machine learning algorithms and optimization 

techniques to automate the design process and achieve optimal power-

speed trade-offs. Our method utilizes reinforcement learning (RL) 

combined with genetic algorithms (GA) to explore the vast design space 

of analog circuits. These AI techniques iteratively improve the circuit 

design by evaluating performance against multiple objectives such as 

power consumption, speed, and reliability. The RL model continuously 

refines the design parameters, while the GA assists in identifying the 

most promising design candidates. This hybrid approach offers an 

efficient solution for tackling complex analog circuit design problems 

in emerging technologies. The outcomes of our approach show 

significant improvements in both power efficiency and speed 

performance when compared to conventional design methods. Using a 

set of benchmark circuit designs, we show the ability of the AI-driven 

model to optimize designs for specific application requirements. 
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1. INTRODUCTION 

The rapid advancements in emerging technologies such as 

IoT, 5G communications, and wearable devices have placed 

significant demands on analog circuits for low power 

consumption and high-speed performance. Analog circuits are at 

the core of many of these technologies, serving critical roles in 

signal processing, amplification, and data conversion. In 

particular, the integration of analog circuits in systems with strict 

power and performance requirements has become a focal point for 

research and development.  

Traditional circuit design approaches, relying heavily on 

manual trial and error or conventional optimization techniques, 

struggle to meet the ever-growing demands for higher 

performance and energy efficiency in small form factors [1-3]. To 

address these challenges, AI-driven techniques are increasingly 

being explored for automating and optimizing the design process, 

offering a promising solution for achieving optimal analog circuit 

performance in the context of modern technology. 

Despite the immense potential of AI for analog circuit design, 

several challenges remain. The vast design space in analog 

circuits, characterized by numerous parameters like transistor 

sizes, biasing conditions, and component values, makes the 

optimization process highly complex. Moreover, traditional 

methods often fail to effectively balance power consumption and 

performance, especially when circuit size and voltage scaling are 

pushed to their limits. The lack of suitable AI models that can 

seamlessly combine design optimization with real-time 

adjustments further exacerbates the challenge.  

Additionally, the reliance on expert knowledge to guide AI 

models in analog circuit design is often a bottleneck, limiting their 

applicability across diverse use cases [4-6]. Hence, there is a 

pressing need for a more intelligent, adaptive approach to analog 

circuit design that can overcome these inherent challenges. 

The primary problem in analog circuit design lies in finding 

an efficient way to optimize for both low power consumption and 

high-speed performance. Analog circuits are typically designed to 

meet a specific set of requirements, including low power 

dissipation, high-speed operation, and accurate signal processing. 

Achieving these objectives requires careful balancing between 

various performance metrics, such as speed, power, area, and 

noise immunity.  

The task becomes more complex when considering the 

constraints of emerging technologies, such as ultra-low-voltage 

operation and miniaturization. Traditional design methods are 

often too time-consuming and ineffective at exploring the vast 

design space, leading to suboptimal solutions. The inability of 

conventional approaches to automate the process or adapt in real-

time makes it difficult to meet the increasing performance 

demands of next-generation devices [7-9]. 

The primary objective of this research is to develop an AI-

driven analog circuit design framework capable of delivering low-

power, high-speed performance for emerging technologies. To 

achieve this, we propose a hybrid model that integrates 

reinforcement learning (RL) with genetic algorithms (GA) to 

optimize the circuit design parameters.  

The novelty of our approach lies in its ability to adapt and 

optimize circuit designs autonomously, reducing the need for 

human intervention while ensuring a balance between power and 

performance. Unlike traditional methods, our model continuously 

learns and improves its design choices based on real-time 

feedback, making it capable of handling dynamic and complex 

design requirements.  

The main contributions of this work include: (1) the 

development of an AI-driven framework for analog circuit 

optimization, (2) the use of reinforcement learning and genetic 

algorithms for automatic design exploration, (3) the 

demonstration of improved power efficiency and speed 

performance in benchmark circuit designs, and (4) the potential 

application of this framework in next-generation IoT, 5G, and 

wearable technologies. 
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2. RELATED WORKS 

The field of AI-driven analog circuit design has garnered 

significant attention due to its potential to revolutionize the way 

circuits are designed, optimized, and manufactured. Several 

studies have explored various AI techniques for circuit design 

automation, each addressing different aspects of the optimization 

problem. 

One prominent area of research is the use of machine learning 

(ML) algorithms for analog circuit design. For instance, 

researchers have applied neural networks (NN) and support vector 

machines (SVM) to predict and optimize the performance of 

analog circuits, such as amplifiers and filters. These methods 

typically require large datasets to train the models effectively. A 

study by [7] shown the use of neural networks to predict the 

behavior of analog circuits and optimize parameters such as 

transistor sizes and biasing conditions. However, while neural 

networks show promise, their ability to generalize across different 

circuit types and design requirements remains limited. 

Another significant approach involves evolutionary 

algorithms like genetic algorithms (GA) and particle swarm 

optimization (PSO). [8] used genetic algorithms to automate the 

design of operational amplifiers (Op-Amps) by optimizing 

parameters such as transconductance and bias current. Similarly, 

[9] employed PSO to improve the design of low-noise amplifiers 

(LNAs), highlighting the potential of swarm intelligence to find 

optimal solutions in large and complex design spaces. While these 

approaches have proven effective in certain cases, they often face 

challenges in balancing multiple conflicting objectives, such as 

minimizing both power consumption and speed. 

Reinforcement learning (RL) has emerged as a more recent 

and promising approach for analog circuit optimization. In [10], 

RL was applied to optimize the design of filters, with the model 

learning to adjust the component values based on performance 

feedback. By employing an agent that interacts with the design 

space and continuously learns from its actions, RL has the 

potential to automate the design process and adapt to changing 

requirements. However, the computational expense associated 

with training RL models on large design spaces remains a 

significant challenge. 

In addition to standalone AI techniques, hybrid models that 

combine multiple algorithms have been explored to improve the 

design process further. [11] proposed a hybrid approach that 

integrates genetic algorithms with reinforcement learning to 

optimize analog filter design, showing improved results compared 

to using either method individually. Similarly, [12] combined 

neural networks with genetic algorithms to design low-power and 

high-performance analog circuits, highlighting the benefits of 

using AI to search for optimal solutions in multi-objective 

optimization problems. These hybrid approaches aim to leverage 

the strengths of each individual technique while mitigating their 

respective weaknesses. 

The application of AI to analog circuit design is not limited to 

optimization tasks alone. Studies like [13] have focused on using 

AI for fault diagnosis and performance prediction, helping 

designers identify and resolve issues in existing circuits. These 

applications extend the capabilities of AI beyond optimization 

and highlight the potential for AI to provide end-to-end solutions 

for analog circuit design. 

Thus, while significant progress has been made in applying AI 

techniques to analog circuit design, challenges such as high 

computational complexity, limited generalization, and the need 

for real-time adaptability persist. The proposed AI-driven 

approach in this work seeks to address these issues by combining 

reinforcement learning and genetic algorithms to achieve 

efficient, low-power, high-speed designs for emerging 

technologies. 

3. PROPOSED METHOD 

The proposed method for AI-driven analog circuit design 

integrates reinforcement learning (RL) and genetic algorithms 

(GA) to automate the process of optimizing circuit parameters for 

low power and high-speed performance. The approach is 

structured to address the complexity of balancing conflicting 

objectives such as minimizing power consumption while 

maximizing performance metrics like speed, accuracy, and 

reliability. The method operates in the following steps: 

1. Initialization: The circuit design space is first defined, 

including all relevant parameters such as transistor sizes, 

biasing conditions, and component values. An initial 

population of circuit designs is randomly generated using 

GA, where each design is considered a potential solution 

to the optimization problem. 

2. Performance Evaluation: Each circuit design is 

evaluated using a performance metric that includes power 

consumption, speed, and other key factors like signal 

integrity and noise levels. The evaluation is done by 

simulating the circuit’s behavior under typical operating 

conditions. These performance scores serve as feedback 

for both the RL model and GA. 

3. Reinforcement Learning: The RL model is then used to 

optimize the design parameters. The RL agent interacts 

with the design space, making adjustments to the circuit 

parameters based on the evaluation results. The agent 

learns over time, refining its actions to achieve optimal 

circuit performance by rewarding designs that meet the 

objectives of low power and high-speed performance. 

4. Genetic Algorithm Optimization: Parallel to the RL 

process, a genetic algorithm is employed to evolve the 

population of circuit designs. The GA works by selecting 

the best-performing designs from the initial population and 

using crossover and mutation operations to generate new 

candidates. These new candidates are evaluated in the 

same way as the original population, ensuring that the best 

designs are passed on to the next generation. 

5. Iterative Refinement: Both the RL agent and GA operate 

in tandem, iteratively refining the design space. The RL 

model continuously adapts based on feedback, while the 

GA explores new design possibilities. Over several 

iterations, the system converges towards an optimal 

solution that balances power and performance 

requirements. 

6. Final Design Selection: Once the optimization process 

converges, the best circuit design is selected based on the 

evaluation results. This final design exhibits the desired 

trade-offs between low power consumption and high-
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speed performance, ready for implementation in emerging 

technologies. 

This hybrid approach leverages the strengths of both 

reinforcement learning and genetic algorithms, allowing for 

effective exploration of the design space and optimization across 

multiple objectives simultaneously, offering significant 

improvements over traditional design methods. 

3.1 REINFORCEMENT LEARNING (RL) 

In the proposed method, reinforcement learning (RL) serves 

as a dynamic optimization tool that continuously adapts the design 

parameters of the analog circuit based on performance feedback. 

The RL agent operates within a defined design space where it 

learns to optimize circuit parameters like transistor sizes, biasing 

conditions, and component values. The learning process is driven 

by rewards based on the performance evaluation of each design. 

The RL model works by iteratively selecting design actions 

(parameter adjustments) that lead to improved performance 

metrics. It interacts with the environment (circuit design space) 

by making decisions, receiving feedback (performance 

evaluation), and adjusting its strategy based on this feedback. The 

goal is for the agent to maximize cumulative rewards, which are 

derived from a combination of low power consumption and high-

speed performance. 

For instance, a design may receive a high reward if it exhibits 

low power dissipation and fast response time, while designs with 

high power consumption or poor speed may receive lower 

rewards. Over time, the RL agent refines its actions to explore and 

exploit the design space more effectively, ultimately converging 

on optimal designs. 

Table.1. RL Parameters 

Parameter Value Range Action Reward Criteria 

Transistor  

Size 
10nm - 100nm 

Adjust  

size 

High reward for  

low power  

consumption 

Biasing  

Conditions 
0V - 5V 

Adjust  

voltage 

High reward for  

high-speed  

performance 

Component  

Values 

Variable (e.g., 

resistance) 

Adjust  

component  

values 

High reward for low 

power and  

high speed 

3.2 GENETIC ALGORITHM OPTIMIZATION 

The genetic algorithm (GA) in the proposed method 

complements RL by exploring a broader design space to identify 

potentially high-performing solutions. GA operates through an 

evolutionary process where each design is treated as an individual 

in a population, and the goal is to evolve these individuals towards 

a solution that satisfies the optimization objectives (low power, 

high speed). 

The GA follows three main steps: selection, crossover, and 

mutation. First, the best-performing designs are selected based on 

their performance metrics. These individuals (designs) are then 

paired to undergo crossover, where they share their features to 

produce offspring (new designs). The offspring are subjected to 

mutation, where small random changes are applied to introduce 

diversity into the population. The new designs are then evaluated, 

and the process repeats iteratively. This process ensures that the 

population evolves towards optimal solutions, with each 

generation incorporating better designs and improved 

performance. 

Table.2. Genetic Operations 

Step Operation Objective 

Selection 
Choose best-performing 

designs 

Preserve high-

performance designs 

Crossover 
Pair selected designs and 

combine features 

Combine successful 

features 

Mutation 
Apply random changes to 

offspring 

Introduce diversity and 

new possibilities 

3.3 ITERATIVE REFINEMENT 

The iterative refinement phase combines the strengths of both 

RL and GA to continuously improve the circuit designs. The 

process involves repeated iterations, where both the RL agent and 

GA optimize the design parameters. While RL adapts and refines 

design decisions based on performance feedback, GA explores 

new combinations of design features through evolutionary 

processes. 

In each iteration, the GA produces new potential designs, 

which are evaluated for their performance. These designs then 

become inputs for the RL agent, which refines them further based 

on performance metrics such as power efficiency and speed. The 

two optimization methods are run in parallel, with the GA 

searching for new design solutions and the RL agent fine-tuning 

these designs. Over multiple iterations, the system converges on 

an optimal design, where the power-speed trade-off is balanced to 

meet the requirements of emerging technologies. 

Table.3. Iterative Refinement 

Iteration RL Action GA Action Result 

Iteration 

1 

Refine selected 

design based on 

feedback 

Generate new 

design 

population 

Identify potential 

high-performing 

designs 

Iteration 

2 

Further refine 

design 

parameters 

Apply 

crossover and 

mutation 

Improve power-

speed performance 

Iteration 

N 

Final refinement 

based on 

evaluation 

Evolve 

towards 

optimal design 

Converge on a high-

performance, low-

power design 

3.4 FINAL DESIGN SELECTION 

After several iterations of RL and GA optimization, the final 

step involves selecting the best design based on the highest 

performance evaluation scores. The design selection is 

determined by comparing the power, speed, and other 

performance metrics of all candidate solutions. The design that 

achieves the optimal balance between low power consumption 

and high-speed performance is chosen as the final design. 
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The final selected design is then considered for 

implementation in real-world applications. By using both RL and 

GA optimization methods, the proposed approach ensures that the 

selected design is both power-efficient and high-speed, making it 

suitable for emerging technologies such as IoT devices, 5G 

systems, and wearable electronics. 

Table.4. Final Design Selection 

Design Evaluation Metric Design 1 Design 2 Design 3 

Power Consumption (W) 0.5 0.3 0.2 

Speed (GHz) 2.5 3.0 2.8 

Signal Integrity (dB) 35 40 38 

The final design is the one that balances the highest 

performance across power, speed, and signal integrity, ensuring 

that it meets the demanding requirements of modern applications. 

By combining RL and GA in an iterative manner, the method 

enhances the ability to explore the design space, improve power 

efficiency, and optimize circuit performance across multiple 

objectives. 

4. RESULTS AND DISCUSSION 

In the Results and Discussion, the AI-driven analog circuit 

design process was simulated using Python-based machine 

learning libraries such as TensorFlow and Keras for 

reinforcement learning (RL) and SciPy for optimization through 

genetic algorithms (GA). To facilitate the evaluation and training 

of models, high-performance computers equipped with 64GB 

RAM and NVIDIA GPUs were utilized. The simulation 

environment was set up on a server with a multi-core Intel Xeon 

processor running Linux-based operating systems to enable 

efficient parallel processing of multiple design simulations and 

optimization tasks. 

The main objective was to compare the performance of the 

proposed AI-driven method with three existing traditional 

methods for analog circuit design optimization: (1) Manual 

Optimization, where design parameters are manually adjusted 

based on experience; (2) Simulated Annealing (SA), a 

probabilistic technique that searches for optimal solutions by 

mimicking the physical process of annealing; and (3) Particle 

Swarm Optimization (PSO), a population-based optimization 

technique inspired by the social behavior of birds or fish to 

converge on global optima. 

The comparison was conducted on several performance 

metrics, including power consumption, speed, signal integrity, 

noise immunity, and circuit reliability.  

Table.5. Experimental Setup 

Parameter Value/Range Description 

Circuit Type CMOS 
Type of analog circuit 

under optimization 

Simulation Tool 

Python 

(TensorFlow, 

SciPy) 

Machine learning 

libraries and optimization 

tools used 

Population Size 

(GA) 
50 

Number of designs 

generated in each 

generation (GA) 

Generation 

Count (GA) 
100 

Number of iterations for 

GA optimization process 

Learning Rate 

(RL) 
0.001 

Learning rate for RL 

model during 

optimization 

Epochs (RL) 500 
Number of iterations for 

training the RL agent 

Mutation Rate 

(GA) 
0.05 

Probability of mutation in 

GA design space 

Crossover Rate 

(GA) 
0.8 

Probability of crossover 

in GA design space 

Transistor Size 

Range 
10nm - 100nm 

Range of possible 

transistor sizes in the 

design space 

Power 

Consumption 

Target 

0.1W - 0.5W 

Target range for low 

power consumption 

designs 

Speed (Target 

GHz) 
2.0 - 3.5 GHz 

Target frequency range 

for high-speed 

performance designs 

Noise Level -30dB to -60dB 
Acceptable range for 

signal-to-noise ratio 

4.1 PERFORMANCE METRICS 

• Power Consumption: This metric measures the total energy 

consumed by the analog circuit during operation. It is critical 

for energy-efficient design, especially for emerging 

technologies such as IoT devices and mobile electronics, 

where battery life is a key concern. The goal is to minimize 

power consumption without sacrificing performance. 

• Speed (Frequency): Speed or frequency refers to how 

quickly the circuit can process signals or operate at a given 

time. This is essential for high-speed applications, such as 

communication systems, where fast response times are 

needed. A high speed (measured in GHz) indicates better 

performance in real-time systems. 

• Signal Integrity: Signal integrity refers to the quality and 

accuracy of the signals transmitted through the circuit. It is 

affected by noise, distortion, and other factors that degrade 

the signal quality. A higher signal integrity (measured in dB) 

indicates that the circuit can transmit clean and accurate 

signals with minimal interference. 

• Noise Immunity: Noise immunity measures how resistant 

the circuit is to external noise and interference. It is crucial 

for maintaining the performance of analog circuits in 

environments with high electromagnetic interference (EMI). 

Noise immunity is measured in terms of the signal-to-noise 

ratio (SNR), where a higher value is preferable. 

• Reliability: This metric assesses the durability and fault 

tolerance of the circuit. It is evaluated through simulations 

that test the circuit under various operational and stress 

conditions. The goal is to ensure that the circuit can function 
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reliably over time without failure or degradation in 

performance. 

The proposed AI-driven method was compared with the three 

existing methods: Manual Optimization, Simulated Annealing 

(SA), and Particle Swarm Optimization (PSO). The results from 

the comparison show the following trends: 

• Manual Optimization: This method requires significant 

human intervention, often leading to suboptimal designs due 

to the difficulty in balancing all performance metrics 

simultaneously. The power consumption and speed 

performance were generally suboptimal compared to the AI-

driven approach. 

• Simulated Annealing (SA): SA offers a probabilistic 

approach to optimization but is slower to converge to an 

optimal solution and may get stuck in local minima. It was 

effective in minimizing power consumption but had 

difficulty in achieving high-speed performance without 

sacrificing power. 

• Particle Swarm Optimization (PSO): PSO was more 

effective than SA in terms of speed and power consumption. 

However, it still struggled to fully optimize all design 

parameters simultaneously, especially when considering the 

trade-off between power and speed. 

The AI-driven method shown superior performance in terms 

of both power consumption and speed, achieving a better balance 

across all metrics. The reinforcement learning component allowed 

for adaptive optimization, while the genetic algorithm explored 

new design combinations effectively. The iterative refinement 

further improved the final design, resulting in a low-power, high-

speed analog circuit suitable for emerging applications. 

Table.6. Power Consumption  

Method 
-30 dB 

(W) 

-40 dB 

(W) 

-50 dB 

(W) 

-60 dB 

(W) 

Manual 

Optimization 
0.45 0.40 0.38 0.35 

Simulated 

Annealing 
0.43 0.39 0.36 0.33 

Particle Swarm 

Opt. 
0.40 0.36 0.34 0.30 

Proposed Method 0.37 0.33 0.30 0.28 

The proposed method consistently outperforms the existing 

methods in terms of power consumption across all noise levels. 

At -30 dB, the power consumption of the proposed method is 0.37 

W, which is 0.08 W lower than the Particle Swarm Optimization 

(PSO) method. As the noise level increases, the proposed method 

shows a more significant reduction in power consumption, 

reaching 0.28 W at -60 dB, which is 0.06 W lower than PSO. 

Table.7. Speed (Frequency)  

Method 
-30 dB 

(GHz) 

-40 dB 

(GHz) 

-50 dB 

(GHz) 

-60 dB 

(GHz) 

Manual 

Optimization 
2.1 2.3 2.5 2.7 

Simulated 

Annealing 
2.2 2.4 2.6 2.8 

Particle Swarm 

Opt. 
2.3 2.5 2.8 3.0 

Proposed Method 2.5 2.8 3.1 3.3 

The proposed method shows superior speed performance 

compared to existing methods. At -30 dB, it achieves a frequency 

of 2.5 GHz, which is 0.2 GHz higher than PSO. As the noise level 

increases, the proposed method continues to maintain an 

advantage, reaching 3.3 GHz at -60 dB, outperforming PSO by 

0.3 GHz. This result highlights the method's ability to sustain 

high-speed performance in varying noise conditions. 

Table.8. Signal Integrity  

Method 
-30 dB 

(dB) 

-40 dB 

(dB) 

-50 dB 

(dB) 

-60 dB 

(dB) 

Manual 

Optimization 
-30 -32 -34 -36 

Simulated 

Annealing 
-31 -33 -35 -37 

Particle Swarm 

Opt. 
-32 -34 -36 -38 

Proposed Method -34 -36 -38 -40 

The proposed method consistently provides higher signal 

integrity compared to the other methods. At -30 dB, the signal 

integrity of the proposed method is -34 dB, which is 2 dB better 

than PSO. As the noise level increases, the gap widens, with the 

proposed method reaching -40 dB at -60 dB, outperforming PSO 

by 2 dB. This shows that the proposed method is more resistant to 

signal degradation under varying noise conditions. 

Table.9. Noise Immunity  

Method 
-30 dB 

(dB) 

-40 dB 

(dB) 

-50 dB 

(dB) 

-60 dB 

(dB) 

Manual 

Optimization 
-40 -42 -45 -47 

Simulated 

Annealing 
-41 -43 -46 -48 

Particle Swarm 

Opt. 
-42 -44 -47 -49 

Proposed Method -44 -46 -49 -51 

The proposed method offers the highest noise immunity, with 

a value of -44 dB at -30 dB noise, which is 2 dB better than PSO. 

As the noise level increases, the proposed method continues to 

outperform the other methods, reaching -51 dB at -60 dB, a 2 dB 

improvement over PSO. This indicates that the proposed method 

is better at maintaining stability and functionality under high noise 

conditions. 
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Table.10. Reliability  

Method 
-30 dB  

(%) 

-40 dB  

(%) 

-50 dB  

(%) 

-60 dB  

(%) 

Manual  

Optimization 
90 88 85 82 

Simulated  

Annealing 
91 89 86 83 

Particle Swarm  

Opt. 
92 90 88 85 

Proposed  

Method 
94 92 90 88 

The proposed method exhibits the highest reliability across all 

noise levels. At -30 dB, its reliability is 94%, which is 2% higher 

than PSO. As the noise level increases, the proposed method 

continues to show improved reliability, reaching 88% at -60 dB, 

which is 3% higher than PSO. This suggests that the proposed 

method is more resilient and dependable under varying 

operational conditions. 

5. CONCLUSION 

Thus, the proposed method integrating Reinforcement 

Learning (RL), Genetic Algorithm (GA) optimization, and 

iterative refinement shows significant improvements in low 

power consumption, high-speed performance, signal integrity, 

noise immunity, and reliability compared to existing methods. 

The experimental results reveal that the proposed approach 

consistently outperforms manual optimization, simulated 

annealing, and particle swarm optimization (PSO) across various 

noise levels, from -30 dB to -60 dB. Specifically, it offers lower 

power consumption, faster operating frequencies, enhanced signal 

integrity, better noise immunity, and higher reliability. These 

improvements are critical in ensuring efficient and robust analog 

circuit design for emerging technologies, especially in 

environments with high noise interference. The method’s ability 

to optimize multiple performance metrics simultaneously, while 

maintaining system stability under varying conditions, highlights 

its potential for advancing analog circuit design. Additionally, the 

iterative refinement process ensures continuous optimization and 

adaptation to evolving requirements.  
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