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Abstract 

The rapid evolution of electronic embedded systems (EES) has brought 

significant challenges in optimizing their performance in real-time 

environments. These systems are often deployed in critical applications, 

such as automotive, medical, and IoT devices, where efficient resource 

management and adaptive decision-making are essential for optimal 

performance. Traditional optimization methods struggle to meet the 

dynamic and complex demands of modern embedded systems. As the 

complexity of electronic embedded systems increases, ensuring real-

time performance while minimizing energy consumption, latency, and 

operational costs becomes more difficult. Static configurations or 

conventional algorithms cannot adapt quickly to changing conditions, 

leading to suboptimal performance. This problem is further 

exacerbated by the need for fast decision-making within limited 

computational resources. This study proposes using Deep 

Reinforcement Learning (DRL) algorithms to optimize the real-time 

performance of electronic embedded systems. DRL leverages an agent-

based approach to autonomously learn optimal strategies through trial 

and error in dynamic environments. The proposed method involves 

training a DRL model to intelligently manage system resources, adjust 

parameters, and enhance decision-making in real-time based on 

feedback from the system’s environment. Key DRL techniques, such as 

Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO), are 

utilized to train agents in various system scenarios. The results show 

that DRL-based optimization significantly improves system efficiency, 

leading to reduced latency, enhanced throughput, and optimized power 

consumption without compromising the system’s responsiveness. The 

proposed method outperforms traditional optimization approaches, 

particularly in highly dynamic and resource-constrained 

environments, by enabling continuous adaptation to changing 

operational conditions. 
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1. INTRODUCTION 

The advent of electronic embedded systems (EES) has been 

transformative across various industries such as automotive, 

healthcare, industrial automation, and the Internet of Things 

(IoT). These systems are typically designed to perform specific 

tasks with limited computational resources, which requires the 

optimization of key performance factors such as processing speed, 

power consumption, and memory utilization. Traditional 

optimization techniques often fall short in addressing the real-

time demands of modern embedded systems, especially as they 

become more complex and integrated with sophisticated sensors 

and communication devices. Real-time performance optimization 

in EES is critical for ensuring reliability, efficiency, and 

responsiveness in applications like autonomous vehicles, medical 

devices, and smart cities, where performance needs to be 

consistently monitored and adjusted based on environmental 

conditions [1-3]. 

Despite the advances in embedded systems, several challenges 

persist. One of the key challenges is the need for adaptive 

decision-making mechanisms that can operate efficiently in real-

time while handling large amounts of data generated by sensors 

or external inputs. Conventional optimization techniques, such as 

heuristics or pre-configured algorithms, are typically static and 

incapable of adjusting to changing system parameters, leading to 

performance degradation over time. Additionally, real-time 

constraints make it difficult to utilize computationally expensive 

models or methods. Another major challenge is managing the 

balance between performance and energy consumption, as 

modern systems demand more power and longer battery life, 

which can conflict with the need for higher processing power. 

These challenges have heightened the necessity for adaptive and 

efficient optimization strategies that can make real-time decisions 

without compromising system performance [4-6]. 

The primary problem in optimizing EES in real-time lies in 

the system’s inability to autonomously adjust to dynamic 

environmental and operational conditions. Existing techniques 

are often limited by their inability to learn and adapt quickly to 

real-time changes, which leads to inefficient use of system 

resources such as processing power, memory, and energy. 

Furthermore, static optimization models are poorly suited for 

systems where workload and inputs vary over time, often 

resulting in delays or energy inefficiencies. This research focuses 

on addressing these issues by using Deep Reinforcement Learning 

(DRL), which enables the system to autonomously learn optimal 

decision-making policies in real-time environments through 

interactions with its surroundings. DRL’s ability to perform 

continuous learning and adapt to new conditions offers a 

promising solution for enhancing the real-time performance of 

EES [7-10]. 

The primary objective of this research is to explore the 

effectiveness of DRL algorithms for real-time performance 

optimization in electronic embedded systems. Specifically, the 

goals are: 

• To develop a DRL-based framework for dynamically 

optimizing the performance of embedded systems, including 

energy consumption, processing speed, and memory 

utilization. 

• To evaluate the effectiveness of DRL algorithms in 

comparison to conventional optimization methods in real-

time environments. 

This study introduces a novel approach by applying DRL 

algorithms to real-time performance optimization in embedded 

systems. Unlike traditional methods, DRL provides a framework 

where the system learns and evolves over time, improving 
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decision-making efficiency and ensuring optimal resource 

utilization in dynamically changing environments. The main 

contributions of this research include: 

• Proposing a DRL-based solution that integrates learning and 

optimization to adapt system performance in real-time based 

on environmental feedback. 

• Demonstrating the potential of DRL to address the 

challenges of power consumption and latency without 

sacrificing system responsiveness. 

• Providing a comparative analysis of DRL-based 

optimization versus conventional methods, showcasing its 

superiority in real-time embedded system scenarios. 

2. RELATED WORKS 

Real-time performance optimization in electronic embedded 

systems has garnered significant attention in recent years, 

particularly with the growing demand for smarter, more efficient 

devices. Numerous approaches have been proposed to optimize 

key factors like processing speed, power consumption, and 

memory utilization in EES. Traditional methods, such as 

heuristic-based optimization, have been employed in various 

embedded systems but often fail to adapt in real-time scenarios 

where system parameters fluctuate rapidly. These methods are 

generally designed for static environments, limiting their 

effectiveness in dynamic real-time applications. 

Machine learning-based approaches have recently gained 

traction for their ability to adapt to changing conditions. Several 

studies have explored the use of supervised and unsupervised 

learning algorithms to enhance system performance. For instance, 

decision trees and support vector machines (SVM) have been 

applied to resource allocation problems in embedded systems, 

achieving some success in optimizing system parameters. 

However, these approaches still require manual feature 

engineering and lack the ability to continuously adapt based on 

feedback from the system environment. 

Reinforcement Learning (RL), a subset of machine learning, 

has proven to be a powerful tool for optimizing decision-making 

in dynamic environments. RL’s ability to learn optimal policies 

through trial and error makes it particularly suitable for real-time 

performance optimization. Several studies have applied RL to 

embedded systems, especially in the context of resource 

management and power optimization. For Sample, Kim et al. 

(2019) proposed an RL-based approach for energy-efficient 

scheduling in embedded systems, demonstrating significant 

improvements in energy savings and processing time. 

Deep Reinforcement Learning (DRL), which combines deep 

learning with RL, has been increasingly explored for its potential 

to handle high-dimensional state spaces and complex decision-

making processes. DRL techniques such as Deep Q-Networks 

(DQN) and Proximal Policy Optimization (PPO) have been used 

for various optimization tasks, including power management, 

workload scheduling, and resource allocation in embedded 

systems. Wang et al. (2020) introduced a DRL-based method for 

optimizing the power consumption of mobile devices, showing 

that DRL outperforms traditional optimization techniques by 

continuously adapting to the system’s usage patterns. 

Another area of interest is the application of DRL in IoT-based 

embedded systems. Zhang et al. (2021) shown the use of DRL to 

optimize energy consumption and performance in IoT networks, 

highlighting the potential of this approach in distributed systems 

where multiple devices need to cooperate for optimal 

performance. Similarly, Yu et al. (2020) applied DRL to optimize 

the communication protocols of embedded IoT devices, achieving 

better data throughput and lower latency compared to 

conventional methods. 

Despite the promising results, there are challenges in applying 

DRL to embedded systems. The need for high computational 

resources during training, limited availability of large datasets, 

and the difficulty in transferring models to embedded hardware 

are some of the barriers that remain. Additionally, there is a lack 

of consensus on the best DRL algorithm for specific embedded 

system applications, with ongoing research aimed at improving 

the efficiency and robustness of DRL models. 

Recent advancements in DRL optimization, such as using 

multi-agent systems for collaborative decision-making in 

embedded devices, have shown further promise. Multi-agent 

DRL can be used in scenarios where multiple devices need to 

optimize their performance simultaneously, such as in smart grid 

systems or collaborative autonomous vehicles. These systems 

benefit from distributed learning, where each agent can learn from 

its environment while sharing information with other agents to 

improve global system performance. 

Thus, the application of DRL to real-time performance 

optimization in embedded systems holds great potential, 

particularly as embedded systems become more complex and 

ubiquitous. Future work will focus on addressing the limitations 

of current DRL methods, such as reducing training time and 

improving the transferability of learned models to hardware 

platforms. 

3. PROPOSED METHOD 

The proposed method utilizes Deep Reinforcement Learning 

(DRL) algorithms to optimize the real-time performance of 

electronic embedded systems. The method follows a process in 

which an agent learns and adapts its actions to optimize key 

performance metrics such as energy consumption, processing 

speed, and memory utilization in dynamic environments. The 

DRL agent interacts with the embedded system environment, 

receiving feedback based on the system’s current state. The 

process is structured as follows: 

• Environment Modeling: The embedded system’s 

operational environment is modeled, defining key variables 

such as processing workload, available resources (e.g., CPU, 

memory, energy), and system constraints (e.g., real-time 

latency). 

• State Representation: The current state of the system is 

represented as a set of features, such as resource usage and 

performance metrics, which are continuously monitored and 

fed to the agent. 

• Action Space Definition: The agent is equipped with a set 

of actions it can take to influence the system’s performance, 

such as adjusting processing frequencies, managing task 

prioritization, or optimizing resource allocation. 
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• Reward Function: A reward function is designed to 

quantify the system’s performance based on the actions 

taken. The reward encourages the agent to minimize energy 

consumption, reduce latency, and maximize throughput 

while ensuring system stability. 

• Policy Learning: Using a DRL algorithm (such as Deep Q-

Network or Proximal Policy Optimization), the agent 

explores various actions to maximize cumulative rewards 

over time. The learning process is iterative, with the agent 

continuously updating its decision-making policy based on 

feedback from the environment. 

• Real-time Adaptation: Once trained, the agent is deployed 

in real-time applications, where it dynamically adjusts the 

system’s configuration based on ongoing performance data. 

This enables continuous optimization of the system, 

ensuring that it remains efficient and responsive under 

varying workloads and environmental conditions. 

This DRL-based method enables embedded systems to 

autonomously adjust their performance parameters in real-time, 

significantly improving efficiency and adaptability in complex, 

resource-constrained environments. 

3.1 ENVIRONMENT MODELING 

The “Environment Modeling” step is critical to the proposed 

method, as it forms the foundation for the Deep Reinforcement 

Learning (DRL) agent to interact with and optimize the embedded 

system’s real-time performance. In this phase, we define the 

system’s operational environment by outlining key components, 

constraints, and variables that the agent must monitor and control. 

The environment represents a dynamic setting where the agent 

observes system states, makes decisions, and receives feedback 

based on its actions. 

The embedded system’s environment is modeled as a set of 

states, actions, and rewards, where each component influences the 

performance of the system. A system can be thought of as 

consisting of several interacting parts, such as processors, 

memory units, power management units, and I/O components. 

Each of these elements has associated resource constraints, and 

the agent needs to monitor them to make decisions that optimize 

the overall performance of the system. For Sample, the agent 

could adjust CPU frequencies, modify memory allocation, or 

optimize energy consumption based on the current workload and 

the available system resources. 

State variables represent the current conditions of the 

embedded system. These variables are continuously monitored 

and include parameters such as CPU usage, memory utilization, 

task execution times, and battery level. The state is a snapshot of 

the system’s configuration at a given time and serves as the input 

for the agent’s decision-making process. 

Table.1. State Variable 

State Variable Description Value 

CPU Usage 
Percentage of CPU utilization by 

active processes 
75% 

Memory 

Utilization 

Percentage of memory currently in 

use 
60% 

Battery Level 
Remaining energy or power of the 

system 
50% 

Task Execution 

Time 

Time taken to execute a task or 

process 
200ms 

The action space defines the set of possible actions the agent 

can take to influence the system’s performance. These actions are 

designed to manipulate the system’s resources and adjust its 

parameters to achieve the desired performance goals. In our 

embedded system context, actions could involve adjusting 

processor frequency, task scheduling, or optimizing power 

management strategies. For instance, an action could be to 

increase the CPU frequency to speed up computations or to lower 

it to conserve energy. 

Table.2. Action Space 

Action Description Value 

Adjust CPU 

Frequency 

Change CPU frequency to meet 

processing demand 

Increase to 2.5 

GHz 

Reallocate 

Memory 

Move data between memory 

segments to optimize usage 

Reallocate 1 

GB 

Adjust Power 

Settings 

Modify system’s power 

consumption modes (e.g., sleep 

mode) 

Enter low-

power mode 

The reward function is designed to guide the agent’s learning 

process by providing feedback on the effectiveness of its actions. 

The reward is a scalar value based on the system’s performance 

after taking an action. For instance, if an action leads to improved 

system performance, such as reducing latency or energy 

consumption while maintaining throughput, the agent receives a 

positive reward. Conversely, if the action results in system 

inefficiencies or violations of real-time constraints, the agent 

receives a negative reward. 

Table.3. Reward Function 

Action Outcome Reward 

Increase CPU 

Frequency 

Reduced task execution 

time, higher energy 

consumption 

+10 for performance, 

-5 for energy usage 

Decrease CPU 

Frequency 

Increased task execution 

time, lower energy 

consumption 

+3 for energy 

savings, -8 for 

latency 

The environment’s dynamics are driven by the interactions 

between the system’s state, the agent’s actions, and the 

corresponding rewards. Each time the agent takes an action, the 

system’s state transitions, which can affect other components of 

the system, such as memory or power. For Sample, increasing 

CPU frequency may improve task execution time but may also 

lead to higher power consumption and faster battery depletion. 

Similarly, optimizing memory usage can enhance performance by 

reducing task delays but could lead to increased latency if 

resources are over-allocated. 

The agent observes the resulting changes and adjusts its policy 

over time to optimize overall system performance. Through 

repeated interactions with the environment, the agent learns how 
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to balance trade-offs, such as minimizing power consumption 

while maintaining system responsiveness. 

3.2 STATE REPRESENTATION 

State representation plays a crucial role in the proposed 

method, as it defines how the current conditions of the embedded 

system are captured and presented to the Deep Reinforcement 

Learning (DRL) agent. In this phase, the system’s state is modeled 

as a set of features that provide relevant information about the 

system’s performance and resource utilization at any given point 

in time. The agent uses these features to understand the 

environment and make decisions that optimize the system’s real-

time performance. 

The state is essentially a snapshot of the system, capturing 

information about various system parameters such as CPU usage, 

memory utilization, task execution times, energy consumption, 

and system latency. By representing the state in a structured 

manner, the agent can process the data effectively, ensuring that 

its decisions are based on an accurate and up-to-date view of the 

system’s performance. 

The state representation is defined as a vector of features, each 

corresponding to a key parameter of the embedded system. These 

features are continuously updated, allowing the agent to observe 

and adapt to dynamic changes in the system’s behavior and 

workload. 

3.2.1 State Variables: 

The key state variables include metrics related to resource 

utilization, task performance, and energy consumption. These 

state variables provide the DRL agent with the necessary input to 

evaluate how well the system is performing and determine the 

best course of action. 

Table.4. State Variables 

State Variable Description Value 

CPU Usage 
The percentage of CPU resources 

currently being used 
75% 

Memory 

Utilization 

The percentage of available memory 

being used by processes 
60% 

Task Execution 

Time 

The time taken to complete a task or 

process 
200ms 

Energy 

Consumption 

The amount of energy used by the 

system during operation 
250mW 

System Latency 
The delay in processing or 

communication within the system 
50ms 

These state variables represent the current operating 

conditions of the embedded system, with each one playing a 

pivotal role in determining system performance. For Sample, 

CPU Usage and Memory Utilization reflect how much 

computational and memory resources are being consumed, which 

directly impacts the system’s ability to process tasks efficiently. 

Energy Consumption is another critical metric, as the system’s 

power usage must be optimized to extend battery life, especially 

in resource-constrained environments. 

3.2.2 State Representation Vector: 

The state at any given time is represented as a vector of these 

variables, which serves as the input to the DRL agent. The vector 

provides the agent with a consolidated view of the system’s 

current status. By observing this vector, the agent can infer how 

the system is performing in terms of resource usage, processing 

efficiency, and energy management. 

Table.5. State representation vector for the embedded system 

State Feature Value 

CPU Usage 75% 

Memory Utilization 60% 

Task Execution Time 200ms 

Energy Consumption 250mW 

System Latency 50ms 

This vector provides the agent with a holistic view of the 

system’s performance and resource utilization. The agent uses this 

vector to evaluate the current conditions and determine which 

action to take based on the learned policy. 

3.2.3 Dynamic State Update: 

The state representation is continuously updated as the system 

changes. For Sample, when a task starts, the Task Execution Time 

increases. If the system consumes more energy to complete a task, 

the Energy Consumption value will rise. Similarly, as tasks are 

processed, Memory Utilization and CPU Usage will fluctuate, 

reflecting the dynamic nature of the system’s operations. 

To ensure that the agent makes decisions based on the most 

recent information, the state variables are updated at regular 

intervals. The DRL agent, therefore, observes this dynamic state 

and adjusts its actions accordingly to optimize system 

performance. 

Table.6. Dynamic State Update 

State Variable Initial Value Updated Value 

CPU Usage 75% 80% 

Memory Utilization 60% 65% 

Task Execution Time 200ms 250ms 

Energy Consumption 250mW 300mW 

System Latency 50ms 55ms 

In this Sample, the CPU Usage and Memory Utilization have 

increased, possibly due to a higher workload, while Energy 

Consumption has also risen. The Task Execution Time has 

increased as the task took longer to complete, and System Latency 

has slightly increased as a result of these changes. 

3.3 ROLE IN AGENT DECISION-MAKING 

By continuously observing these state variables, the DRL 

agent can learn the relationship between system performance and 

actions. For instance, if the agent detects high Energy 

Consumption and Task Execution Time, it might decide to reduce 

the CPU frequency to lower energy usage and improve processing 

speed. On the other hand, if Memory Utilization is low and the 
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task requires higher processing power, the agent may choose to 

increase the CPU frequency to complete the task faster. 

The dynamic nature of the state representation allows the 

agent to make real-time adjustments to optimize system 

performance based on the current operational conditions. The 

agent adapts over time, learning which state features are most 

indicative of the system’s needs and how best to adjust actions to 

meet the desired objectives. 

3.3.1 Action Space Definition: 

The Action Space is a fundamental aspect of the Deep 

Reinforcement Learning (DRL) model used to optimize the real-

time performance of embedded systems. It defines the set of all 

possible actions that the DRL agent can take in response to the 

state of the system, ultimately influencing how the system’s 

resources (such as CPU, memory, and energy) are allocated. The 

DRL agent learns to choose actions from this space to maximize 

a predefined reward function, which leads to improved system 

performance under dynamic conditions. 

In the context of embedded systems, the actions are typically 

designed to adjust various system parameters such as CPU 

frequency, memory allocation, task scheduling, and power 

management. The agent takes an action based on the current state 

of the system, which can affect performance metrics like 

processing speed, power consumption, latency, and task 

completion time. 

3.3.2 Types of Actions: 

Actions in the proposed method are defined to manipulate the 

following system components: 

• CPU Frequency Adjustment: This action involves altering 

the operating frequency of the CPU to match processing 

demands. Increasing the frequency can reduce task 

execution time but may increase energy consumption, while 

lowering the frequency helps save power but might result in 

slower execution. 

• Memory Reallocation: The agent can dynamically allocate 

or deallocate memory to different processes or tasks to 

optimize memory usage, reduce delays, and improve task 

completion times. The action could involve shifting 

processes between memory regions based on availability. 

• Power Management Adjustments: Actions in this 

category involve managing the system’s power 

consumption, such as entering low-power or sleep modes to 

conserve energy when the system is idle or underutilized. 

Each action within this space is designed to address a specific 

aspect of the embedded system, contributing to overall 

optimization by balancing the trade-offs between performance 

and resource consumption. 

3.3.3 Action Space Representation: 

The action space is represented as a vector that encompasses 

all possible actions the agent can take at any given time. The 

vector can be partitioned into discrete and continuous actions 

depending on the nature of the system’s resources. For Sample, 

CPU frequency might have a discrete set of values (e.g., low, 

medium, high), while memory allocation could be represented as 

a continuous range of values (e.g., between 0 and 100% of 

available memory). 

Table.7. Action space representation 

Action Type Description Values 

CPU 

Frequency 

Adjust CPU operating 

frequency to optimize 

processing speed 

{1.2 GHz, 1.5 

GHz, 2.0 GHz} 

Memory 

Allocation 

Reallocate system memory to 

different tasks or processes 

{10%, 50%, 

80%} 

Power Mode  

Adjustment 

Adjust the power consumption 

mode of the system 

{Idle, Active, 

Low Power} 

In this table, CPU Frequency is represented by a discrete set 

of frequencies, Memory Allocation is represented by the 

percentage of memory assigned to processes, and Power Mode 

Adjustment represents different power states the system can be in. 

3.3.4 Mathematical Representation of Action Space: 

To formalize the action space, we define the action space as a 

vector A that includes actions related to the system’s resources. 

Let the action space be represented as: 

 
CPU Memory Power[ , , ]A A A A=  (1) 

These actions are selected based on the current system state, 

allowing the agent to choose the optimal set of actions at each 

time step to improve system performance. 

Furthermore, actions are typically represented in terms of their 

impact on system performance. The effect of these actions on 

system performance can be expressed by an objective function, 

which is influenced by the CPU frequency fCPU, memory 

allocation mMemory and power state pPower. The total action impact 

Iaction can be modeled as: 

 
action 1 CPU 2 Memory 3 PowerI f m p  = + +  (2) 

The values of α1, α2, α3 are determined based on the system’s 

priorities, such as whether the objective is to reduce energy 

consumption, improve processing speed, or balance both. This 

equation gives an overall impact score that reflects how the 

chosen actions influence system performance. 

3.4 EXPLORATION VS. EXPLOITATION IN 

ACTION SELECTION 

In reinforcement learning, the agent faces the exploration-

exploitation trade-off. During the exploration phase, the agent 

tries various actions to understand their effects on the system, 

while during the exploitation phase, the agent uses its learned 

policy to select the actions that maximize the reward based on past 

experiences. 

For the proposed method, the agent may initially explore 

different combinations of CPU Frequency, Memory Allocation, 

and Power Mode Adjustment to understand their individual and 

combined impacts on the system. Over time, the agent refines its 

policy by exploiting actions that have shown to result in optimal 

system performance, based on historical feedback. 

3.4.1 Reward Function: 

In the proposed method for real-time performance 

optimization of embedded systems, the Reward Function plays a 

crucial role in guiding the Deep Reinforcement Learning (DRL) 

agent to make decisions that enhance the system’s performance 

while considering resource constraints like energy consumption, 
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CPU utilization, and task completion time. The reward function 

quantifies how beneficial or detrimental a particular action is 

based on the agent’s state and chosen action, helping the agent 

learn optimal behaviors over time. 

3.4.2 Reward Components: 

The reward function incorporates multiple factors that reflect 

the trade-offs between system performance and resource 

consumption. Key components of the reward function include: 

• Performance Improvement: This component rewards the 

agent for actions that enhance system performance, such as 

reducing task execution time, increasing throughput, or 

improving responsiveness. 

• Energy Efficiency: This component rewards the agent for 

actions that minimize power consumption, such as 

transitioning the system to low-power states when the 

demand is low or adjusting the CPU frequency to avoid 

unnecessary power usage. 

• Resource Utilization: Efficient use of resources, such as 

CPU and memory, is another factor in the reward function. 

The agent is rewarded for actions that optimize resource 

allocation, avoiding both underutilization (wasting 

resources) and overutilization (leading to bottlenecks or 

system instability). 

• Latency Reduction: In real-time embedded systems, 

reducing latency is often critical. The agent receives rewards 

for minimizing delays in task processing, which is crucial 

for time-sensitive applications. 

• The total reward at any given time step t is a weighted sum 

of these components: 

1

2

3

4

( ) Performance Improvement( )

Energy Consumption( )

Resource Utilization( )

Latency( )

R t t

t

t

t









= 

− 

+ 

− 

 (3) 

Table.8. Reward Function Value 

Factor Description Values 

Performance  

Improvement 

Measures the increase in system 

performance (e.g., reduced 

processing time) 

{High, 

Medium, 

Low} 

Energy  

Consumption 

Measures the power consumed by 

the system 

{High, 

Medium, 

Low} 

Resource  

Utilization 

Measures how effectively CPU 

and memory are utilized 

{High, 

Medium, 

Low} 

Latency 
Measures task completion delay or 

latency 

{High, 

Medium, 

Low} 

In the table, higher values for Performance Improvement and 

Resource Utilization would be rewarded, while higher Energy 

Consumption and Latency would be penalized. 

3.4.3 Impact of the Reward Function: 

The reward function provides the feedback necessary for the 

agent to adjust its actions during training. Over time, the agent 

learns which actions maximize the reward by balancing the 

competing objectives, such as improving performance while 

minimizing energy consumption. The goal is to find a policy that 

achieves optimal system performance while adhering to the 

system’s constraints, such as power usage and resource 

limitations. 

3.4.4 Policy Learning: 

Policy Learning is the process by which the Deep 

Reinforcement Learning (DRL) agent learns to select actions 

based on its current state to maximize the long-term cumulative 

reward. In the context of embedded systems optimization, this 

involves learning a policy that efficiently allocates resources 

(CPU, memory, power) based on the system’s real-time state to 

optimize performance metrics like processing speed, energy 

consumption, and task completion time. 

The proposed method uses Q-learning or Policy Gradient 

methods for policy learning. In these methods, the agent 

iteratively improves its decision-making process by evaluating 

the effectiveness of actions through the rewards received. The 

agent’s goal is to maximize the expected cumulative reward over 

time, which is achieved by adjusting its policy. 

3.4.5 Steps in Policy Learning 

• State-Action Evaluation: At each time step, the agent 

observes the current state of the system, selects an action, 

and then observes the resulting state and reward. This 

observation-feedback loop enables the agent to evaluate the 

effectiveness of its actions. 

• Policy Update: Based on the rewards received, the agent 

updates its policy. This can be done through a value-based 

approach (Q-learning) or a policy-based approach (Policy 

Gradient). In Q-learning, the value of a state-action pair is 

updated using the Bellman equation: 

 ( )1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a   +
= + + −  (4) 

In Policy Gradient methods, the policy is directly optimized 

by adjusting the parameters of the policy network to maximize the 

expected reward. 

• Exploration vs. Exploitation: During training, the agent 

balances exploration (trying new actions) and exploitation 

(choosing the best-known action based on its current policy). 

Initially, the agent explores many actions to gather 

experience, and over time, it exploits the learned policy to 

maximize the reward. 

Table.9. Policy Learning 

Step Description Values 

State 

Observation 

Agent observes the current state 

of the system (e.g., CPU usage, 

memory allocation, power state) 

{CPU = 80%, 

Memory = 

50%} 

Action 

Selection 

Agent selects an action based on 

the policy (e.g., increase CPU 

frequency, allocate more 

memory) 

{Increase CPU 

Frequency} 

Reward 

Received 

Agent receives a reward based 

on the impact of the action on 

system performance 

{Reward = 50} 
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Policy 

Update 

Agent updates its policy based 

on the reward and learned 

experiences 

{New policy 

parameters} 

In the table, the agent starts by observing the current system 

state and then chooses an action according to its policy. The 

reward received from that action is used to update the policy for 

future decision-making. 

3.4.6 Impact of Policy Learning: 

Over time, the DRL agent refines its policy to make better 

decisions, improving the system’s performance while considering 

resource constraints. The policy is learned through continuous 

interaction with the system, with the agent receiving feedback in 

the form of rewards. Eventually, the agent can make real-time 

decisions that optimize performance based on current system 

conditions, effectively adapting to dynamic changes in workload 

and resource availability. By continuously adjusting its policy 

using the rewards it receives, the agent learns to make efficient 

trade-offs between system performance and resource 

consumption, leading to a well-optimized embedded system. 

4. RESULTS AND DISCUSSION 

In the proposed method for real-time performance 

optimization of embedded systems using Deep Reinforcement 

Learning (DRL), a comprehensive experimental setup is designed 

to evaluate the effectiveness of the approach. For simulation 

purposes, Python and TensorFlow are used to implement the DRL 

algorithms. The DRL model is trained on a simulated 

environment that mirrors real-time embedded systems with 

dynamic workloads, resource constraints, and task scheduling 

scenarios. 

For comparison, the proposed DRL-based optimization 

approach is benchmarked against three existing methods: 

• Energy-Aware Task Scheduling (EATS): This method 

focuses on optimizing energy consumption by scheduling 

tasks based on their energy demands. 

• Dynamic Voltage and Frequency Scaling (DVFS): This 

approach adjusts the system’s voltage and frequency 

dynamically to balance energy consumption and system 

performance. 

• Reinforcement Learning-based Optimization (RL-

Optimization): A traditional RL-based approach that does 

not leverage deep reinforcement learning and operates with 

simpler policies and models. 

Table.10. Parameters 

Parameter Value 

Simulation Tool Python, TensorFlow, OpenAI Gym 

Training Algorithm Deep Q-Learning (DQN) 

System Setup 
Intel i7 Processor, 16GB RAM, 

NVIDIA GTX 1080 Ti GPU 

Training Episodes 5000 Episodes 

Batch Size 64 

Learning Rate (α) 0.001 

Discount Factor (γ) 0.99 

Exploration Factor (ε) 0.1 

Action Space 
CPU Frequency Adjustment, Memory 

Allocation, Task Scheduling 

Reward Function 

Weights (λ1-λ4) 
λ1=1, λ2=0.5, λ3=0.3, λ4=0.2 

Evaluation Period 1000 Simulation Steps per Method 

4.1 PERFORMANCE METRICS 

• Performance Improvement: This metric assesses how 

effectively the system can process tasks in less time, 

contributing to better overall system performance. An 

improvement in performance generally indicates that the 

system is better able to handle workloads and reduce task 

processing delays. 

• Energy Efficiency: Embedded systems often operate under 

strict energy constraints. This metric quantifies how much 

power is saved by employing techniques like DVFS or other 

resource optimization strategies, balancing between 

performance and energy efficiency. 

• Resource Utilization: Effective resource utilization ensures 

that no resources are wasted and that the system operates 

within its optimal capacity. This metric reflects the degree 

to which resources are used efficiently to achieve task 

completion. 

• Latency: In real-time embedded systems, minimizing 

latency is critical. This metric evaluates the responsiveness 

of the system and how quickly it can process and complete 

tasks, which is especially important in time-sensitive 

applications. 

• Stability: Stability is important for embedded systems to 

ensure continuous, reliable performance, particularly in 

systems that require 24/7 uptime. This metric evaluates 

whether the optimization approach maintains system 

stability across varied workloads and resource demands. 

Table.11. Performance Metrics 

Metric EATS DVFS RL-Opt 
Proposed  

DRL 

Throughput (tasks/sec) 25.4 30.1 32.3 38.5 

Processing Speed (sec/task) 1.25 1.05 0.98 0.82 

Energy Efficiency (J/task) 2.8 2.4 2.2 1.7 

Resource Utilization (%) 75 80 85 90 

Latency (ms/task) 120 110 100 85 

Stability (failure rate) 5% 4% 3% 1% 

Across the 5000 episodes, the Proposed DRL shows consistent 

improvement in comparison to the existing methods. The 

Throughput increased to 38.5 tasks per second, surpassing 

existing methods by a significant margin. Processing Speed 

improved to 0.82 seconds per task, reducing task completion time 

compared to other methods. Energy Efficiency was optimized to 

1.7 joules per task, showing a 23% improvement over the best 

existing method. The Resource Utilization reached 90%, 

reflecting better resource allocation. Latency reduced to 85 ms, 

and the Stability increased with only 1% failure rate, indicating 

high system reliability. 
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Table.12. Performance Metrics for λ1=1, λ2=0.5, λ3=0.3, λ4=0.2 

Metric EATS DVFS RL-Opt 
Proposed  

DRL 

Throughput (tasks/sec) 24.6 29.7 31.2 38.9 

Processing Speed (sec/task) 1.28 1.10 1.00 0.78 

Energy Efficiency (J/task) 3.0 2.6 2.3 1.6 

Resource Utilization (%) 73 78 84 91 

Latency (ms/task) 122 111 98 82 

Stability (failure rate) 6% 5% 4% 2% 

With the selected values of λ1=1, λ2=0.5, λ3=0.3, and λ4=0.2, 

the Proposed DRL shows superior performance across all metrics. 

Throughput increased to 38.9 tasks per second, outperforming the 

existing methods by up to 24%. Processing Speed improved to 

0.78 seconds per task, reducing task completion time. Energy 

Efficiency was optimized to 1.6 joules per task, showing a 30% 

improvement over the best existing method. Resource Utilization 

reached 91%, highlighting better resource management. Latency 

dropped to 82 ms, and Stability was enhanced with only 2% 

failure rate, demonstrating reliability. 

5. CONCLUSION 

The proposed Deep Reinforcement Learning (DRL) method 

for real-time performance optimization of embedded systems has 

shown significant improvements over traditional optimization 

approaches. By leveraging dynamic learning and adaptive 

decision-making, the DRL model effectively balances the 

competing objectives of performance, energy efficiency, and 

resource utilization, providing substantial gains in system 

throughput, processing speed, and energy consumption. The 

experimental results show that the DRL approach outperforms 

existing methods such as Energy-Aware Task Scheduling 

(EATS), Dynamic Voltage and Frequency Scaling (DVFS), and 

RL-Optimization in several critical areas. 

Notably, the proposed method achieved an optimized energy 

consumption of 1.6 joules per task, a reduction in processing time 

to 0.78 seconds per task, and a substantial increase in resource 

utilization, reaching 91%. Additionally, the system exhibited 

improved latency (82 ms) and enhanced stability with only a 2% 

failure rate. These results underscore the potential of DRL in 

tackling the complexities of real-time embedded system 

optimization. 
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