
ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2025, VOLUME: 10, ISSUE: 04

DOI: 10.21917/ijme.2025.0326

1909

REAL-TIME PERFORMANCE OPTIMIZATION OF ELECTRONIC EMBEDDED

SYSTEMS USING DEEP REINFORCEMENT LEARNING ALGORITHMS

N. Jagadeeswari1, R. Sudha2 and M. Bhavani3
1Department of Computer Science and Engineering, Thanthai Periyar Government Institute of Technology, India

2Department of Electrical and Electronics Engineering, Thanthai Periyar Government Institute of Technology, India
3Department of Computer Science and Engineering, Government College of Engineering, Srirangam, India

Abstract

The rapid evolution of electronic embedded systems (EES) has brought

significant challenges in optimizing their performance in real-time

environments. These systems are often deployed in critical applications,

such as automotive, medical, and IoT devices, where efficient resource

management and adaptive decision-making are essential for optimal

performance. Traditional optimization methods struggle to meet the

dynamic and complex demands of modern embedded systems. As the

complexity of electronic embedded systems increases, ensuring real-

time performance while minimizing energy consumption, latency, and

operational costs becomes more difficult. Static configurations or

conventional algorithms cannot adapt quickly to changing conditions,

leading to suboptimal performance. This problem is further

exacerbated by the need for fast decision-making within limited

computational resources. This study proposes using Deep

Reinforcement Learning (DRL) algorithms to optimize the real-time

performance of electronic embedded systems. DRL leverages an agent-

based approach to autonomously learn optimal strategies through trial

and error in dynamic environments. The proposed method involves

training a DRL model to intelligently manage system resources, adjust

parameters, and enhance decision-making in real-time based on

feedback from the system’s environment. Key DRL techniques, such as

Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO), are

utilized to train agents in various system scenarios. The results show

that DRL-based optimization significantly improves system efficiency,

leading to reduced latency, enhanced throughput, and optimized power

consumption without compromising the system’s responsiveness. The

proposed method outperforms traditional optimization approaches,

particularly in highly dynamic and resource-constrained

environments, by enabling continuous adaptation to changing

operational conditions.

Keywords:

Deep Reinforcement Learning, Electronic Embedded Systems, Real-

Time Optimization, Power Consumption, System Performance

1. INTRODUCTION

The advent of electronic embedded systems (EES) has been

transformative across various industries such as automotive,

healthcare, industrial automation, and the Internet of Things

(IoT). These systems are typically designed to perform specific

tasks with limited computational resources, which requires the

optimization of key performance factors such as processing speed,

power consumption, and memory utilization. Traditional

optimization techniques often fall short in addressing the real-

time demands of modern embedded systems, especially as they

become more complex and integrated with sophisticated sensors

and communication devices. Real-time performance optimization

in EES is critical for ensuring reliability, efficiency, and

responsiveness in applications like autonomous vehicles, medical

devices, and smart cities, where performance needs to be

consistently monitored and adjusted based on environmental

conditions [1-3].

Despite the advances in embedded systems, several challenges

persist. One of the key challenges is the need for adaptive

decision-making mechanisms that can operate efficiently in real-

time while handling large amounts of data generated by sensors

or external inputs. Conventional optimization techniques, such as

heuristics or pre-configured algorithms, are typically static and

incapable of adjusting to changing system parameters, leading to

performance degradation over time. Additionally, real-time

constraints make it difficult to utilize computationally expensive

models or methods. Another major challenge is managing the

balance between performance and energy consumption, as

modern systems demand more power and longer battery life,

which can conflict with the need for higher processing power.

These challenges have heightened the necessity for adaptive and

efficient optimization strategies that can make real-time decisions

without compromising system performance [4-6].

The primary problem in optimizing EES in real-time lies in

the system’s inability to autonomously adjust to dynamic

environmental and operational conditions. Existing techniques

are often limited by their inability to learn and adapt quickly to

real-time changes, which leads to inefficient use of system

resources such as processing power, memory, and energy.

Furthermore, static optimization models are poorly suited for

systems where workload and inputs vary over time, often

resulting in delays or energy inefficiencies. This research focuses

on addressing these issues by using Deep Reinforcement Learning

(DRL), which enables the system to autonomously learn optimal

decision-making policies in real-time environments through

interactions with its surroundings. DRL’s ability to perform

continuous learning and adapt to new conditions offers a

promising solution for enhancing the real-time performance of

EES [7-10].

The primary objective of this research is to explore the

effectiveness of DRL algorithms for real-time performance

optimization in electronic embedded systems. Specifically, the

goals are:

• To develop a DRL-based framework for dynamically

optimizing the performance of embedded systems, including

energy consumption, processing speed, and memory

utilization.

• To evaluate the effectiveness of DRL algorithms in

comparison to conventional optimization methods in real-

time environments.

This study introduces a novel approach by applying DRL

algorithms to real-time performance optimization in embedded

systems. Unlike traditional methods, DRL provides a framework

where the system learns and evolves over time, improving

N JAGADEESWARI et al.: REAL-TIME PERFORMANCE OPTIMIZATION OF ELECTRONIC EMBEDDED SYSTEMS USING DEEP REINFORCEMENT LEARNING ALGORITHMS

1910

decision-making efficiency and ensuring optimal resource

utilization in dynamically changing environments. The main

contributions of this research include:

• Proposing a DRL-based solution that integrates learning and

optimization to adapt system performance in real-time based

on environmental feedback.

• Demonstrating the potential of DRL to address the

challenges of power consumption and latency without

sacrificing system responsiveness.

• Providing a comparative analysis of DRL-based

optimization versus conventional methods, showcasing its

superiority in real-time embedded system scenarios.

2. RELATED WORKS

Real-time performance optimization in electronic embedded

systems has garnered significant attention in recent years,

particularly with the growing demand for smarter, more efficient

devices. Numerous approaches have been proposed to optimize

key factors like processing speed, power consumption, and

memory utilization in EES. Traditional methods, such as

heuristic-based optimization, have been employed in various

embedded systems but often fail to adapt in real-time scenarios

where system parameters fluctuate rapidly. These methods are

generally designed for static environments, limiting their

effectiveness in dynamic real-time applications.

Machine learning-based approaches have recently gained

traction for their ability to adapt to changing conditions. Several

studies have explored the use of supervised and unsupervised

learning algorithms to enhance system performance. For instance,

decision trees and support vector machines (SVM) have been

applied to resource allocation problems in embedded systems,

achieving some success in optimizing system parameters.

However, these approaches still require manual feature

engineering and lack the ability to continuously adapt based on

feedback from the system environment.

Reinforcement Learning (RL), a subset of machine learning,

has proven to be a powerful tool for optimizing decision-making

in dynamic environments. RL’s ability to learn optimal policies

through trial and error makes it particularly suitable for real-time

performance optimization. Several studies have applied RL to

embedded systems, especially in the context of resource

management and power optimization. For Sample, Kim et al.

(2019) proposed an RL-based approach for energy-efficient

scheduling in embedded systems, demonstrating significant

improvements in energy savings and processing time.

Deep Reinforcement Learning (DRL), which combines deep

learning with RL, has been increasingly explored for its potential

to handle high-dimensional state spaces and complex decision-

making processes. DRL techniques such as Deep Q-Networks

(DQN) and Proximal Policy Optimization (PPO) have been used

for various optimization tasks, including power management,

workload scheduling, and resource allocation in embedded

systems. Wang et al. (2020) introduced a DRL-based method for

optimizing the power consumption of mobile devices, showing

that DRL outperforms traditional optimization techniques by

continuously adapting to the system’s usage patterns.

Another area of interest is the application of DRL in IoT-based

embedded systems. Zhang et al. (2021) shown the use of DRL to

optimize energy consumption and performance in IoT networks,

highlighting the potential of this approach in distributed systems

where multiple devices need to cooperate for optimal

performance. Similarly, Yu et al. (2020) applied DRL to optimize

the communication protocols of embedded IoT devices, achieving

better data throughput and lower latency compared to

conventional methods.

Despite the promising results, there are challenges in applying

DRL to embedded systems. The need for high computational

resources during training, limited availability of large datasets,

and the difficulty in transferring models to embedded hardware

are some of the barriers that remain. Additionally, there is a lack

of consensus on the best DRL algorithm for specific embedded

system applications, with ongoing research aimed at improving

the efficiency and robustness of DRL models.

Recent advancements in DRL optimization, such as using

multi-agent systems for collaborative decision-making in

embedded devices, have shown further promise. Multi-agent

DRL can be used in scenarios where multiple devices need to

optimize their performance simultaneously, such as in smart grid

systems or collaborative autonomous vehicles. These systems

benefit from distributed learning, where each agent can learn from

its environment while sharing information with other agents to

improve global system performance.

Thus, the application of DRL to real-time performance

optimization in embedded systems holds great potential,

particularly as embedded systems become more complex and

ubiquitous. Future work will focus on addressing the limitations

of current DRL methods, such as reducing training time and

improving the transferability of learned models to hardware

platforms.

3. PROPOSED METHOD

The proposed method utilizes Deep Reinforcement Learning

(DRL) algorithms to optimize the real-time performance of

electronic embedded systems. The method follows a process in

which an agent learns and adapts its actions to optimize key

performance metrics such as energy consumption, processing

speed, and memory utilization in dynamic environments. The

DRL agent interacts with the embedded system environment,

receiving feedback based on the system’s current state. The

process is structured as follows:

• Environment Modeling: The embedded system’s

operational environment is modeled, defining key variables

such as processing workload, available resources (e.g., CPU,

memory, energy), and system constraints (e.g., real-time

latency).

• State Representation: The current state of the system is

represented as a set of features, such as resource usage and

performance metrics, which are continuously monitored and

fed to the agent.

• Action Space Definition: The agent is equipped with a set

of actions it can take to influence the system’s performance,

such as adjusting processing frequencies, managing task

prioritization, or optimizing resource allocation.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2025, VOLUME: 10, ISSUE: 04

1911

• Reward Function: A reward function is designed to

quantify the system’s performance based on the actions

taken. The reward encourages the agent to minimize energy

consumption, reduce latency, and maximize throughput

while ensuring system stability.

• Policy Learning: Using a DRL algorithm (such as Deep Q-

Network or Proximal Policy Optimization), the agent

explores various actions to maximize cumulative rewards

over time. The learning process is iterative, with the agent

continuously updating its decision-making policy based on

feedback from the environment.

• Real-time Adaptation: Once trained, the agent is deployed

in real-time applications, where it dynamically adjusts the

system’s configuration based on ongoing performance data.

This enables continuous optimization of the system,

ensuring that it remains efficient and responsive under

varying workloads and environmental conditions.

This DRL-based method enables embedded systems to

autonomously adjust their performance parameters in real-time,

significantly improving efficiency and adaptability in complex,

resource-constrained environments.

3.1 ENVIRONMENT MODELING

The “Environment Modeling” step is critical to the proposed

method, as it forms the foundation for the Deep Reinforcement

Learning (DRL) agent to interact with and optimize the embedded

system’s real-time performance. In this phase, we define the

system’s operational environment by outlining key components,

constraints, and variables that the agent must monitor and control.

The environment represents a dynamic setting where the agent

observes system states, makes decisions, and receives feedback

based on its actions.

The embedded system’s environment is modeled as a set of

states, actions, and rewards, where each component influences the

performance of the system. A system can be thought of as

consisting of several interacting parts, such as processors,

memory units, power management units, and I/O components.

Each of these elements has associated resource constraints, and

the agent needs to monitor them to make decisions that optimize

the overall performance of the system. For Sample, the agent

could adjust CPU frequencies, modify memory allocation, or

optimize energy consumption based on the current workload and

the available system resources.

State variables represent the current conditions of the

embedded system. These variables are continuously monitored

and include parameters such as CPU usage, memory utilization,

task execution times, and battery level. The state is a snapshot of

the system’s configuration at a given time and serves as the input

for the agent’s decision-making process.

Table.1. State Variable

State Variable Description Value

CPU Usage
Percentage of CPU utilization by

active processes
75%

Memory

Utilization

Percentage of memory currently in

use
60%

Battery Level
Remaining energy or power of the

system
50%

Task Execution

Time

Time taken to execute a task or

process
200ms

The action space defines the set of possible actions the agent

can take to influence the system’s performance. These actions are

designed to manipulate the system’s resources and adjust its

parameters to achieve the desired performance goals. In our

embedded system context, actions could involve adjusting

processor frequency, task scheduling, or optimizing power

management strategies. For instance, an action could be to

increase the CPU frequency to speed up computations or to lower

it to conserve energy.

Table.2. Action Space

Action Description Value

Adjust CPU

Frequency

Change CPU frequency to meet

processing demand

Increase to 2.5

GHz

Reallocate

Memory

Move data between memory

segments to optimize usage

Reallocate 1

GB

Adjust Power

Settings

Modify system’s power

consumption modes (e.g., sleep

mode)

Enter low-

power mode

The reward function is designed to guide the agent’s learning

process by providing feedback on the effectiveness of its actions.

The reward is a scalar value based on the system’s performance

after taking an action. For instance, if an action leads to improved

system performance, such as reducing latency or energy

consumption while maintaining throughput, the agent receives a

positive reward. Conversely, if the action results in system

inefficiencies or violations of real-time constraints, the agent

receives a negative reward.

Table.3. Reward Function

Action Outcome Reward

Increase CPU

Frequency

Reduced task execution

time, higher energy

consumption

+10 for performance,

-5 for energy usage

Decrease CPU

Frequency

Increased task execution

time, lower energy

consumption

+3 for energy

savings, -8 for

latency

The environment’s dynamics are driven by the interactions

between the system’s state, the agent’s actions, and the

corresponding rewards. Each time the agent takes an action, the

system’s state transitions, which can affect other components of

the system, such as memory or power. For Sample, increasing

CPU frequency may improve task execution time but may also

lead to higher power consumption and faster battery depletion.

Similarly, optimizing memory usage can enhance performance by

reducing task delays but could lead to increased latency if

resources are over-allocated.

The agent observes the resulting changes and adjusts its policy

over time to optimize overall system performance. Through

repeated interactions with the environment, the agent learns how

N JAGADEESWARI et al.: REAL-TIME PERFORMANCE OPTIMIZATION OF ELECTRONIC EMBEDDED SYSTEMS USING DEEP REINFORCEMENT LEARNING ALGORITHMS

1912

to balance trade-offs, such as minimizing power consumption

while maintaining system responsiveness.

3.2 STATE REPRESENTATION

State representation plays a crucial role in the proposed

method, as it defines how the current conditions of the embedded

system are captured and presented to the Deep Reinforcement

Learning (DRL) agent. In this phase, the system’s state is modeled

as a set of features that provide relevant information about the

system’s performance and resource utilization at any given point

in time. The agent uses these features to understand the

environment and make decisions that optimize the system’s real-

time performance.

The state is essentially a snapshot of the system, capturing

information about various system parameters such as CPU usage,

memory utilization, task execution times, energy consumption,

and system latency. By representing the state in a structured

manner, the agent can process the data effectively, ensuring that

its decisions are based on an accurate and up-to-date view of the

system’s performance.

The state representation is defined as a vector of features, each

corresponding to a key parameter of the embedded system. These

features are continuously updated, allowing the agent to observe

and adapt to dynamic changes in the system’s behavior and

workload.

3.2.1 State Variables:

The key state variables include metrics related to resource

utilization, task performance, and energy consumption. These

state variables provide the DRL agent with the necessary input to

evaluate how well the system is performing and determine the

best course of action.

Table.4. State Variables

State Variable Description Value

CPU Usage
The percentage of CPU resources

currently being used
75%

Memory

Utilization

The percentage of available memory

being used by processes
60%

Task Execution

Time

The time taken to complete a task or

process
200ms

Energy

Consumption

The amount of energy used by the

system during operation
250mW

System Latency
The delay in processing or

communication within the system
50ms

These state variables represent the current operating

conditions of the embedded system, with each one playing a

pivotal role in determining system performance. For Sample,

CPU Usage and Memory Utilization reflect how much

computational and memory resources are being consumed, which

directly impacts the system’s ability to process tasks efficiently.

Energy Consumption is another critical metric, as the system’s

power usage must be optimized to extend battery life, especially

in resource-constrained environments.

3.2.2 State Representation Vector:

The state at any given time is represented as a vector of these

variables, which serves as the input to the DRL agent. The vector

provides the agent with a consolidated view of the system’s

current status. By observing this vector, the agent can infer how

the system is performing in terms of resource usage, processing

efficiency, and energy management.

Table.5. State representation vector for the embedded system

State Feature Value

CPU Usage 75%

Memory Utilization 60%

Task Execution Time 200ms

Energy Consumption 250mW

System Latency 50ms

This vector provides the agent with a holistic view of the

system’s performance and resource utilization. The agent uses this

vector to evaluate the current conditions and determine which

action to take based on the learned policy.

3.2.3 Dynamic State Update:

The state representation is continuously updated as the system

changes. For Sample, when a task starts, the Task Execution Time

increases. If the system consumes more energy to complete a task,

the Energy Consumption value will rise. Similarly, as tasks are

processed, Memory Utilization and CPU Usage will fluctuate,

reflecting the dynamic nature of the system’s operations.

To ensure that the agent makes decisions based on the most

recent information, the state variables are updated at regular

intervals. The DRL agent, therefore, observes this dynamic state

and adjusts its actions accordingly to optimize system

performance.

Table.6. Dynamic State Update

State Variable Initial Value Updated Value

CPU Usage 75% 80%

Memory Utilization 60% 65%

Task Execution Time 200ms 250ms

Energy Consumption 250mW 300mW

System Latency 50ms 55ms

In this Sample, the CPU Usage and Memory Utilization have

increased, possibly due to a higher workload, while Energy

Consumption has also risen. The Task Execution Time has

increased as the task took longer to complete, and System Latency

has slightly increased as a result of these changes.

3.3 ROLE IN AGENT DECISION-MAKING

By continuously observing these state variables, the DRL

agent can learn the relationship between system performance and

actions. For instance, if the agent detects high Energy

Consumption and Task Execution Time, it might decide to reduce

the CPU frequency to lower energy usage and improve processing

speed. On the other hand, if Memory Utilization is low and the

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2025, VOLUME: 10, ISSUE: 04

1913

task requires higher processing power, the agent may choose to

increase the CPU frequency to complete the task faster.

The dynamic nature of the state representation allows the

agent to make real-time adjustments to optimize system

performance based on the current operational conditions. The

agent adapts over time, learning which state features are most

indicative of the system’s needs and how best to adjust actions to

meet the desired objectives.

3.3.1 Action Space Definition:

The Action Space is a fundamental aspect of the Deep

Reinforcement Learning (DRL) model used to optimize the real-

time performance of embedded systems. It defines the set of all

possible actions that the DRL agent can take in response to the

state of the system, ultimately influencing how the system’s

resources (such as CPU, memory, and energy) are allocated. The

DRL agent learns to choose actions from this space to maximize

a predefined reward function, which leads to improved system

performance under dynamic conditions.

In the context of embedded systems, the actions are typically

designed to adjust various system parameters such as CPU

frequency, memory allocation, task scheduling, and power

management. The agent takes an action based on the current state

of the system, which can affect performance metrics like

processing speed, power consumption, latency, and task

completion time.

3.3.2 Types of Actions:

Actions in the proposed method are defined to manipulate the

following system components:

• CPU Frequency Adjustment: This action involves altering

the operating frequency of the CPU to match processing

demands. Increasing the frequency can reduce task

execution time but may increase energy consumption, while

lowering the frequency helps save power but might result in

slower execution.

• Memory Reallocation: The agent can dynamically allocate

or deallocate memory to different processes or tasks to

optimize memory usage, reduce delays, and improve task

completion times. The action could involve shifting

processes between memory regions based on availability.

• Power Management Adjustments: Actions in this

category involve managing the system’s power

consumption, such as entering low-power or sleep modes to

conserve energy when the system is idle or underutilized.

Each action within this space is designed to address a specific

aspect of the embedded system, contributing to overall

optimization by balancing the trade-offs between performance

and resource consumption.

3.3.3 Action Space Representation:

The action space is represented as a vector that encompasses

all possible actions the agent can take at any given time. The

vector can be partitioned into discrete and continuous actions

depending on the nature of the system’s resources. For Sample,

CPU frequency might have a discrete set of values (e.g., low,

medium, high), while memory allocation could be represented as

a continuous range of values (e.g., between 0 and 100% of

available memory).

Table.7. Action space representation

Action Type Description Values

CPU

Frequency

Adjust CPU operating

frequency to optimize

processing speed

{1.2 GHz, 1.5

GHz, 2.0 GHz}

Memory

Allocation

Reallocate system memory to

different tasks or processes

{10%, 50%,

80%}

Power Mode

Adjustment

Adjust the power consumption

mode of the system

{Idle, Active,

Low Power}

In this table, CPU Frequency is represented by a discrete set

of frequencies, Memory Allocation is represented by the

percentage of memory assigned to processes, and Power Mode

Adjustment represents different power states the system can be in.

3.3.4 Mathematical Representation of Action Space:

To formalize the action space, we define the action space as a

vector A that includes actions related to the system’s resources.

Let the action space be represented as:

CPU Memory Power[, ,]A A A A= (1)

These actions are selected based on the current system state,

allowing the agent to choose the optimal set of actions at each

time step to improve system performance.

Furthermore, actions are typically represented in terms of their

impact on system performance. The effect of these actions on

system performance can be expressed by an objective function,

which is influenced by the CPU frequency fCPU, memory

allocation mMemory and power state pPower. The total action impact

Iaction can be modeled as:

action 1 CPU 2 Memory 3 PowerI f m p = + + (2)

The values of α1, α2, α3 are determined based on the system’s

priorities, such as whether the objective is to reduce energy

consumption, improve processing speed, or balance both. This

equation gives an overall impact score that reflects how the

chosen actions influence system performance.

3.4 EXPLORATION VS. EXPLOITATION IN

ACTION SELECTION

In reinforcement learning, the agent faces the exploration-

exploitation trade-off. During the exploration phase, the agent

tries various actions to understand their effects on the system,

while during the exploitation phase, the agent uses its learned

policy to select the actions that maximize the reward based on past

experiences.

For the proposed method, the agent may initially explore

different combinations of CPU Frequency, Memory Allocation,

and Power Mode Adjustment to understand their individual and

combined impacts on the system. Over time, the agent refines its

policy by exploiting actions that have shown to result in optimal

system performance, based on historical feedback.

3.4.1 Reward Function:

In the proposed method for real-time performance

optimization of embedded systems, the Reward Function plays a

crucial role in guiding the Deep Reinforcement Learning (DRL)

agent to make decisions that enhance the system’s performance

while considering resource constraints like energy consumption,

N JAGADEESWARI et al.: REAL-TIME PERFORMANCE OPTIMIZATION OF ELECTRONIC EMBEDDED SYSTEMS USING DEEP REINFORCEMENT LEARNING ALGORITHMS

1914

CPU utilization, and task completion time. The reward function

quantifies how beneficial or detrimental a particular action is

based on the agent’s state and chosen action, helping the agent

learn optimal behaviors over time.

3.4.2 Reward Components:

The reward function incorporates multiple factors that reflect

the trade-offs between system performance and resource

consumption. Key components of the reward function include:

• Performance Improvement: This component rewards the

agent for actions that enhance system performance, such as

reducing task execution time, increasing throughput, or

improving responsiveness.

• Energy Efficiency: This component rewards the agent for

actions that minimize power consumption, such as

transitioning the system to low-power states when the

demand is low or adjusting the CPU frequency to avoid

unnecessary power usage.

• Resource Utilization: Efficient use of resources, such as

CPU and memory, is another factor in the reward function.

The agent is rewarded for actions that optimize resource

allocation, avoiding both underutilization (wasting

resources) and overutilization (leading to bottlenecks or

system instability).

• Latency Reduction: In real-time embedded systems,

reducing latency is often critical. The agent receives rewards

for minimizing delays in task processing, which is crucial

for time-sensitive applications.

• The total reward at any given time step t is a weighted sum

of these components:

1

2

3

4

() Performance Improvement()

Energy Consumption()

Resource Utilization()

Latency()

R t t

t

t

t

=

−

+

−

 (3)

Table.8. Reward Function Value

Factor Description Values

Performance

Improvement

Measures the increase in system

performance (e.g., reduced

processing time)

{High,

Medium,

Low}

Energy

Consumption

Measures the power consumed by

the system

{High,

Medium,

Low}

Resource

Utilization

Measures how effectively CPU

and memory are utilized

{High,

Medium,

Low}

Latency
Measures task completion delay or

latency

{High,

Medium,

Low}

In the table, higher values for Performance Improvement and

Resource Utilization would be rewarded, while higher Energy

Consumption and Latency would be penalized.

3.4.3 Impact of the Reward Function:

The reward function provides the feedback necessary for the

agent to adjust its actions during training. Over time, the agent

learns which actions maximize the reward by balancing the

competing objectives, such as improving performance while

minimizing energy consumption. The goal is to find a policy that

achieves optimal system performance while adhering to the

system’s constraints, such as power usage and resource

limitations.

3.4.4 Policy Learning:

Policy Learning is the process by which the Deep

Reinforcement Learning (DRL) agent learns to select actions

based on its current state to maximize the long-term cumulative

reward. In the context of embedded systems optimization, this

involves learning a policy that efficiently allocates resources

(CPU, memory, power) based on the system’s real-time state to

optimize performance metrics like processing speed, energy

consumption, and task completion time.

The proposed method uses Q-learning or Policy Gradient

methods for policy learning. In these methods, the agent

iteratively improves its decision-making process by evaluating

the effectiveness of actions through the rewards received. The

agent’s goal is to maximize the expected cumulative reward over

time, which is achieved by adjusting its policy.

3.4.5 Steps in Policy Learning

• State-Action Evaluation: At each time step, the agent

observes the current state of the system, selects an action,

and then observes the resulting state and reward. This

observation-feedback loop enables the agent to evaluate the

effectiveness of its actions.

• Policy Update: Based on the rewards received, the agent

updates its policy. This can be done through a value-based

approach (Q-learning) or a policy-based approach (Policy

Gradient). In Q-learning, the value of a state-action pair is

updated using the Bellman equation:

 ()1(,) (,) max (,) (,)t t t t t a t t tQ s a Q s a r Q s a Q s a +
= + + − (4)

In Policy Gradient methods, the policy is directly optimized

by adjusting the parameters of the policy network to maximize the

expected reward.

• Exploration vs. Exploitation: During training, the agent

balances exploration (trying new actions) and exploitation

(choosing the best-known action based on its current policy).

Initially, the agent explores many actions to gather

experience, and over time, it exploits the learned policy to

maximize the reward.

Table.9. Policy Learning

Step Description Values

State

Observation

Agent observes the current state

of the system (e.g., CPU usage,

memory allocation, power state)

{CPU = 80%,

Memory =

50%}

Action

Selection

Agent selects an action based on

the policy (e.g., increase CPU

frequency, allocate more

memory)

{Increase CPU

Frequency}

Reward

Received

Agent receives a reward based

on the impact of the action on

system performance

{Reward = 50}

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JANUARY 2025, VOLUME: 10, ISSUE: 04

1915

Policy

Update

Agent updates its policy based

on the reward and learned

experiences

{New policy

parameters}

In the table, the agent starts by observing the current system

state and then chooses an action according to its policy. The

reward received from that action is used to update the policy for

future decision-making.

3.4.6 Impact of Policy Learning:

Over time, the DRL agent refines its policy to make better

decisions, improving the system’s performance while considering

resource constraints. The policy is learned through continuous

interaction with the system, with the agent receiving feedback in

the form of rewards. Eventually, the agent can make real-time

decisions that optimize performance based on current system

conditions, effectively adapting to dynamic changes in workload

and resource availability. By continuously adjusting its policy

using the rewards it receives, the agent learns to make efficient

trade-offs between system performance and resource

consumption, leading to a well-optimized embedded system.

4. RESULTS AND DISCUSSION

In the proposed method for real-time performance

optimization of embedded systems using Deep Reinforcement

Learning (DRL), a comprehensive experimental setup is designed

to evaluate the effectiveness of the approach. For simulation

purposes, Python and TensorFlow are used to implement the DRL

algorithms. The DRL model is trained on a simulated

environment that mirrors real-time embedded systems with

dynamic workloads, resource constraints, and task scheduling

scenarios.

For comparison, the proposed DRL-based optimization

approach is benchmarked against three existing methods:

• Energy-Aware Task Scheduling (EATS): This method

focuses on optimizing energy consumption by scheduling

tasks based on their energy demands.

• Dynamic Voltage and Frequency Scaling (DVFS): This

approach adjusts the system’s voltage and frequency

dynamically to balance energy consumption and system

performance.

• Reinforcement Learning-based Optimization (RL-

Optimization): A traditional RL-based approach that does

not leverage deep reinforcement learning and operates with

simpler policies and models.

Table.10. Parameters

Parameter Value

Simulation Tool Python, TensorFlow, OpenAI Gym

Training Algorithm Deep Q-Learning (DQN)

System Setup
Intel i7 Processor, 16GB RAM,

NVIDIA GTX 1080 Ti GPU

Training Episodes 5000 Episodes

Batch Size 64

Learning Rate (α) 0.001

Discount Factor (γ) 0.99

Exploration Factor (ε) 0.1

Action Space
CPU Frequency Adjustment, Memory

Allocation, Task Scheduling

Reward Function

Weights (λ1-λ4)
λ1=1, λ2=0.5, λ3=0.3, λ4=0.2

Evaluation Period 1000 Simulation Steps per Method

4.1 PERFORMANCE METRICS

• Performance Improvement: This metric assesses how

effectively the system can process tasks in less time,

contributing to better overall system performance. An

improvement in performance generally indicates that the

system is better able to handle workloads and reduce task

processing delays.

• Energy Efficiency: Embedded systems often operate under

strict energy constraints. This metric quantifies how much

power is saved by employing techniques like DVFS or other

resource optimization strategies, balancing between

performance and energy efficiency.

• Resource Utilization: Effective resource utilization ensures

that no resources are wasted and that the system operates

within its optimal capacity. This metric reflects the degree

to which resources are used efficiently to achieve task

completion.

• Latency: In real-time embedded systems, minimizing

latency is critical. This metric evaluates the responsiveness

of the system and how quickly it can process and complete

tasks, which is especially important in time-sensitive

applications.

• Stability: Stability is important for embedded systems to

ensure continuous, reliable performance, particularly in

systems that require 24/7 uptime. This metric evaluates

whether the optimization approach maintains system

stability across varied workloads and resource demands.

Table.11. Performance Metrics

Metric EATS DVFS RL-Opt
Proposed

DRL

Throughput (tasks/sec) 25.4 30.1 32.3 38.5

Processing Speed (sec/task) 1.25 1.05 0.98 0.82

Energy Efficiency (J/task) 2.8 2.4 2.2 1.7

Resource Utilization (%) 75 80 85 90

Latency (ms/task) 120 110 100 85

Stability (failure rate) 5% 4% 3% 1%

Across the 5000 episodes, the Proposed DRL shows consistent

improvement in comparison to the existing methods. The

Throughput increased to 38.5 tasks per second, surpassing

existing methods by a significant margin. Processing Speed

improved to 0.82 seconds per task, reducing task completion time

compared to other methods. Energy Efficiency was optimized to

1.7 joules per task, showing a 23% improvement over the best

existing method. The Resource Utilization reached 90%,

reflecting better resource allocation. Latency reduced to 85 ms,

and the Stability increased with only 1% failure rate, indicating

high system reliability.

N JAGADEESWARI et al.: REAL-TIME PERFORMANCE OPTIMIZATION OF ELECTRONIC EMBEDDED SYSTEMS USING DEEP REINFORCEMENT LEARNING ALGORITHMS

1916

Table.12. Performance Metrics for λ1=1, λ2=0.5, λ3=0.3, λ4=0.2

Metric EATS DVFS RL-Opt
Proposed

DRL

Throughput (tasks/sec) 24.6 29.7 31.2 38.9

Processing Speed (sec/task) 1.28 1.10 1.00 0.78

Energy Efficiency (J/task) 3.0 2.6 2.3 1.6

Resource Utilization (%) 73 78 84 91

Latency (ms/task) 122 111 98 82

Stability (failure rate) 6% 5% 4% 2%

With the selected values of λ1=1, λ2=0.5, λ3=0.3, and λ4=0.2,

the Proposed DRL shows superior performance across all metrics.

Throughput increased to 38.9 tasks per second, outperforming the

existing methods by up to 24%. Processing Speed improved to

0.78 seconds per task, reducing task completion time. Energy

Efficiency was optimized to 1.6 joules per task, showing a 30%

improvement over the best existing method. Resource Utilization

reached 91%, highlighting better resource management. Latency

dropped to 82 ms, and Stability was enhanced with only 2%

failure rate, demonstrating reliability.

5. CONCLUSION

The proposed Deep Reinforcement Learning (DRL) method

for real-time performance optimization of embedded systems has

shown significant improvements over traditional optimization

approaches. By leveraging dynamic learning and adaptive

decision-making, the DRL model effectively balances the

competing objectives of performance, energy efficiency, and

resource utilization, providing substantial gains in system

throughput, processing speed, and energy consumption. The

experimental results show that the DRL approach outperforms

existing methods such as Energy-Aware Task Scheduling

(EATS), Dynamic Voltage and Frequency Scaling (DVFS), and

RL-Optimization in several critical areas.

Notably, the proposed method achieved an optimized energy

consumption of 1.6 joules per task, a reduction in processing time

to 0.78 seconds per task, and a substantial increase in resource

utilization, reaching 91%. Additionally, the system exhibited

improved latency (82 ms) and enhanced stability with only a 2%

failure rate. These results underscore the potential of DRL in

tackling the complexities of real-time embedded system

optimization.

REFERENCES

[1] R. Rotaeche, A. Ballesteros and J. Proenza, “Speeding Task

Allocation Search for Reconfigurations in Adaptive

Distributed Embedded Systems using Deep Reinforcement

Learning”, Sensors, Vol. 23, No. 1, pp. 1-6, 2023.

[2] J. Aldahmashi and X. Ma, “Real-Time Energy Management

in Smart Homes through Deep Reinforcement Learning”,

IEEE Access, Vol. 12, pp. 55-72, 2024.

[3] B. Haouari, R. Mzid and O. Mosbahi, “A Reinforcement

Learning-based Approach for Online Optimal Control of

Self-Adaptive Real-Time Systems”, Neural Computing and

Applications, Vol. 35, No. 27, pp. 20375-20401, 2023.

[4] Z. Li, A. Samanta, Y. Li, A. Soltoggio, H. Kim and C. Liu,

“R3 :Device Real-Time Deep Reinforcement Learning for

Autonomous Robotics”, IEEE Real-Time Systems

Symposium, pp. 131-144, 2023.

[5] G. Ai, X. Zuo, G. Chen and B. Wu, “Deep Reinforcement

Learning based Dynamic Optimization of Bus Timetable”,

Applied Soft Computing, Vol. 131, pp. 1-7, 2022.

[6] X. Tang, B. Long and L. Zhou, “Real-Time Monitoring and

Analysis of Track and Field Athletes based on Edge

Computing and Deep Reinforcement Learning Algorithm”,

Alexandria Engineering Journal, Vol. 114, pp. 136-146,

2025.

[7] D. Hu and Y. Zhang, “Deep Reinforcement Learning based

on Driver Experience Embedding for Energy Management

Strategies in Hybrid Electric Vehicles”, Energy Technology,

Vol. 10, No. 6, pp. 1-7, 2022.

[8] N. Mazaheri, D. Santamargarita, E. Bueno, D. Pizarro and

S. Cobreces, “A Deep Reinforcement Learning Approach to

DC-DC Power Electronic Converter Control with Practical

Considerations”, Energies, Vol. 17, No. 14, pp. 1-6, 2024.

[9] A.R. Sayed, X. Zhang, G. Wang, J. Qiu and C. Wang,

“Online Operational Decision-Making for Integrated

Electric-Gas Systems with Safe Reinforcement Learning”,

IEEE Transactions on Power Systems, Vol. 39, No. 2, pp.

2893-2906, 2023.

[10] T.M. Alabi, L. Lu and Z. Yang, “Real-Time Automatic

Control of Multi-Energy System for Smart District

Community: A Coupling Ensemble Prediction Model and

Safe Deep Reinforcement Learning”, Energy, Vol. 304, pp.

1-6, 2024.

[11] J. Wu, Z. Huang, Z. Hu and C. Lv, “Toward Human-in-the-

Loop AI: Enhancing Deep Reinforcement Learning Via

Real-Time Human Guidance for Autonomous Driving”,

Engineering, Vol. 21, pp. 75-91, 2023.

[12] J. Chen, S. Li, K. Yang, C. Wei and X. Tang, “Deep

Reinforcement Learning-based Integrated Control of Hybrid

Electric Vehicles Driven by Lane-Level High-Definition

Map”, IEEE Transactions on Transportation Electrification,

Vol. 10, No. 1, pp. 1642-1655, 2023.

[13] Z. Wang, S. Zhang, W. Luo and S. Xu, “Deep

Reinforcement Learning with Deep-Q-Network based

Energy Management for Fuel Cell Hybrid Electric Truck”,

Energy, Vol. 306, pp. 1-6, 2024.

[14] Q. Xing, Y. Xu, Z. Chen, Z. Zhang and Z. Shi, “A Graph

Reinforcement Learning-based Decision-Making Platform

for Real-Time Charging Navigation of Urban Electric

Vehicles”, IEEE Transactions on Industrial Informatics,

Vol. 19, No. 3, pp. 3284-3295, 2022.

[15] X. Tang, J. Chen, K. Yang, M. Toyoda, T. Liu and X. Hu,

“Visual Detection and Deep Reinforcement Learning-based

Car Following and Energy Management for Hybrid Electric

Vehicles”, IEEE Transactions on Transportation

Electrification, Vol. 8, No. 2, pp. 2501-2515, 2022.

