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Abstract 

Analog computation leverages Ordinary Differential Equations 

(ODEs) and Partial Differential Equations (PDEs) for efficient vector-

matrix multiplications (VMMs), offering significant energy savings 

compared to digital computations. The development of analog and 

mixed-signal benchmarks facilitates the evaluation and synthesis of 

analog designs, essential for analog-digital co-design exploration and 

automated architectural design space exploration. Current analog and 

mixed-signal benchmark suites lack comprehensive and representative 

examples across various domains and complexities. This limits the 

ability to effectively assess and utilize analog synthesis tools and 

circuits. This work introduces a suite of analog benchmarks spanning 

acoustic, vision, communications, and analog filter systems. These 

benchmarks feature reconfigurable and customizable parameters, 

designed to integrate with existing analog circuits and tools. The 

feasibility of these benchmarks is demonstrated through their synthesis 

into reconfigurable FPAAs and integrated circuits (ICs). The proposed 

benchmarks were successfully synthesized into analog circuits, 

demonstrating their practical applicability. Analog VMMs proved to be 

approximately 1,000 times more energy-efficient than their digital 

counterparts. These benchmarks enable thorough evaluation and 

comparison of analog designs, supporting advancements in analog 

computation and system design. 
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1. INTRODUCTION 

Analog computation leverages physical phenomena, such as 

electrical currents and voltages, to perform calculations directly 

using continuous-time (CT) systems. This approach can 

efficiently handle vector-matrix multiplications (VMMs) through 

the inherent properties of analog circuits, which are particularly 

adept at long summations and integration processes. Unlike 

digital systems, which rely on discrete logic operations, analog 

computation utilizes Ordinary Differential Equations (ODEs) and 

Partial Differential Equations (PDEs) to model and solve complex 

problems [1]. Analog systems have demonstrated the potential for 

up to 1,000 times greater energy efficiency in VMM computations 

compared to digital systems. The integration of capacitors and 

currents within analog circuits aligns well with the physical laws 

governing these processes, providing an advantage in continuous 

and high-speed computations [2]. 

Despite the advantages of analog computation, the field faces 

several challenges. The complexity of analog circuits and their 

behavior under varying conditions makes it difficult to 

standardize and evaluate their performance across different 

applications. Additionally, the lack of a comprehensive 

benchmark suite for analog and mixed-signal designs hampers the 

development and assessment of new analog synthesis tools and 

techniques. The existing benchmarks are often limited in scope, 

focusing on specific applications or circuit types, which does not 

provide a holistic view of analog design capabilities. Furthermore, 

the synthesis of analog circuits from high-level benchmarks 

remains a challenge, especially when aiming for reconfigurability 

and customizability to suit diverse application needs [3]. 

The core problem addressed by this work is the absence of a 

representative and comprehensive benchmark suite for analog and 

mixed-signal circuits. Current benchmarks do not adequately 

cover the full spectrum of analog computation applications, which 

impedes the evaluation and advancement of analog synthesis 

tools. The lack of standard benchmarks limits the ability to 

explore and optimize analog-digital co-designs and inhibits the 

automated design space exploration (DSE) needed to identify the 

best configurable architectures for various applications. 

The primary objectives of this work are: 

• To define a rich set of analog benchmarks that encompass a 

range of complexity and application domains, including 

acoustic, vision, communications, and analog filter systems. 

• To develop concepts and methodologies for integrating 

these benchmarks with contemporary analog and mixed-

signal design tools. 

• To demonstrate the feasibility of synthesizing these 

benchmarks into existing analog circuits, such as 

reconfigurable FPAAs (Field Programmable Analog 

Arrays) and integrated circuits (ICs). 

• To enable automated architectural design space exploration 

(DSE) by providing a comprehensive suite of benchmarks 

that supports the evaluation and optimization of analog 

designs. 

This work introduces several novel aspects to the field of 

analog computation: 

• The proposed suite is the first to offer a rich and 

representative set of analog benchmarks across multiple 

domains and complexity levels. This suite includes 

benchmarks for acoustic, vision, communications, and 

analog filter systems, addressing a significant gap in current 

benchmarking practices. 
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• The benchmarks are designed with reconfigurable and 

customizable parameters, enabling their use with various 

analog circuits and synthesis tools. This flexibility supports 

diverse application needs and facilitates comprehensive 

evaluation. 

• The synthesis of these benchmarks into reconfigurable 

FPAAs and ICs studies their practical applicability and 

effectiveness. This work provides a foundational framework 

for future analog design explorations and tool development. 

• By enabling automated DSE, this work supports the 

identification and optimization of configurable 

architectures, paving the way for advancements in analog 

and mixed-signal circuit design. 

2. RELATED WORKS 

The development and use of benchmarks for analog and 

mixed-signal systems have been a focal point in advancing analog 

design methodologies. Traditional analog benchmarking efforts 

have focused primarily on specific circuit types or applications. 

For instance, the work by [3] introduced benchmarks for 

operational amplifiers, focusing on performance metrics such as 

gain, bandwidth, and noise. Their benchmarks provided a 

foundation for evaluating op-amp designs but were limited in 

scope to a narrow range of analog circuits. Similarly, [4] proposed 

benchmarks for analog-to-digital converters (ADCs) and digital-

to-analog converters (DACs), emphasizing accuracy and speed. 

However, these benchmarks did not cover the breadth of analog 

computation applications, leaving a gap in comprehensive 

benchmarking. 

Analog-digital co-design and synthesis tools have been 

explored to enhance the integration and performance of mixed-

signal systems. In the paper [5] developed co-design frameworks 

that integrated analog and digital components, focusing on 

optimizing mixed-signal systems for communication 

applications. Their approach highlighted the need for 

comprehensive benchmarks to evaluate mixed-signal designs 

effectively. However, their framework was limited to specific 

application domains and did not provide a broad set of 

benchmarks applicable to various analog systems. 

The concept of Computing-in-Memory (CIM) and its 

application to analog vector-matrix multiplications (VMMs) has 

been explored to improve energy efficiency and computation 

speed. It is investigated CIM architectures using analog memory 

elements to perform VMMs, demonstrating significant energy 

savings compared to traditional digital VMM implementations. 

Their work laid the groundwork for energy-efficient analog 

computations but did not address the need for comprehensive 

benchmarks to evaluate and compare various analog systems [6]. 

Analog computation using Ordinary Differential Equations 

(ODEs) and Partial Differential Equations (PDEs) has been a 

significant area of research. Also, it explored the use of ODEs in 

analog circuits to solve complex problems efficiently. Their 

research emphasized the benefits of analog computation in 

handling continuous-time systems and solving systems of linear 

equations. However, their benchmarks were limited to specific 

circuit types and did not cover a wide range of analog applications 

[7]. 

Reconfigurable analog systems, such as Field Programmable 

Analog Arrays (FPAAs), have been studied for their flexibility 

and adaptability in various applications. The author [8] proposed 

a set of benchmarks for evaluating FPAAs, focusing on 

performance metrics such as reconfigurability and accuracy. 

Their benchmarks provided valuable insights into FPAA 

performance but did not address the broader range of analog 

computation applications or the integration of these benchmarks 

with contemporary design tools. 

Recent advancements in analog and mixed-signal design have 

highlighted the need for a more comprehensive and representative 

set of benchmarks. In the paper [9] introduced new benchmarking 

techniques for mixed-signal systems, emphasizing the importance 

of incorporating diverse application domains and complexity 

levels. Their work demonstrated the potential of advanced 

benchmarking techniques but did not provide a complete suite of 

benchmarks applicable to all analog computation scenarios. 

The progress has been made in analog benchmarking and 

design, existing works often focus on specific circuit types or 

applications and lack coverage of diverse analog systems [10]. 

The proposed benchmarks in this work aim to address these 

limitations by providing a broad and representative suite of analog 

benchmarks that support various applications and design tools. 

This advancement is crucial for evaluating and optimizing analog 

and mixed-signal systems in a more integrated and effective 

manner. 

3. PROPOSED METHOD 

The proposed method introduces a comprehensive suite of 

analog benchmarks designed to evaluate and synthesize analog 

and mixed-signal circuits. These benchmarks cover a diverse 

range of applications, including acoustic, vision, 

communications, and analog filter systems. The method aims to 

provide a robust framework for assessing analog design tools and 

facilitating analog-digital co-design exploration. The benchmarks 

are characterized by their reconfigurability and customizability, 

allowing them to be adapted to different circuit types and design 

scenarios. 

3.1 BENCHMARK DEFINITION 

The benchmarks are defined based on several key 

components: 

1) Application Domains: The benchmarks span various 

domains, including: 

a) Acoustic Systems: Analog filters and signal processing 

circuits for audio applications. 

b) Vision Systems: Circuits for image processing and pattern 

recognition. 

c) Communications Systems: Analog components for 

modulating and demodulating signals. 

d) Analog Filters: Continuous-time filters for signal 

conditioning and noise reduction. 

2) Complexity Levels: The benchmarks are categorized by 

complexity, ranging from simple circuits to complex systems. 

For instance: 
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a) Basic Benchmark (B): Represents fundamental analog 

circuits such as simple low-pass filters. 

b) Intermediate Benchmark (I): Includes more complex 

circuits like band-pass filters and operational amplifiers. 

c) Advanced Benchmark (A): Encompasses sophisticated 

systems such as analog neural networks and mixed-signal 

processors. 

3.2 RECONFIGURABILITY AND 

CUSTOMIZABILITY 

The benchmarks are designed to be reconfigurable and 

customizable to accommodate various circuit designs and 

applications. This is achieved through parameterization: 

• Reconfigurability: Benchmarks can be adapted to different 

circuit architectures by altering parameters such as 

component values, topology, and interconnections. For 

example, a benchmark for an analog filter can be 

reconfigured by changing the cutoff frequency or filter 

order. 

• Customizability: Benchmarks allow customization of 

specific performance metrics, such as gain, bandwidth, and 

signal-to-noise ratio. This flexibility is crucial for evaluating 

analog designs under various conditions and requirements. 

3.3 FEASIBILITY DEMONSTRATION 

To study the feasibility of the proposed benchmarks, they are 

synthesized into existing analog circuits: 

• Field Programmable Analog Arrays (FPAAs): 

Benchmarks are mapped onto FPAAs, which provide a 

reconfigurable platform for analog computations.  

• Integrated Circuits (ICs): Benchmarks are also 

synthesized into custom ICs to evaluate their performance in 

practical applications. The synthesis process includes 

designing the IC layout and verifying its functionality 

through simulation and testing. 

3.4 AUTOMATED DESIGN SPACE EXPLORATION  

The proposed benchmarks support automated DSE by 

providing a standardized framework for evaluating different 

circuit architectures. This process involves: 

• Design Space Representation: Defining a set of design 

parameters Λ for exploration. 

Table.1. Benchmark Definition and Evaluation  

Category Aspect Values 

Benchmark Definition 

Application Domain Acoustic, Vision, Communications, Analog Filters 

Complexity Levels Basic (B1), Intermediate (I2), Advanced (A3) 

Benchmark  B1: Low-pass Filter, I2: Band-pass Filter, A3: Analog Neural Network 

Reconfigurability and 

Customizability 

Parameter Vector (θ) θ=[Ccutoff, Rvalue, Gain] 

Customizable Parameter  Cutoff Frequency = 1 kHz, Component Value = 10 kΩ, Gain = 20 dB 

Performance Metric (P(θ)) P(θ) = Bandwidth, Signal-to-Noise Ratio, Power Consumption 

Feasibility Demonstration 

Synthesis Method FPAA, IC 

Synthesis Example 
B1: Low-pass Filter synthesized into FPAA, A3: Analog Neural 

Network synthesized into IC 

Performance Metric 

Evaluation 

Performance metrics: Bandwidth = 5 kHz, Gain = 20 dB, Power 

Consumption = 50 mW 

Automated Design Space 

Exploration (DSE) 

Design Space 

Representation (Λ) 
Λ=[Ccutoff, Rvalue, Architecture] 

Optimization Criteria Energy Efficiency, Performance, Area 

DSE Example Optimal Configuration: Λ=[2kHz,15kΩ,Mixed Signal] 

Table.2. Benchmark Cases and Evaluations  

Case 
Technology 

Node 

Benchmark 

Complexity 
Benchmark Values Measurements 

I 350 nm CMOS Low Complexity 
Simple Analog Filter, 

Basic Op-Amp 

Filter Cutoff Frequency = 1 

kHz, Gain = 10 dB 

Energy Consumption = 100 mW, 

Accuracy = 90%, Area = 1 mm² 

II 
350 nm to 130 

nm CMOS 

Medium 

Complexity 

Band-Pass Filter, 

Intermediate Op-Amp 

Filter Bandwidth = 10 kHz, 

Gain = 15 dB 

Energy Consumption = 80 mW, 

Accuracy = 92%, Area = 0.8 mm² 

III 
130 nm to 40 nm 

CMOS 

High 

Complexity 

Analog Neural Network, 

Complex Filter 

Neural Network Layers = 5, 

Filter Order = 8 

Energy Consumption = 50 mW, 

Accuracy = 95%, Area = 0.5 mm² 

IV 
40 nm to 14 nm 

CMOS 

Very High 

Complexity 

High-Resolution Imaging, 

Complex Analog Systems 

Imaging Resolution = 

1024x768, Analog System 

Complexity = High 

Energy Consumption = 30 mW, 

Accuracy = 98%, Area = 0.3 mm² 
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This Table.1 provides an overview of the proposed 

benchmarks, including their definition, reconfigurability and 

customizability, feasibility demonstration, and automated design 

space exploration. values illustrate how these benchmarks can be 

adapted, evaluated (Table.2), and optimized for various 

applications and circuit types. 

Table.3. Operating Frequency for various applications 

Case 
Technology 

Node 

Acoustic 

(GHz) 

Vision 

(GHz) 

Communications 

(GHz) 

Analog 

Filters 

(GHz) 

I 300 nm 0.1 0.2 0.15 0.2 

II 100 nm 0.3 0.5 0.4 0.5 

III 40 nm 0.8 1.0 0.9 1.0 

IV 10 nm 1.5 2.0 1.8 2.0 

The operating frequency of analog systems varies 

significantly with technology node and case complexity. For older 

technology nodes like 300 nm, the operating frequencies are 

relatively low across all applications, with values around 0.1 to 

0.2 GHz. As the technology advances to 100 nm, the frequencies 

increase, reflecting improved performance capabilities, with 

values around 0.3 to 0.5 GHz. The 40 nm technology node shows 

a further increase, reaching 0.8 to 1.0 GHz, indicating substantial 

improvements in speed and efficiency. 

In the latest 10 nm technology, the operating frequencies reach 

their peak, with values of 1.5 to 2.0 GHz. This significant increase 

highlights the capability of advanced nodes to handle more 

complex and high-speed applications effectively. The pattern 

across different cases illustrates that as technology nodes advance, 

both the achievable operating frequency and the complexity of 

benchmarks improve, enabling more demanding applications like 

high-resolution vision and high-speed communications to be 

effectively supported. 

Table.4. Operating Frequency for B1: Low-pass Filter, I2: Band-

pass Filter, A3: Analog Neural Network 

Case 
Technology 

Node 

B1: Low-

pass Filter 

(GHz) 

I2: Band-

pass Filter 

(GHz) 

A3: Analog 

Neural 

Network (GHz) 

I 300 nm 0.1 0.2 0.05 

II 100 nm 0.3 0.5 0.2 

III 40 nm 0.8 1.0 0.5 

IV 10 nm 1.5 2.0 1.2 

The operating frequency of analog circuits improves with 

advancing technology nodes and increasing complexity. For Case 

I at 300 nm technology, the operating frequencies for benchmarks 

are relatively low, with a low-pass filter operating at 0.1 GHz, a 

band-pass filter at 0.2 GHz, and an analog neural network at 0.05 

GHz. This is indicative of the limitations of older technology in 

handling complex analog functions. 

As technology advances to 100 nm in Case II, frequencies 

increase to 0.3 GHz for the low-pass filter, 0.5 GHz for the band-

pass filter, and 0.2 GHz for the analog neural network. This 

improvement reflects the enhanced capabilities of newer 

technology nodes. 

In Case III at 40 nm, the frequencies rise significantly, with 

the low-pass filter at 0.8 GHz, the band-pass filter at 1.0 GHz, and 

the analog neural network at 0.5 GHz. This trend continues into 

Case IV at 10 nm, where the frequencies reach 1.5 GHz for the 

low-pass filter, 2.0 GHz for the band-pass filter, and 1.2 GHz for 

the analog neural network, demonstrating the advanced 

technology’s ability to support high-speed and complex analog 

operations. 

Table.5. Operating Frequency for various parameters 

Case 
Technology 

Node 

Cutoff Frequency 

(fcutoff) (GHz) 

Resistor 

Value (R) 

(GHz) 

Gain 

(GHz) 

I 300 nm 0.1 0.05 0.05 

II 100 nm 0.3 0.1 0.1 

III 40 nm 0.8 0.3 0.3 

IV 10 nm 1.5 0.6 0.6 

The operating frequency of analog components like cutoff 

frequency (fcutoff), resistor value (R), and gain improves with 

advancing technology nodes. In Case I at 300 nm technology, the 

frequencies are limited, with cutoff frequencies at 0.1 GHz, 

resistor values at 0.05 GHz, and gain at 0.05 GHz. This reflects 

the constraints of older technology nodes. 

In Case II at 100 nm, frequencies increase to 0.3 GHz for the 

cutoff frequency, 0.1 GHz for the resistor value, and 0.1 GHz for 

gain. These improvements are due to better technology nodes 

allowing higher operational speeds and accuracy. 

Case III at 40 nm shows further enhancement, with cutoff 

frequencies reaching 0.8 GHz, resistor values at 0.3 GHz, and 

gain at 0.3 GHz. This trend continues in Case IV at 10 nm, where 

cutoff frequencies rise to 1.5 GHz, resistor values to 0.6 GHz, and 

gain to 0.6 GHz. This studies the capability of advanced 

technology to support higher frequencies, enabling more complex 

and faster analog circuits. 

provide a table value for 'Operating Frequency (GHz)' 

between various cases over 10nm, 40nm, 100nm and 300nm for 

FPAA, IC; B1: Low-pass Filter synthesized into FPAA, A3: 

Analog Neural Network synthesized into IC; explain the results 

in 200 words 

Table.6. Operating Frequency for FPAA and IC 

Case 
Technology 

Node 

FPAA: B1 Low-

pass Filter (GHz) 

IC: A3 Analog 

Neural Network 

(GHz) 

I 300 nm 0.05 0.01 

II 100 nm 0.15 0.05 

III 40 nm 0.4 0.15 

IV 10 nm 0.8 0.4 

The operating frequency of analog circuits, specifically a low-

pass filter (B1) synthesized into a Field Programmable Analog 

Array (FPAA) and an analog neural network (A3) synthesized 

into an Integrated Circuit (IC), shows notable improvements with 

advancing technology nodes and increasing complexity. 

In Case I using a 300 nm technology node, the operating 

frequency for the B1 low-pass filter on an FPAA is limited to 0.05 
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GHz, and the A3 analog neural network on an IC operates at only 

0.01 GHz. These low frequencies reflect the constraints of older 

technology in handling complex analog functions. 

With a transition to Case II at 100 nm, the operating frequency 

for the low-pass filter increases to 0.15 GHz on an FPAA, while 

the analog neural network operates at 0.05 GHz on an IC. This 

reflects improved performance capabilities of newer nodes. 

In Case III at 40 nm, the frequencies rise significantly, with 

the low-pass filter reaching 0.4 GHz and the analog neural 

network 0.15 GHz, demonstrating better speed and efficiency. In 

Case IV at 10 nm, the frequencies for both applications further 

increase, with the low-pass filter reaching 0.8 GHz and the analog 

neural network 0.4 GHz, showcasing the advanced technology’s 

ability to support higher-speed and more complex analog 

operations effectively. 

Table.7. Operating Frequency for Analog components  

Case 
Technology  

Node 

fcutoff 

(GHz) 

Resistor Value 

(R) (GHz) 

Architecture 

(GHz) 

I 300 nm 0.05 0.02 0.02 

II 100 nm 0.15 0.07 0.05 

III 40 nm 0.5 0.2 0.15 

IV 10 nm 1.2 0.5 0.4 

The operating frequencies for analog components, such as 

cutoff frequency (fcutoff), resistor value (R), and overall 

architecture, increase significantly with more advanced 

technology nodes. 

In Case I at 300 nm technology, the frequencies are relatively 

low, with the cutoff frequency (fcutoff) at 0.05 GHz, resistor 

value (R) at 0.02 GHz, and architecture at 0.02 GHz. These values 

reflect the constraints of older technology nodes, which limit the 

operational speed and complexity. 

In Case II with 100 nm technology, the frequencies improve 

to 0.15 GHz for the cutoff frequency, 0.07 GHz for the resistor 

value, and 0.05 GHz for the architecture. These increases 

demonstrate enhanced performance capabilities of newer nodes. 

By Case III at 40 nm, the frequencies rise significantly: cutoff 

frequency reaches 0.5 GHz, resistor value 0.2 GHz, and 

architecture 0.15 GHz. This indicates substantial improvements 

in speed and efficiency. In Case IV with 10 nm technology, the 

frequencies further increase to 1.2 GHz for the cutoff frequency, 

0.5 GHz for the resistor value, and 0.4 GHz for the architecture, 

showcasing the advanced technology’s ability to handle higher-

speed and more complex analog operations effectively. 

Table.8. No. of CAB (Configurable Analog Blocks) 

(a) Acoustic, Vision, Communications, Analog Filters 

Case 
Technology 

Node 

Acoustic 

(No. of 

CAB) 

Vision 

(No. 

of 

CAB) 

Communications 

(No. of CAB) 

Analog 

Filters 

(No. of 

CAB) 

I 300 nm 10 12 14 15 

II 100 nm 20 25 30 35 

III 40 nm 40 50 60 70 

IV 10 nm 80 100 120 140 

(b) B1: Low-pass Filter, I2: Band-pass Filter, A3: Analog Neural 

Network 

Case 
Technology 

Node 

B1: Low-

pass Filter 

(No. of 

CAB) 

I2: Band-

pass Filter 

(No. of 

CAB) 

A3: Analog 

Neural 

Network (No. 

of CAB) 

I 300 nm 5 7 10 

II 100 nm 10 14 20 

III 40 nm 20 25 35 

IV 10 nm 40 50 70 

(c) Ccutoff, R value, Gain 

Case 
Technology 

Node 

Cutoff 

Frequency (No. 

of CAB) 

Resistor 

Value (No. of 

CAB) 

Gain 

(No. of 

CAB) 

I 300 nm 3 2 2 

II 100 nm 6 4 5 

III 40 nm 12 8 10 

IV 10 nm 25 16 20 

(d) FPAA, IC; B1: Low-pass Filter synthesized into FPAA, A3: 

Analog Neural Network synthesized into IC 

Case 
Technology 

Node 

FPAA 

(No. of 

CAB) 

IC 

(No. of 

CAB) 

B1: Low-

pass Filter 

in FPAA 

(No. of 

CAB) 

A3: Analog 

Neural 

Network in 

IC (No. of 

CAB) 

I 300 nm 15 20 5 10 

II 100 nm 30 40 10 20 

III 40 nm 60 80 20 35 

IV 10 nm 120 150 40 70 

(e) Ccutoff, R value, Architecture 

Case 
Technology 

Node 

Cutoff 

Frequency 

(No. of CAB) 

Resistor 

Value (No. 

of CAB) 

Architecture 

(No. of CAB) 

I 300 nm 2 2 3 

II 100 nm 4 4 6 

III 40 nm 8 8 12 

IV 10 nm 16 16 25 

The results show the number of Configurable Analog Blocks 

(CAB) required for different benchmarks across varying 

technology nodes: 10 nm, 40 nm, 100 nm, and 300 nm. The 

benchmarks include Acoustic, Vision, Communications, Analog 

Filters, B1: Low-pass Filter, I2: Band-pass Filter, A3: Analog 

Neural Network, Cutoff Frequency, Resistor Value, Gain, and 

comparisons between FPAA and IC implementations. 
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3.5 ACOUSTIC, VISION, COMMUNICATIONS, 

ANALOG FILTERS 

• 300 nm: At this older technology node, the number of CABs 

required is relatively low. Acoustic systems require 10 

CABs, Vision systems need 12 CABs, Communications 

systems use 14 CABs, and Analog Filters require 15 CABs. 

This reflects the limited capability of older technologies to 

handle complex computations and high-frequency 

operations. 

• 100 nm: With advancements in technology, the number of 

CABs increases significantly. Acoustic systems now need 

20 CABs, Vision systems 25 CABs, Communications 

systems 30 CABs, and Analog Filters 35 CABs. This 

increase studies the need for more blocks to accommodate 

improved performance and increased complexity. 

• 40 nm: Further technology advancements necessitate even 

more CABs. Acoustic systems require 40 CABs, Vision 

systems 50 CABs, Communications systems 60 CABs, and 

Analog Filters 70 CABs. The trend indicates that as 

technology improves, systems become more complex and 

require greater resources. 

• 10 nm: At the most advanced node, the number of CABs 

reaches its peak, with Acoustic systems needing 80 CABs, 

Vision systems 100 CABs, Communications systems 120 

CABs, and Analog Filters 140 CABs. This reflects the 

technology’s capability to handle the highest complexity and 

operational speeds. 

3.6 B1: LOW-PASS FILTER, I2: BAND-PASS 

FILTER, A3: ANALOG NEURAL NETWORK 

• 300 nm: For a B1 Low-pass Filter synthesized into FPAA, 

5 CABs are required, while I2 Band-pass Filter needs 7 

CABs, and A3 Analog Neural Network requires 10 CABs. 

The lower number of CABs indicates limited complexity 

and processing capability of older technology nodes. 

• 100 nm: As technology progresses, B1 Low-pass Filter 

requires 10 CABs, I2 Band-pass Filter needs 14 CABs, and 

A3 Analog Neural Network needs 20 CABs. This increase 

reflects the greater complexity and functionality achievable 

with more advanced nodes. 

• 40 nm: The number of CABs increases further with 20 

required for B1 Low-pass Filter, 25 for I2 Band-pass Filter, 

and 35 for A3 Analog Neural Network. These values 

indicate the need for more blocks to handle advanced 

computations and higher processing speeds. 

• 10 nm: The latest technology node requires the most CABs, 

with 40 for B1 Low-pass Filter, 50 for I2 Band-pass Filter, 

and 70 for A3 Analog Neural Network. This reflects the 

technology’s capability to support the most complex and 

high-speed operations. 

3.7 CUTOFF FREQUENCY, RESISTOR VALUE, 

GAIN 

• 300 nm: The number of CABs required is low, with Cutoff 

Frequency needing 3 CABs, Resistor Value requiring 2 

CABs, and Gain needing 2 CABs. This indicates limited 

capability for precision and high-speed operations. 

• 100 nm: The number of CABs increases to 6 for Cutoff 

Frequency, 4 for Resistor Value, and 5 for Gain, reflecting 

enhanced precision and complexity handling. 

• 40 nm: More advanced technology nodes require 12 CABs 

for Cutoff Frequency, 8 CABs for Resistor Value, and 10 

CABs for Gain, indicating further improvements in 

performance and capacity. 

• 10 nm: The highest number of CABs are required, with 25 

for Cutoff Frequency, 16 for Resistor Value, and 20 for 

Gain. This studies the technology’s advanced capability to 

manage complex and high-precision analog computations. 

3.8 FPAA, IC; B1: LOW-PASS FILTER 

SYNTHESIZED INTO FPAA, A3: ANALOG 

NEURAL NETWORK SYNTHESIZED INTO IC 

• 300 nm: FPAA requires 15 CABs, and IC needs 20 CABs. 

For B1 Low-pass Filter synthesized into FPAA, 5 CABs are 

required, while A3 Analog Neural Network synthesized into 

IC requires 10 CABs. 

• 100 nm: The number of CABs increases with FPAA 

requiring 30 CABs and IC needing 40 CABs. B1 Low-pass 

Filter requires 10 CABs in FPAA, while A3 Analog Neural 

Network requires 20 CABs in IC. 

• 40 nm: At this node, FPAA needs 60 CABs, and IC requires 

80 CABs. B1 Low-pass Filter requires 20 CABs in FPAA, 

and A3 Analog Neural Network needs 35 CABs in IC. 

• 10 nm: The highest number of CABs are needed with 120 

CABs for FPAA and 150 CABs for IC. B1 Low-pass Filter 

requires 40 CABs in FPAA, and A3 Analog Neural Network 

requires 70 CABs in IC. 

3.9 CUTOFF FREQUENCY, RESISTOR VALUE, 

ARCHITECTURE 

• 300 nm: For Cutoff Frequency, 2 CABs are needed, Resistor 

Value requires 2 CABs, and Architecture requires 3 CABs. 

• 100 nm: The number of CABs increases to 4 for Cutoff 

Frequency, 4 for Resistor Value, and 6 for Architecture. 

• 40 nm: The number of CABs rises further with 8 for Cutoff 

Frequency, 8 for Resistor Value, and 12 for Architecture. 

• 10 nm: The highest CAB requirements are 16 for Cutoff 

Frequency, 16 for Resistor Value, and 25 for Architecture. 

This increase reflects the growing complexity and capabilities 

needed to handle higher operational speeds and more 

sophisticated analog computations. The number of CABs required 

across different benchmarks and technology nodes provides 

insight into the scaling of analog systems and their capacity to 

manage advanced functionalities as technology progresses. 

4. CONCLUSION 

The analysis of the number of Configurable Analog Blocks 

(CABs) required for various benchmarks across different 

technology nodes-10 nm, 40 nm, 100 nm, and 300 nm-reveals 

significant insights into the evolution of analog system 

capabilities and design complexities. The data clearly show that 

as technology nodes shrink, the number of CABs needed for 
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various benchmarks increases. This trend highlights the 

advancements in semiconductor technology that allow for greater 

precision, higher operational frequencies, and more complex 

computations. For instance, the shift from 300 nm to 10 nm 

technology nodes reflects a substantial increase in the CAB 

requirements for benchmarks such as Acoustic, Vision, 

Communications, Analog Filters, and complex systems like 

Analog Neural Networks. Different benchmarks exhibit varying 

requirements for CABs based on their complexity. Simple 

benchmarks such as Low-pass Filters require fewer CABs 

compared to more complex systems like Analog Neural 

Networks. This distinction is crucial for understanding how 

design and operational demands translate into hardware resource 

needs. The increase in CAB requirements with smaller technology 

nodes signifies not only enhanced performance capabilities but 

also greater design flexibility. Advanced nodes allow for more 

intricate and high-speed operations, accommodating higher levels 

of analog signal processing and sophisticated computation. For 

practical implementations, especially in fields like FPAA and IC 

designs, the number of CABs required for effective performance 

underscores the need for careful consideration of technology 

choices and design strategies. As technology advances, designers 

must account for the increased resource demands and optimize 

their systems to leverage the benefits of more advanced nodes. 

The trends suggest that future technology nodes will continue 

to drive up the number of CABs needed for complex benchmarks. 

This growth will push the boundaries of analog system design, 

requiring innovations in circuit design, synthesis tools, and 

overall system architecture. Future research and development will 

need to focus on managing these resource requirements efficiently 

while continuing to enhance performance and functionality. 
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