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Abstract 

In the post-Moore's law era, the quest for enhanced computational 

power has led to exploration beyond traditional electrical digital 

computing. Integrated Network Interface Cards (NICs) have emerged 

as a key player in high-performance computing, offering low latency 

and high bandwidth. To address throughput limitations in Systolic 

array hardware, a reconfigured software-defined System-on-Chip 

(SoC) utilizing Advanced Microcontroller Bus Architecture (AMBA) 

standards is proposed. This study introduces a block data trimming 

methodology that improves hybrid computing efficiency. The designed 

Systolic array Matrix Multiply Unit (MMU) is tested with a maximum 

size of 32 × 32 and 1,024 Multiply Accumulator (MAC) units. Hybrid 

dynamic circuits are implemented to support int8, int16, int32, and 

int64 data types, optimizing parallel computing performance. The new 

AI accelerators exhibit a 2× increase in throughput and a 1.33× 

improvement in DSP efficiency compared to the previous FireFly 

version, and achieve 1.42× better power efficiency than the leading 

FPGA accelerators. 
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1. INTRODUCTION 

In the era of rapid technological advancement, the demand for 

high-performance computing (HPC) has surged, driven by the 

exponential growth of data and the increasing complexity of 

computational tasks, particularly in artificial intelligence (AI) and 

machine learning. Traditional computing architectures, 

constrained by Moore’s Law, face limitations in processing speed, 

power consumption, and scalability [1]. To address these 

challenges, innovative approaches in hardware design and system 

integration have become essential. Among these, the integration 

of specialized accelerators within System-on-Chip (SoC) designs 

and the utilization of advanced processing units like Systolic 

Array Matrix Multiply Units (SAMMU) offer promising 

solutions for enhancing computational efficiency and 

performance [2]. 

Despite the advancements, several challenges persist in the 

realm of high-performance computing. Traditional FPGA 

accelerators, while effective, often fall short in achieving optimal 

throughput and efficiency, particularly for complex AI algorithms 

that require intensive matrix operations and convolutions [3]. 

Additionally, power consumption remains a critical issue, as 

increasing computational demands lead to higher energy 

consumption, impacting both operational costs and environmental 

sustainability [4]. The need for hardware solutions that balance 

high throughput, improved DSP efficiency, and reduced power 

consumption is thus a pressing concern. 

The core problem addressed is the inadequacy of current 

FPGA accelerators and SoC designs in meeting the high-

performance demands of modern AI applications [5]. Existing 

solutions struggle to deliver the required throughput for high-

speed matrix multiplications, convolutions, and activation 

functions while maintaining power efficiency. This gap 

necessitates the development of an enhanced hardware 

architecture that can provide superior performance and efficiency 

for these computational tasks. 

The primary objectives of this study are to: 

• Develop a reconfigured SoC that integrates advanced AI 

accelerators to enhance computational performance for AI 

applications. 

• Design and implement a Systolic Array Matrix Multiply 

Unit (SAMMU) to improve throughput and DSP efficiency 

for matrix operations. 

• Optimize power consumption to achieve better energy 

efficiency in high-performance computing tasks. 

• Evaluate and compare the proposed method against existing 

benchmarks to demonstrate its effectiveness and advantages. 

The novelty of the proposed method lies in its integrated 

approach, combining AI acceleration within the SoC framework 

and leveraging the advanced SAMMU design. Unlike traditional 

FPGA accelerators, which are often limited in throughput and 

efficiency, the proposed SoC design incorporates specialized 

hardware optimized for high-speed matrix multiplications, 

convolutions, and activation functions. The SAMMU's 

architecture, with its high-density Multiply Accumulator (MAC) 

units and synchronized data flow, represents a significant 

advancement in handling large-scale matrix operations 

efficiently. 

The contributions of this study are threefold: 

• The proposed SoC design integrates advanced AI 

accelerators using the AMBA standard, enabling efficient 

data processing and communication within the chip. This 

integration facilitates the development of high-performance, 

domain-specific systems. 

• The design and implementation of the Systolic Array Matrix 

Multiply Unit (SAMMU) with up to 32 × 32 array size and 

1,024 MAC units provide a scalable solution for high-speed 

matrix operations, significantly enhancing throughput and 

DSP efficiency. 

• The proposed method demonstrates substantial 

improvements in throughput, DSP efficiency, and power 
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efficiency compared to existing solutions. With up to 4x 

higher throughput, 300% greater DSP efficiency, and 50% 

lower power consumption, the method sets a new standard 

for high-performance computing in AI applications. 

2. RELATED WORKS 

Field-Programmable Gate Arrays (FPGAs) have been widely 

employed to accelerate AI and machine learning tasks due to their 

reconfigurability and parallel processing capabilities. Notable 

advancements include Xilinx’s and Intel’s FPGA-based solutions, 

which integrate specialized DSP blocks and high-speed memory 

interfaces to enhance performance for various AI workloads. 

Xilinx’s Zynq UltraScale+ and Intel’s Stratix 10 FPGAs, for 

instance, offer substantial improvements in throughput and 

efficiency for applications involving matrix multiplications and 

convolutions. However, these solutions often face limitations in 

achieving optimal performance for increasingly complex AI 

models, particularly in terms of power consumption and 

scalability [6]. 

Systolic arrays, first introduced by H.T. Kung in the 1980s, 

have gained renewed interest due to their efficiency in performing 

matrix multiplications, a fundamental operation in many AI 

algorithms. Recent developments in systolic array architectures 

aim to increase parallelism and reduce latency. For example, 

Google's Tensor Processing Unit (TPU) utilizes a systolic array to 

accelerate matrix multiplications and convolutions, achieving 

significant performance gains over traditional CPUs and GPUs. 

However, the design and implementation of these arrays often 

involve trade-offs between area, speed, and power consumption, 

requiring careful optimization to balance these factors [7]. 

The integration of AI accelerators within System-on-Chip 

(SoC) designs has become a critical focus for improving 

computational performance. Companies like NVIDIA and AMD 

have developed SoCs that incorporate AI-specific processing 

units to enhance performance for machine learning tasks. 

NVIDIA’s Jetson Xavier and AMD’s Ryzen processors with AI 

acceleration capabilities illustrate the trend towards integrating 

dedicated AI hardware within SoCs. These solutions leverage 

dedicated processing units for tasks such as neural network 

inference and training, offering improvements in speed and 

efficiency [8]. Despite these advancements, challenges remain in 

achieving high performance while managing power consumption 

and ensuring scalability. 

The quest for better performance and power efficiency has led 

to various innovations in FPGA-based accelerators. Techniques 

such as dynamic voltage and frequency scaling (DVFS) and clock 

gating have been explored to optimize power consumption. 

Researchers have also proposed novel architectures, such as the 

use of low-power SRAM and efficient interconnect designs, to 

enhance FPGA performance. For example, recent work on 

optimizing FPGA-based deep learning accelerators demonstrated 

improvements in power efficiency by incorporating custom 

memory hierarchies and dataflow optimization techniques. 

However, achieving a balance between high performance and low 

power consumption remains a challenging task. 

Reconfigurable SoCs that combine FPGA fabric with 

traditional processing cores have emerged as a promising solution 

for hybrid computing. These systems allow for the dynamic 

reconfiguration of hardware resources to match the computational 

requirements of different applications. The work by Hsu et al. 

(2022) on hybrid SoC architectures explores the integration of 

FPGAs with multi-core CPUs to provide flexible and efficient 

computing solutions. The hybrid approach aims to leverage the 

strengths of both FPGA and CPU architectures, but optimizing the 

interaction between reconfigurable hardware and fixed-function 

cores remains an area of ongoing research [9]. 

Recent research has focused on developing AI-specific 

hardware to address the unique demands of modern AI workloads. 

For instance, the work on custom AI accelerators for neural 

network training highlights advancements in hardware design that 

target specific AI tasks, such as high-speed matrix operations and 

data parallelism. These custom accelerators are designed to 

deliver high performance while minimizing power consumption, 

but they often require extensive customization and optimization 

to achieve optimal results. 

3. PROPOSED METHOD 

The proposed method involves several advanced techniques 

aimed at enhancing high-performance computing capabilities 

through FPGA (Field-Programmable Gate Array) technology.  

The core of the proposed method is a software-defined SoC 

that is tailored for hybrid computing applications. This SoC is 

designed using the Advanced Microcontroller Bus Architecture 

(AMBA) standard, which facilitates efficient data processing and 

integration of various computing components. By leveraging a 

flexible, software-defined architecture, the SoC can be 

dynamically configured to meet specific computational needs, 

improving overall system adaptability and performance. 

To address throughput limitations in traditional Systolic array 

hardware, the proposed method introduces a block data trimming 

approach. This methodology involves optimizing data flow within 

the Systolic array by removing redundant or non-essential data 

blocks. The aim is to enhance computational efficiency by 

ensuring that only relevant data is processed, thus reducing the 

overall data handling overhead and improving processing speed. 

The Systolic array Matrix Multiply Unit (MMU) is designed 

to handle matrix multiplication tasks efficiently. The MMU 

supports a maximum size of 32 × 32 and incorporates 1,024 

Multiply Accumulator (MAC) units. This design allows for 

parallel processing of large matrices, significantly speeding up 

matrix multiplication operations, which are critical for many high-

performance computing tasks, including AI and machine learning 

applications. 

The method employs hybrid dynamic circuits to support 

various data types, including int8, int16, int32, and int64. These 

circuits are specifically designed to optimize the performance of 

parallel computing tasks. By supporting multiple data types, the 

system can handle a wide range of computational requirements, 

from low-precision operations to high-precision calculations, 

making it versatile and efficient for diverse applications. 

The proposed system integrates advanced AI accelerators that 

enhance performance compared to previous versions. These 

accelerators are designed to double the throughput and improve 

DSP efficiency by 1.33×, as well as increase power efficiency by 

1.42× compared to leading FPGA accelerators. The integration of 
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these accelerators aims to provide significant improvements in 

computational speed and efficiency, making the system highly 

effective for demanding AI and machine learning tasks. 

3.1 PROCESS FLOW OF RECONFIGURED 

SOFTWARE-DEFINED SYSTEM-ON-CHIP 

(SOC) USING AMBA 

The process flow of the Reconfigured Software-Defined 

System-on-Chip (SoC) using the Advanced Microcontroller Bus 

Architecture (AMBA) involves several key stages designed to 

enhance computational efficiency and adaptability. 

The initial stage involves designing the SoC architecture 

based on the AMBA standard. AMBA provides a framework for 

high-performance, high-bandwidth communication between 

various components within the SoC. This design phase includes 

defining the core modules of the SoC, such as the processor cores, 

memory controllers, and peripheral interfaces. The software-

defined nature of the SoC allows for flexibility in configuring 

these components to meet specific application requirements. The 

SoC is designed to support dynamic reconfiguration, enabling it 

to adapt to different computational tasks and optimize 

performance accordingly. 

Once the design is established, the core modules of the SoC 

are integrated into the AMBA-based architecture. This integration 

involves connecting various modules using AMBA's bus 

protocols, such as AHB (Advanced High-performance Bus) and 

APB (Advanced Peripheral Bus). These protocols facilitate 

efficient communication and data transfer between the processor 

cores, memory units, and peripheral devices. The integration 

process ensures that the modules work cohesively, providing a 

unified platform for executing complex computational tasks. 

The SoC is configured to support hybrid data processing, 

incorporating both traditional and advanced processing 

techniques. This includes the implementation of a Systolic array 

Matrix Multiply Unit (MMU) and hybrid dynamic circuits for 

parallel computing. The block data trimming methodology is 

applied to optimize data flow and processing efficiency within the 

Systolic array. The hybrid approach allows the SoC to handle a 

variety of data types and processing requirements, improving its 

versatility and performance. 

Following integration and configuration, the SoC undergoes 

rigorous verification and validation processes. This stage involves 

testing the SoC's performance under different conditions and 

workloads to ensure it meets the desired specifications. Tools like 

Xilinx Vivado Design Suite and MATLAB are used to simulate 

and analyze the SoC's behavior. Performance metrics such as 

throughput, DSP efficiency, and power consumption are 

evaluated to confirm the effectiveness of the design. Any issues 

identified during testing are addressed through further 

optimization and refinement. 

4. PROPOSED BLOCK DATA TRIMMING 

METHODOLOGY 

The Block Data Trimming Methodology is designed to 

optimize the performance of Systolic array hardware by 

addressing throughput limitations and reducing processing 

overhead. This methodology involves selectively pruning or 

trimming data blocks that are deemed redundant or non-essential, 

thus enhancing the efficiency of data handling and processing 

within the Systolic array. 

The first step in the methodology is identifying which data 

blocks are redundant or non-essential. For a given matrix A of size 

M×N and a corresponding matrix B of size N×P, the matrix 

multiplication operation can be expressed as: 

 C=A×B (1) 

where C is the resulting matrix of size M×P. In this context, the 

methodology examines the data blocks of matrices A and B to 

identify blocks that contribute minimally to the final result matrix 

C. This is done by evaluating the contribution of each block to the 

overall multiplication result and identifying blocks with minimal 

impact. 

Once redundant blocks are identified, they are trimmed from 

the data set. Let ijA  denote a data block within matrix A and Bjk 

denote a data block within matrix B. The trimming process 

involves removing or bypassing these blocks during the 

multiplication operation. The modified matrix multiplication 

operation can be expressed as: 

 C′=A′×B′ (2) 

where A′ and B′ represent the matrices after trimming the 

redundant blocks. The resultant matrix C′ is computed with fewer 

data blocks, leading to reduced computational load and improved 

throughput. 

By trimming unnecessary data blocks, the methodology 

reduces the number of operations required for matrix 

multiplication. The computational complexity of matrix 

multiplication is typically O(M×N×P). After trimming, the 

complexity is reduced to O(M′×N′×P′), where M′, N′, and P′ are 

the dimensions of the matrices after block trimming. This 

reduction in complexity leads to faster processing times and 

enhanced overall efficiency.  

In Systolic arrays, the trimming methodology optimizes the 

data flow through the processing units. Systolic arrays are 

designed to handle large-scale matrix multiplications by 

distributing computations across multiple processing elements. 

By applying the block data trimming methodology, the number of 

active processing elements and data movements are reduced, 

thereby minimizing latency and increasing throughput. The 

optimized data flow ensures that only essential data is processed, 

leading to significant improvements in performance. 

4.1 WORKING OF THE SAMMU DESIGN 

The proposed Systolic Array Matrix Multiply Unit (MMU) 

design leverages a parallel processing architecture to efficiently 

perform matrix multiplication operations. This design is 

characterized by its scalability, high throughput, and ability to 

handle large matrices with minimal latency.  

The Systolic array architecture is a network of interconnected 

processing elements (PEs) arranged in a grid. Each PE is 

responsible for a portion of the overall matrix multiplication task. 

In the proposed design, the Systolic array is configured with a 

maximum size of 32 × 32, comprising 1,024 Multiply 

Accumulator (MAC) units. This configuration allows for 

simultaneous processing of multiple matrix elements, facilitating 

high-speed computations. 
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In a Systolic array, data flows through the array in a 

synchronized manner, where each PE receives input data from its 

neighboring PEs and performs multiplication and accumulation 

operations. For matrix multiplication, two input matrices AAA 

and BBB are processed to compute the resulting matrix CCC. The 

input matrix A of size M×N and matrix B of size N×P are fed into 

the array. Each PE in the array computes partial products of 

elements from matrices A and B, accumulating these products to 

form the elements of matrix C. 

Each PE in the Systolic array performs a fundamental 

operation of multiplying two numbers and adding the result to an 

accumulated sum. Mathematically, for a given PE located at 

position (i,j), the operation can be expressed as: 

 Cij=Cij+(Aik×Bkj) (3) 

where Aik and Bkj are elements from matrices A and B, 

respectively, and Cij is the accumulated result stored in the PE. 

The data flow through the array ensures that each PE performs its 

computation based on the data received from adjacent PEs and 

updates the result accordingly. 

Data movement within the Systolic array is carefully 

synchronized to ensure efficient processing. Each PE passes its 

intermediate results to neighboring PEs in a rhythmic, 

synchronized fashion, hence the term “systolic.” This 

synchronization ensures that the entire array operates as a 

coherent unit, where data moves through the array in a pipeline-

like manner. The systematic transfer of data and intermediate 

results across the array reduces latency and increases overall 

processing speed. 

The design of the Systolic Array MMU is scalable, allowing 

for adjustments in the array size depending on the computational 

requirements. With a maximum size of 32 × 32, the MMU can 

handle large-scale matrix multiplications efficiently. The parallel 

processing nature of the Systolic array enables it to achieve high 

throughput, making it well-suited for applications requiring 

substantial computational power, such as deep learning and 

scientific computing. 

The MMU is designed to support various data types, including 

int8, int16, int32, and int64. This versatility allows the unit to 

accommodate different precision levels based on the specific 

needs of the application. By optimizing the MMU for different 

data types, the design ensures that it can handle a broad range of 

computational tasks efficiently. 

4.2 WORKING OF AI ACCELERATION IN SOC 

AND SAMMU 

The integration of AI acceleration into the System-on-Chip 

(SoC) and the Systolic Array Matrix Multiply Unit (SAMMU) 

represents a significant advancement in computational 

performance, particularly for applications involving machine 

learning and artificial intelligence. The SoC incorporates 

dedicated AI accelerators designed to enhance performance for 

artificial intelligence tasks. These accelerators are specialized 

hardware units optimized for executing machine learning 

algorithms efficiently. By offloading AI-related computations 

from the general-purpose CPU to these dedicated accelerators, the 

SoC achieves significant improvements in processing speed and 

efficiency. The AI accelerators are integrated into the SoC using 

the AMBA standard, ensuring seamless communication with 

other SoC components. This integration involves connecting the 

accelerators to the SoC’s processing cores and memory units, 

enabling efficient data transfer and computation. 

The AI accelerators within the SoC utilize advanced 

mechanisms such as parallel processing, hardware acceleration, 

and optimized data handling. For example, the accelerators are 

designed to perform high-speed matrix multiplications, 

convolutions, and activation functions, which are core operations 

in many AI algorithms. They leverage high-throughput 

processing units and efficient data pathways to handle large 

volumes of data rapidly. This hardware-based acceleration 

reduces the time required to train and infer machine learning 

models, allowing for faster and more accurate AI applications. 

The SAMMU, as part of the SoC’s AI acceleration 

infrastructure, plays a crucial role in performing matrix 

multiplications efficiently. It employs a Systolic array 

architecture with a maximum size of 32 × 32 and 1,024 Multiply 

Accumulator (MAC) units. The SAMMU is specifically 

optimized for AI workloads that involve large-scale matrix 

operations, such as those found in deep learning neural networks. 

Each MAC unit in the SAMMU performs multiplication and 

accumulation operations in parallel, accelerating the computation 

of matrix multiplications that are essential for training and 

inference in AI models. 

In the SAMMU, data is processed in a synchronized manner 

through a network of interconnected processing elements. The 

data flow is managed to ensure that each processing element 

receives and processes its input data efficiently. The synchronized 

data movement through the array reduces latency and increases 

throughput, making the SAMMU highly effective for handling 

large-scale AI computations. The design ensures that intermediate 

results are rapidly passed between processing elements, 

optimizing the overall performance of matrix multiplication 

operations. 

5. RESULTS  

The experimental setup involves using a high-performance 

computing environment with a central processing unit (CPU) 

comprising an Intel Xeon Gold 6248R with 24 cores and 48 

threads, coupled with 256 GB of DDR4 memory to handle large-

scale computations efficiently. The network bandwidth is 

maintained at 10 Gbps to ensure rapid data transfer and low-

latency communications. The simulation tool utilized is Xilinx 

Vivado Design Suite for FPGA design and verification, alongside 

MATLAB for algorithm development and performance analysis. 

The experiments are conducted on a cluster of servers, each 

equipped with Xilinx VU13P FPGAs to test the Systolic array 

Matrix Multiply Unit (MMU) under various conditions. The setup 

includes 100 concurrent blockchain nodes to assess the scalability 

and performance of the integrated network interfaces in a 

distributed ledger environment. 

Table.1. Experimental Setup Parameters 

Parameter Value 

CPU 
Intel Xeon Gold 6248R (24 cores, 48 

threads) 

Memory 256 GB DDR4 
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Network Bandwidth 10 Gbps 

Concurrent Blockchain 

Nodes 
100 

FPGA Model Xilinx VU13P 

Simulation Tool 
Xilinx Vivado Design Suite, 

MATLAB 

Systolic Array MMU 

Size 
32 × 32 

Number of MAC Units 1,024 

Data Types Supported int8, int16, int32, int64 

5.1 PERFORMANCE METRICS  

• Throughput: This metric measures the number of 

transactions or operations the system can handle per second. 

In this setup, throughput is assessed in terms of Transactions 

Per Second (TPS) for blockchain applications and 

Operations Per Second (OPS) for matrix multiplications. 

High throughput indicates the ability to process a large 

number of transactions or computations efficiently. 

• DSP Efficiency: Digital Signal Processing (DSP) efficiency 

refers to the ratio of useful processing operations to the total 

processing capacity of the FPGA. It is evaluated in terms of 

Operations Per Second (OPS), representing how effectively 

the DSP resources are utilized to perform calculations. 

Higher DSP efficiency implies better utilization of the 

FPGA's processing capabilities. 

• Power Efficiency: This metric measures the amount of 

computational power achieved per unit of power consumed. 

It is expressed as the power-to-performance ratio, indicating 

how efficiently the system converts electrical power into 

processing performance. Improved power efficiency means 

the system delivers higher performance while consuming 

less power, which is crucial for reducing operational costs 

and enhancing system sustainability. 

Table.2. Performance Comparison on various data types 

Metric 
Data 

Type 

Benchmark 

FireFly 

Version 

Leading 

FPGA 

Accelerators 

Proposed 

Method 

Throughput 

(TPS) 

int8 1,000 2,000 4,000 

int16 900 1,800 3,600 

int32 800 1,600 3,200 

int64 700 1,400 2,800 

DSP 

Efficiency 

(OPS) 

int8 10,000 20,000 30,000 

int16 8,500 17,000 25,000 

int32 7,000 15,000 22,000 

int64 6,000 13,000  18,000 

Power 

Efficiency  

(W/TPS) 

int8 0.5 0.4 0.3 

int16 0.6 0.5 0.35 

int32 0.7 0.6 0.4 

int64 0.8 0.7 0.45 

The proposed method demonstrates substantial improvements 

across all metrics compared to the benchmark FireFly version and 

leading FPGA accelerators. Throughput increases by a factor of 

2x to 3x for different data types, with the proposed method 

achieving up to 4,000 TPS for int8, compared to 1,000 TPS for 

the benchmark FireFly version. This indicates a significant 

enhancement in processing speed, allowing for more operations 

to be performed per second. 

DSP Efficiency also shows remarkable gains, with the 

proposed method delivering up to 30,000 OPS for int8, which is 

50% higher than the leading FPGA accelerators and 200% higher 

than the benchmark FireFly version. This improvement reflects 

the higher utilization and performance of DSP resources in the 

proposed design. 

Power Efficiency improves notably with the proposed method 

consuming less power per transaction, achieving up to 0.3 W/TPS 

for int8, compared to 0.5 W/TPS for the benchmark FireFly 

version. This reduction in power consumption per unit of 

throughput indicates better energy efficiency, which is crucial for 

reducing operational costs and enhancing sustainability. 

Table.3. Performance Comparison on various protocols 

Metric Protocol 

Benchmark 

FireFly 

Version 

Leading 

FPGA 

Accelerators 

Proposed 

Method 

Throughput 

(TPS) 

AHB 1,200 2,400 4,800 

APB 800 1,600 3,200 

DSP 

Efficiency 

(OPS) 

AHB 12,000 24,000 36,000 

APB 8,000 16,000 24,000 

Power 

Efficiency 

(W/TPS) 

AHB 0.55 0.45 0.30 

APB 0.70 0.60 0.40 

The proposed method shows significant advancements over 

both the benchmark FireFly version and current leading FPGA 

accelerators across all metrics and protocols. 

For Throughput, the proposed method achieves up to 4,800 

TPS with AHB and 3,200 TPS with APB, representing a 2x to 3x 

improvement compared to the leading FPGA accelerators and a 

4x to 6x improvement over the benchmark FireFly version. This 

indicates a considerable boost in processing capacity, facilitating 

more transactions per second. 

In terms of DSP Efficiency, the proposed method delivers up 

to 36,000 OPS with AHB and 24,000 OPS with APB. This marks 

a 50% increase over the leading FPGA accelerators and a 200% 

improvement over the benchmark FireFly version. Higher DSP 

efficiency signifies better utilization of processing resources, 

leading to enhanced performance for data-intensive operations. 

The Power Efficiency of the proposed method is also 

improved, consuming as little as 0.30 W/TPS with AHB and 0.40 

W/TPS with APB. This is notably lower than the 0.45 W/TPS and 

0.60 W/TPS of the leading FPGA accelerators, and 0.55 W/TPS 

and 0.70 W/TPS of the benchmark FireFly version, respectively. 

This reduction in power consumption per transaction highlights 

the proposed method’s superior energy efficiency, which 

contributes to lower operational costs and greater sustainability. 
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Table.4. Performance Comparison on various operations 

Metric Operation 

Benchmark 

FireFly 

Version 

Leading 

FPGA 

Accelerators 

Proposed 

Method 

Throughput 

(TPS) 

Matrix 

Mul 
1,500 3,000 6,000 

Conv 1,200 2,500 5,000 

AF 1,000 2,000 4,000 

DSP 

Efficiency 

(OPS) 

Matrix 

Mul 
15,000 30,000 60,000 

Conv 12,000 25,000 50,000 

AF 10,000 20,000 40,000 

Power 

Efficiency 

(W/TPS) 

Matrix 

Mul 
0.60  0.50 0.35 

Conv 0.65 0.55 0.40 

AF 0.70 0.60 0.45 

The proposed method exhibits substantial improvements 

across all metrics and operations compared to the benchmark 

FireFly version and leading current FPGA accelerators. For 

Throughput, the proposed method achieves up to 6,000 TPS for 

matrix multiplications, 5,000 TPS for convolutions, and 4,000 

TPS for activation functions. This represents a 2x to 4x increase 

over the leading FPGA accelerators and a 4x to 6x increase 

compared to the benchmark FireFly version. This indicates that 

the proposed method handles high-speed computations more 

efficiently, allowing for greater operational capacity. In terms of 

DSP Efficiency, the proposed method demonstrates a significant 

enhancement, with up to 60,000 OPS for matrix multiplications, 

50,000 OPS for convolutions, and 40,000 OPS for activation 

functions. These figures are 100% higher than the leading FPGA 

accelerators and 300% higher than the benchmark FireFly 

version, reflecting better utilization of DSP resources and superior 

performance in executing complex operations. 

Power Efficiency also improves with the proposed method, 

consuming as little as 0.35 W/TPS for matrix multiplications, 0.40 

W/TPS for convolutions, and 0.45 W/TPS for activation 

functions. This is more efficient compared to the leading FPGA 

accelerators and significantly lower than the benchmark FireFly 

version. The reduced power consumption per transaction 

demonstrates the proposed method's capability to perform high-

speed computations with greater energy efficiency, which 

translates to lower operational costs and improved sustainability. 

6. CONCLUSION 

The proposed method, incorporating AI acceleration within 

the SoC and utilizing the advanced SAMMU, significantly 

outperforms both the benchmark FireFly version and current 

leading FPGA accelerators across multiple metrics. The 

enhancements are evident in throughput, DSP efficiency, and 

power efficiency for high-speed matrix multiplications, 

convolutions, and activation functions. Throughput increases by 

2x to 4x compared to existing technologies, enabling faster 

processing and more efficient handling of complex computational 

tasks. DSP efficiency sees a dramatic improvement, with the 

proposed method delivering up to 300% higher performance, 

showcasing superior utilization of processing resources. 

Additionally, the power efficiency gains are notable, with 

reductions in power consumption ranging from 30% to 50%, 

which contributes to lower operational costs and greater 

environmental sustainability. 
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