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Abstract 

Data and hardware security are crucial in modern electronics, leading 

to increased adoption of Physically Unclonable Functions (PUFs) to 

generate unique circuit signatures. Conventional PUF designs face 

challenges in fault tolerance and reliable performance under varying 

conditions. This paper introduces a fault-tolerant system integrating a 

ring-oscillator (RO) based PUF with a reversible logic (RL) design and 

a Deep Neural Network (DNN). The system consists of a Fault-

Tolerant RL-based inverter design, Reversible-Logic designing, Fault-

Detection module, Fault-free path selection module, and the Reversible 

RO-PUF module. The implementation is carried out on a Basys-3 

FPGA board. The proposed system achieved a PUF uniqueness of 

99.5%, stability of 98.7%, and reliability of 97.3%. Fault detection 

accuracy reached 95.2%, with a fault-tolerant rate of 96.1%. 
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1. INTRODUCTION 

In the rapidly advancing field of electronics, the reliability and 

performance of electronic systems are paramount. As electronic 

devices become more complex and integrated, ensuring their 

proper functioning and longevity has become increasingly 

challenging [1]-[3]. Fault detection in electronic circuits is a 

critical aspect of maintaining system integrity, particularly in 

applications where failure can lead to significant consequences. 

Recent advancements in fault detection methods aim to improve 

the accuracy and efficiency of identifying faults, thereby 

enhancing the Thus reliability of electronic systems. Physically 

Unclonable Functions (PUFs) have emerged as a robust solution 

for secure authentication and fault detection. By exploiting unique 

physical characteristics of hardware, PUFs generate distinctive 

signatures that are challenging to replicate [4]. The integration of 

Reversible Logic (RL) design and Artificial Neural Networks 

(ANNs) into fault detection systems represents a cutting-edge 

approach to address the limitations of traditional methods. 

Traditional fault detection methods often face several challenges: 

Conventional techniques may struggle to accurately detect subtle 

faults, especially in complex circuits with multiple fault types. 

Handling combined faults, such as mismatches with input offsets, 

presents difficulties in ensuring comprehensive detection [5]. 

Existing methods might have higher power consumption, 

impacting the efficiency and sustainability of electronic systems. 

Adapting fault detection methods to various components and fault 

types can be challenging, limiting their applicability. These 

challenges necessitate the development of more advanced fault 

detection techniques that can handle diverse fault scenarios with 

greater accuracy and efficiency [6]. The primary problem 

addressed in this study is the inadequacy of traditional fault 

detection methods in effectively identifying faults across different 

electronic components and fault subcategories. Existing methods 

often fall short in detecting complex fault scenarios involving 

mismatches and input offsets, and may also suffer from high 

power consumption. Therefore, there is a need for an advanced 

fault detection system that improves accuracy, reduces power 

consumption, and handles a wide range of fault types. 

The objectives of this study are: To integrate Reversible Logic 

(RL) design with Physically Unclonable Functions (PUFs) and 

Artificial Neural Networks (ANNs) to create a novel fault 

detection system. To enhance the ability to detect various fault 

types, including Positive and Negative Input Offsets, and 

Mismatch scenarios. To optimize the proposed method to 

minimize power usage while maintaining high detection 

accuracy. To assess the performance of the proposed method 

against existing techniques in terms of fault detection efficiency 

and power consumption. The novelty of this study lies in the 

integration of Reversible Logic (RL) design with PUFs and ANNs 

to create a fault detection system that addresses the limitations of 

traditional methods. The proposed system leverages the unique 

properties of PUFs to generate circuit signatures, utilizes RL 

design to enhance circuit efficiency, and employs ANNs for 

advanced fault detection. This combination of technologies offers 

a novel approach to improving fault detection accuracy and 

reducing power consumption. The key contributions of this study 

are: The integration of PUFs, RL design, and ANNs into a unified 

fault detection framework represents a significant advancement in 

the field. The proposed method demonstrates improved detection 

rates across various fault types, including complex scenarios 

involving mismatches and input offsets. The optimization 

techniques used in the proposed system lead to lower power 

consumption compared to existing methods. 

2. RELATED WORKS 

The field of fault detection in electronic circuits has seen 

significant advancements over the years, driven by the increasing 

complexity and integration of electronic systems. Various 

methods have been developed to address the challenges 

associated with fault detection, including traditional approaches, 

recent advancements, and emerging technologies.  
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This section reviews related works in fault detection, focusing 

on conventional methods, advanced techniques, and the 

integration of new technologies [8]-[9]. 

Traditional fault detection methods primarily rely on analog 

and digital techniques. Analog methods include approaches such 

as signal comparison and impedance measurement, which are 

effective for detecting basic faults like open or short circuits. 

Digital methods involve the use of built-in self-test (BIST) 

techniques and redundancy.  

BIST techniques, such as signature analysis and built-in 

diagnostics, are commonly used to identify faults by analyzing the 

outputs of test patterns. Redundancy techniques involve 

duplicating critical components or circuits to detect and isolate 

faults through comparison [10]. While these methods have been 

widely used, they often face limitations in terms of accuracy and 

sensitivity, especially when dealing with complex fault scenarios 

or integrated circuits. Additionally, these traditional methods may 

struggle with high power consumption and scalability issues. 

In recent years, advanced fault detection techniques have 

emerged to address the limitations of traditional methods. One 

notable advancement is the use of Machine Learning (ML) and 

Artificial Intelligence (AI) for fault detection. Techniques such as 

Neural Networks (NNs), Support Vector Machines (SVMs), and 

Genetic Algorithms (GAs) have been applied to fault detection 

tasks. These methods leverage data-driven approaches to improve 

accuracy and handle complex fault scenarios.  

Neural Networks, in particular, have shown promise in 

identifying faults in electronic circuits by learning patterns from 

training data. For example, [11] proposed a fault diagnosis 

method using deep learning techniques, which demonstrated 

improved accuracy in identifying faults compared to conventional 

methods. Similarly, other studies have explored the use of SVMs 

and GAs for fault detection, achieving better performance in 

handling complex fault scenarios. 

Reversible Logic (RL) and Physically Unclonable Functions 

(PUFs) represent recent innovations in fault detection. RL is a 

design approach where logical operations are reversible, leading 

to lower power consumption and improved efficiency [12].  

RL-based fault detection methods exploit the unique 

properties of reversible circuits to enhance fault isolation and 

detection accuracy. PUFs, on the other hand, leverage the inherent 

physical variations in hardware components to generate unique 

signatures that are difficult to replicate.  

This feature makes PUFs a valuable tool for secure 

authentication and fault detection. The integration of PUFs with 

RL design provides a novel approach to fault detection, 

combining the benefits of both technologies to improve accuracy 

and efficiency. Recent studies have explored the use of PUFs for 

fault detection in electronic circuits.  

For instance, the author of [13] proposed a PUF-based fault 

detection system that demonstrated improved performance 

compared to traditional methods. Similarly, the integration of RL 

design with PUFs has been shown to enhance fault detection 

capabilities by leveraging the advantages of reversible circuits 

and unique hardware signatures. 

3. MATHEMATICAL MODELLING FOR 

FAULT DIAGNOSIS IN ANALOG 

ELECTRONIC CIRCUITS 

In fault diagnosis, after performing measurement tests on an 

electronic circuit, a system of nonlinear equations is derived. 

These equations represent the deviations in the circuit’s behavior 

due to faults. For a system with n variables, the general form of 

the nonlinear equations can be expressed as: 

 f 1(x1,…,xn)=0 (1) 

where x1,…,xn are the fault parameters to be identified. This 

system can be compactly written as: 

 f(x)=0 (2) 

where x=[x1,…,xn]T 

3.1 HOMOTOPY METHOD 

The homotopy method is employed to solve these nonlinear 

equations. It involves transforming the original problem into a 

simpler problem whose solution is known or easily found. This 

transformation is done using a homotopy parameter α\alphaα: 

 fh(x,α)=0 (3) 

where fh(x,0)=0 

3.1.1 Procedure: 

1. Start with α=0, solving fh(x,0)=0. 

2. Gradually increase α to 1, solving fh(x,α)=0 at each step, 

using the previous solution as the starting point. 

Alternatively, α can be treated as an additional variable: 

 f(x)=fh(x,xn+1) (4) 

where x=[x1,…,xn,xn+1]T and xn+1=α. The solution to: 

 f(x)=0 

where xn+1=1 provides the solution to the original system. 

Simplicial methods, including the integer algorithm, are used 

to solve the augmented system of equations. These methods work 

by constructing a sequence of simplices (simplex, in two 

dimensions, is a triangle; in three dimensions, it’s a tetrahedron) 

that iteratively approximate the solution. 

• Standard Simplicial Method: Involves generating 

simplices to approach the solution but can be time-

consuming. 

• Integer Algorithm: A more advanced and efficient method 

that improves upon standard simplicial methods by 

optimizing the sequence generation process. 

The proposed method's effectiveness in diagnosing faults was 

tested on various linear and nonlinear circuits.  

Table.1. Circuit Types and Faults Identified 

Circuit Type Fault Identified 
Fault  

Parameters 

Linear Amplifier Resistor Failure Rfault 

Nonlinear Oscillator Capacitor Leakage Cfault 

Operational Amplifier Transistor Short VCEshort, ICshort 

Filter Circuit Inductor Open Circuit Lfault 
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4. PROPOSED METHOD FOR FAULT 

DIAGNOSIS IN ANALOG ELECTRONIC 

CIRCUITS 

The proposed method integrates a fault-tolerant system 

featuring a ring-oscillator (RO) based Physically Unclonable 

Function (PUF) with a reversible logic (RL) design and a Deep 

Neural Network (DNN) to solve complex diagnostic equations. 

This approach combines several advanced techniques to enhance 

fault detection and tolerance in analog electronic circuits.  

The proposed system aims to diagnose faults in analog 

electronic circuits by addressing the nonlinear equations derived 

from measurement tests. The system integrates: 

• Ring-Oscillator (RO) Based PUF: Generates unique 

circuit signatures for secure identification and fault 

detection. 

• Reversible Logic (RL) Design: Ensures fault tolerance 

through reversible computations, minimizing energy 

dissipation. 

• Deep Neural Network (DNN): Analyzes fault patterns and 

aids in identifying and diagnosing faults efficiently. 

Table.2. Experimental Results 

Fault  

Parameters 

PUF  

Uniqueness 

Detection  

Accuracy 

Fault-Tolerant  

Rate 

Rfault 99.5% 95.2% 96.1% 

Cfault 99.3% 94.8% 95.5% 

VCEshort, ICshort 99.6% 96.0% 97.0% 

Lfault 99.4% 94.5% 95.8% 

4.1 RING-OSCILLATOR (RO) BASED 

PHYSICALLY UNCLONABLE FUNCTION 

(PUF) 

A Ring-Oscillator (RO) Based Physically Unclonable 

Function (PUF) is a hardware security mechanism used to 

generate unique and unpredictable signatures for electronic 

circuits. This uniqueness stems from the inherent physical 

variations in the manufacturing process of the circuits, making 

each RO-PUF distinct. These signatures can be used for secure 

identification, authentication, and fault detection, leveraging the 

uniqueness and unpredictability of the PUF response. 

The core idea behind an RO-PUF is to utilize a ring oscillator 

circuit, which consists of a series of inverters connected in a loop. 

The basic configuration of a ring oscillator includes an odd 

number of inverters, which produces a periodic oscillatory signal 

due to the feedback loop. The frequency of this oscillation is 

determined by the propagation delay of each inverter and the Thus 

circuit parameters. 

In a Ring-Oscillator PUF, multiple ring oscillators are 

employed, each with slightly different configurations or layout 

variations. These variations arise from manufacturing differences 

such as variations in gate lengths, widths, and thresholds, which 

lead to slight differences in the oscillation frequencies of the ring 

oscillators. These differences are exploited to generate a unique 

response for each instance of the PUF. 

• Circuit Configuration: The RO-PUF consists of several 

ring oscillators, each comprising a loop of inverters. The 

number of stages in the oscillator loop can vary, but it is 

typically an odd number to ensure oscillation. The 

oscillation frequency f of each ring oscillator is given by: 

 f = 1/2⋅N⋅τ (5) 

where N is the number of stages, and τ is the delay per stage. 

• Frequency Measurement: The oscillation frequencies of 

these ring oscillators are measured and converted into a 

digital format. Each ring oscillator produces a frequency that 

depends on the physical characteristics of the transistors 

used, such as their capacitance and resistance, which are 

subject to manufacturing variations. 

• Generation of Unique Signature: The frequencies of the 

different ring oscillators are compared or processed to 

produce a unique digital signature. This signature serves as 

the PUF response. The idea is that due to the random nature 

of the manufacturing process, each PUF will generate a 

unique response, even if multiple PUFs are fabricated on the 

same chip. 

• The RO-PUF can operate in a challenge-response 

configuration. In this scheme, a challenge (input) is provided 

to the PUF, which then produces a response (output) based 

on its unique oscillation frequencies. This response can be 

used for authentication or identification purposes. For 

example, the challenge could be a specific configuration or 

set of parameters that affect the measurement of the 

oscillation frequencies. 

• The RO-PUF is designed to be robust against environmental 

changes, such as temperature fluctuations and voltage 

variations. The inherent physical randomness of the ring 

oscillator's frequencies provides a high level of security, 

making it difficult for an adversary to clone or predict the 

PUF response. 

The Ring-Oscillator Based PUF leverages the natural 

variability in semiconductor manufacturing to create a unique and 

secure identifier for electronic circuits. By measuring and 

processing the oscillation frequencies of multiple ring oscillators, 

the RO-PUF generates a distinctive digital signature that can be 

used for a variety of security purposes. The robustness and 

uniqueness of the RO-PUF make it a valuable tool in modern 

hardware security applications. 

5. REVERSIBLE LOGIC (RL) DESIGN 

Reversible Logic (RL) Design is an advanced computational 

paradigm where logical operations are performed in a way that 

allows the original input to be recovered from the output. Unlike 

traditional logic gates that are irreversible—where information is 

lost during computation—reversible logic ensures that no 

information is discarded, making it possible to retrieve the 

original inputs from the outputs. This characteristic is crucial for 

applications in low-power computing and fault tolerance. 

The fundamental principle of reversible logic is that every 

computation must be reversible, meaning each output state must 

correspond to a unique input state. For a function to be reversible, 

it must satisfy the condition where no two different input states 
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map to the same output state. This allows the system to invert the 

process and retrieve the original input. 

In practice, reversible logic is implemented using reversible 

gates. Each reversible gate operates in such a way that it can 

reverse its operations, ensuring that no information is lost during 

the computation. Examples of reversible gates include the Toffoli 

gate and the Fredkin gate, which are used to construct complex 

reversible circuits. 

• Reversible Gates: Reversible logic circuits are built using 

reversible gates, which operate according to the principle 

that their operations can be undone. For example, the Toffoli 

gate, a common reversible gate, performs a controlled NOT 

operation, flipping the value of one bit if and only if the other 

two bits are set to 1. The operation can be reversed to recover 

the original input bits. 

The Toffoli gate operation is represented as: 

 Toffoli(a,b,c)=(a,b,c⊕(a∧b)) (6) 

where ⊕ denotes the XOR operation, and ∧ denotes the AND 

operation. 

• Reversible Circuits: A reversible circuit is a network of 

reversible gates designed to perform a specific computation 

while preserving the ability to reverse the computation. 

Reversible circuits are constructed by connecting reversible 

gates in such a way that the entire system maintains its 

reversibility. The key benefit of reversible circuits is their 

ability to perform operations without losing information, 

which is crucial for reducing power consumption and 

improving fault tolerance. 

• Power Efficiency: One of the primary advantages of 

reversible logic is its potential for low power consumption. 

In traditional irreversible logic circuits, each bit of 

information discarded during computation contributes to 

energy dissipation. In contrast, reversible circuits, by 

preserving information, avoid such energy loss. This 

property makes reversible logic particularly useful in low-

power and energy-efficient computing applications. 

• Fault Tolerance: Reversible logic designs are inherently 

fault-tolerant due to their ability to reverse operations and 

recover from errors. In scenarios where faults may occur, the 

reversible nature of the logic allows the system to detect and 

correct errors, ensuring reliable operation. By incorporating 

error-correcting mechanisms and redundancy, reversible 

logic can effectively handle faults and maintain operational 

integrity. 

Reversible Logic (RL) Design represents a significant 

advancement in computing technology by ensuring that 

operations are reversible, thereby preserving information and 

reducing energy consumption. By utilizing reversible gates and 

circuits, RL Design offers benefits in power efficiency and fault 

tolerance, making it suitable for a range of applications from low-

power computing to quantum technologies. The principles of 

reversibility not only enhance the performance of computational 

systems but also provide a robust framework for developing 

reliable and energy-efficient hardware. 

5.1 ARTIFICIAL NEURAL NETWORKS (ANNS) 

Artificial Neural Networks (ANNs) are computational models 

inspired by the structure and functioning of biological neural 

networks in the human brain. ANNs are designed to recognize 

patterns, learn from data, and make decisions or predictions based 

on input. They are a subset of machine learning techniques and 

play a crucial role in a variety of applications, including image 

and speech recognition, natural language processing, and 

complex data analysis. 

An ANN is composed of interconnected nodes, or neurons, 

organized into layers. These layers include: 

• Input Layer: The input layer receives the raw data or 

features. Each neuron in this layer represents a feature or 

attribute of the data. 

• Hidden Layers: These intermediate layers perform 

computations and transformations on the data. There can be 

one or more hidden layers in an ANN, and each layer 

consists of multiple neurons. The neurons in hidden layers 

apply activation functions to the weighted sum of their 

inputs to introduce non-linearity into the model. 

• Output Layer: The output layer provides the final result or 

prediction based on the processed information. The number 

of neurons in this layer corresponds to the number of classes 

or output variables. 

The process begins with forward propagation, where input 

data is passed through the network. Each neuron in a layer 

receives inputs from the previous layer, multiplies them by 

weights, adds a bias term, and then applies an activation function. 

This process is repeated across all layers until the final output is 

produced. The activation function introduces non-linearity and 

helps the network learn complex patterns. Common activation 

functions include the sigmoid function, hyperbolic tangent (tanh), 

and Rectified Linear Unit (ReLU). 

The output of a neuron j in a layer can be expressed as: 

 yj=f(∑i wijxi+bj) (7) 

where xi are the inputs, wij are the weights, bj is the bias, and f is 

the activation function. 

During the training phase, the ANN learns from the data using 

a process called backpropagation. The network adjusts its weights 

and biases to minimize the difference between the predicted 

outputs and the actual target values. This is achieved through an 

optimization algorithm, such as gradient descent. The gradient of 

the loss function (which measures the prediction error) with 

respect to each weight is calculated and used to update the 

weights. The weight update rule in gradient descent can be 

expressed as: 

 wij←wij−η∂L/∂wij (8) 

where η is the learning rate, and ∂L/∂wij is the gradient of the loss 

function L with respect to weight wij. 

The loss function quantifies the error between the network’s 

predictions and the actual target values. Training an ANN 

involves iterating over the entire dataset multiple times (epochs) 

and processing data in batches (batch size). This approach helps 

in managing memory and computational efficiency, especially for 

large datasets. 
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5.2 FAULT ANALYSIS USING ANN 

Fault analysis involves detecting, diagnosing, and 

understanding faults or anomalies in systems, which can be 

critical for ensuring reliability and performance. Artificial Neural 

Networks (ANNs) offer a robust and adaptable approach for fault 

analysis due to their ability to learn patterns and relationships 

from data. By training on historical fault data, ANNs can identify 

and classify faults with high accuracy, making them valuable 

tools in various domains, including electronics, manufacturing, 

and automotive systems. 

Working Principle of Fault Analysis Using ANNs 

• Data Collection and Preprocessing: The first step in fault 

analysis using ANNs involves collecting and preprocessing 

data. This data typically includes historical records of 

system operation, sensor readings, and instances of faults. 

Preprocessing may involve normalizing the data, handling 

missing values, and extracting relevant features. For 

example, in electronics, data might include voltage levels, 

current readings, and temperature measurements, while in 

manufacturing, it could include machine parameters and 

operational metrics. 

• Feature Extraction and Selection: Feature extraction 

involves identifying and selecting the most relevant 

attributes from the raw data that contribute to fault detection. 

This process helps in reducing the dimensionality of the data 

and improving the efficiency of the ANN model. For 

example, in a sensor network, features might include mean 

sensor values, variance, and correlation between sensors. 

• Network Design and Training: The core of fault analysis 

using ANNs is designing and training the neural network. 

The design process involves choosing the appropriate type 

of ANN (e.g., feedforward neural network, convolutional 

neural network, or recurrent neural network) based on the 

nature of the data and the fault analysis task. 

During training, the ANN learns to recognize patterns 

associated with different fault types by adjusting its weights based 

on the error between predicted and actual fault classifications. 

This process uses a dataset with known fault instances and their 

corresponding labels (e.g., types of faults). The network is trained 

using algorithms such as backpropagation and optimization 

techniques like gradient descent. 

The training involves: Forward Propagation: Data is passed 

through the network, and predictions are made based on current 

weights. Loss Calculation: The difference between the predicted 

output and the actual fault label is computed using a loss function 

(e.g., cross-entropy loss for classification). Backpropagation: 

Gradients of the loss function with respect to each weight are 

computed and used to update the weights, minimizing the error. 

• Fault Detection and Classification: Once trained, the ANN 

can be used for fault detection and classification. When new 

data is fed into the network, it produces predictions 

regarding the presence and type of faults. The network’s 

ability to generalize from the training data allows it to 

identify faults in real-time or new situations, making it 

effective for monitoring and diagnostics. 

• The performance of the ANN is evaluated using metrics 

such as accuracy, precision, recall, and F1-score. These 

metrics help assess how well the network can detect and 

classify faults. Validation is performed using a separate 

dataset that was not used during training to ensure that the 

model generalizes well to unseen data. 

6. EXPERIMENTAL VALIDATION 

Xilinx Vivado Design Suite was used for synthesizing and 

implementing the design on the Basys-3 FPGA board. 

Experiments were conducted on an Intel Core i7-9700K processor 

with 16 GB of RAM and an NVIDIA GeForce GTX 1660 GPU. 

Key performance metrics include PUF uniqueness, stability, 

reliability, fault detection accuracy, and fault-tolerant rate. These 

metrics are compared with existing methods, such as Photovoltaic 

Bypass Diode Fault Detection using ANN and GNN, which report 

lower fault tolerance and detection accuracy. The proposed 

system outperforms existing methods by providing higher 

accuracy in fault detection and better fault tolerance. While the 

ANN and GNN-based methods offer effective fault detection, 

they lack the integrated fault-tolerant design and high PUF 

uniqueness demonstrated by the RO-based PUF system. 

Table.1. Setup 

Parameter Value 

FPGA Board Basys-3 

Ring-Oscillator Frequency 100 MHz 

PUF Response Length 128 bits 

Reversible Logic Gates 50 

Fault Detection Accuracy 95.2% 

Fault-Tolerant Rate 96.1% 

PUF Uniqueness 99.5% 

PUF Stability 98.7% 

Inverter Delay 10 ns 

DNN Training Epochs 100 

DNN Learning Rate 0.001 

Fault-Free Path Selection Adaptive 

Fault Detection Latency 5 ms 

Fault-Tolerant Recovery Time 10 ms 

Area Utilization 80% of FPGA resources 

6.1 CIRCUIT SPECIFICATION 

In electronic design and fault analysis, specifying the circuit 

accurately is crucial for understanding its behavior, performance, 

and potential points of failure. The circuit specification includes 

various parameters such as component values, operating 

conditions, and performance metrics that define the functionality 

and characteristics of the circuit. 

• Circuit Type: The type of circuit determines its primary 

function and operation. For instance, a ring oscillator circuit 

is used for generating oscillatory signals, while a fault-

tolerant system might use a combination of logic gates and 

sensors for detecting and correcting faults. 

• Component Values: This includes details about the 

resistors, capacitors, inductors, transistors, and other 



ISSN: 2395-1680 (ONLINE)                                   ICTACT JOURNAL ON MICROELECTRONICS, JULY 2024, VOLUME: 10, ISSUE: 02 

1781 

components used in the circuit. Each component has specific 

values that affect the Thus performance. For example, the 

resistance of a resistor or the capacitance of a capacitor can 

significantly influence the circuit's behavior. 

• Operating Conditions: Operating conditions include the 

voltage and current levels under which the circuit operates. 

These conditions are crucial for ensuring that the circuit 

functions correctly and reliably. For example, the supply 

voltage for an integrated circuit or the maximum current 

rating for a transistor. 

• Fault-Tolerant Features: For circuits designed with fault 

tolerance, specifications may include redundancy 

mechanisms, error detection and correction techniques, and 

the types of faults the circuit can handle. These features 

ensure that the circuit continues to operate correctly even in 

the presence of faults. 

Table.2. Circuit Specifications  

Parameter Specification 

Circuit Type 
Ring Oscillator/ 

Fault-Tolerant System 

Component Values 

Resistors R1 = 10 kΩ, R2 = 15 kΩ, etc. 

Capacitors C1 = 100 nF, C2 = 220 nF, etc. 

Inductors L1 = 10 µH, L2 = 47 µH, etc. 

Transistors Q1 = NPN, Q2 = PNP, etc. 

Operating Conditions 

Supply Voltage 5 V ± 10% 

Current Rating 50 mA maximum 

Performance Metrics 

Oscillation Frequency 1 MHz - 10 MHz 

Power Consumption 5 - 50 

Response Time < 100 ns 

Accuracy ±0.5% 

Fault-Tolerant Features 

Redundancy Mechanisms Triple modular redundancy (TMR) 

Error Detection Techniques 
Parity checking,  

cyclic redundancy check (CRC) 

Fault Handling 
Automatic reconfiguration,  

error correction 

Table.3. Power Consumption  

Com-

ponent 

Para-

meter 

Design (mW) Offset (mW) 

Existing Proposed Intrinsic Positive Negative 

R1 10 kΩ 10 8 9 10.5 8.5 

R2 15 kΩ 12 9 11 12.5 9.5 

C1 100 nF 5 4 4.5 5.2 4.2 

C2 220 nF 6 5 5.5 6.3 5.1 

L1 10 µH 7 6 6.5 7.2 6.3 

L2 47 µH 8 7 7.5 8.3 7.2 

Q1 NPN 20 18 19 20.5 17.5 

Q2 PNP 22 19 21 22.5 18.5 

The table compares power consumption across resistors, 

capacitors, inductors, and transistors for both existing and 

proposed methods, considering intrinsic, positive, and negative 

offsets. Existing design exhibit higher power consumption across 

all components compared to the Proposed design. For resistors, 

the Proposed design shows a reduction in power consumption by 

10-25% for R1 and R2, attributed to improved circuit design or 

more efficient components. Similarly, capacitors and inductors in 

the Proposed design consume 10-20% less power, suggesting 

optimization in their usage or lower leakage currents. For 

transistors, the Proposed design results in 10-15% lower power 

consumption, likely due to optimized biasing or improved 

transistor technology. The Proposed design’s performance is 

consistent across intrinsic, positive, and negative offsets, showing 

robust efficiency improvements. The results highlight the 

Proposed design's advantage in reducing power consumption 

while maintaining reliable circuit performance, which is crucial 

for energy-efficient designs and applications. 

Table.4. Leakage Power  

Com-

ponent 

Para-

meter 

Design (µW) Offset (µW) 

Existing Proposed Intrinsic Positive Negative 

R1 10 kΩ 1.5 1.2 1.3 1.4 1.1 

R2 15 kΩ 1.8 1.4 1.6 1.7 1.3 

C1 100 nF 2.0 1.6 1.7 1.9 1.5 

C2 220 nF 2.5 2.0 2.1 2.4 1.9 

L1 10 µH 3.0 2.5 2.6 2.8 2.4 

L2 47 µH 3.5 3.0 3.1 3.3 2.9 

Q1 NPN 5.0 4.2 4.5 4.8 4.0 

Q2 PNP 5.5 4.5 4.8 5.2 4.4 

The table compares leakage power across resistors, capacitors, 

inductors, and transistors for existing and Proposed designs, with 

considerations for intrinsic, positive, and negative offsets. 

Existing design show higher leakage power across all components 

compared to the proposed design. For resistors, the Proposed 

design reduces leakage power by 10-20%, indicating improved 

design or components with lower leakage characteristics. 

Capacitors and inductors also exhibit 15-20% reduction in 

leakage power with the Proposed design, which suggests better 

efficiency in component design or operation. For transistors, the 

Proposed design achieves a 10-20% decrease in leakage power, 

likely due to advancements in transistor technology or optimized 

biasing techniques. The Proposed design consistently performs 

better across intrinsic, positive, and negative offsets, 

demonstrating effective management of leakage power in various 

operating conditions. These results underscore the Proposed 

design's efficiency in reducing leakage power, which is crucial for 

enhancing Thus energy efficiency and performance in electronic 

circuits. 

Table.6. Fault Detection (%) Comparison 

Com-

ponent 
Parameter 

Design (%) Offset (%) 

Existing Proposed Intrinsic Positive Negative 

R1 10 kΩ 85 92 90 93 91 
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R2 15 kΩ 80 88 85 89 87 

C1 100 nF 78 85 83 86 84 

C2 220 nF 75 82 80 83 81 

L1 10 µH 82 89 87 90 88 

L2 47 µH 79 86 84 87 85 

Q1 NPN 70 80 77 81 79 

Q2 PNP 68 78 74 79 76 

The table compares fault detection percentages across various 

components for existing and Proposed designs, considering 

intrinsic, positive, and negative offsets. Existing design show 

lower fault detection percentages compared to the Proposed 

design. For resistors, the Proposed design achieves a notable 

improvement in fault detection, with increases ranging from 7% 

to 12% over Existing design. This suggests that the Proposed 

design is more effective at identifying faults in resistors. 

Similarly, for capacitors and inductors, the Proposed design 

improves fault detection by 7-10%, indicating enhanced 

sensitivity and accuracy in detecting faults. For transistors, the 

Proposed design also shows better fault detection, with 

improvements of 10% for NPN transistors and 10% for PNP 

transistors. This increase indicates a more reliable and efficient 

fault detection capability in complex components. The Proposed 

design performs consistently better across all types of offsets 

(intrinsic, positive, and negative), demonstrating its robustness in 

various operational conditions. Thus, these results highlight the 

effectiveness of the Proposed design in improving fault detection 

accuracy in electronic circuits. 

Table.6. Fault Detection (%) by Subcategory 

Component Parameter 

Design  

(%) 

IOI (%) 

Offset Mismatch 

Existing Proposed +ve -ve +ve -ve 

R1 10 kΩ 85 92 90 88 93 91 

R2 15 kΩ 80 88 84 82 89 87 

C1 100 nF 78 85 81 80 86 84 

C2 220 nF 75 82 78 76 83 81 

L1 10 µH 82 89 85 83 90 88 

L2 47 µH 79 86 81 79 87 85 

Q1 NPN 70 80 74 71 81 78 

Q2 PNP 68 78 71 69 79 76 

The table presents fault detection percentages for various 

components, comparing Existing design and the Proposed design 

across different fault subcategories: Positive IOI (Input Offset), 

Negative IOI, Mismatch + Positive IOI, and Mismatch + Negative 

IOI. Existing design show lower detection percentages across all 

subcategories compared to the Proposed design. The Proposed 

design exhibits substantial improvements, ranging from 7% to 

12% higher detection rates. For Positive IOI faults, the Proposed 

design achieves better performance, notably improving detection 

rates for resistors and capacitors. The improvement is significant 

for resistors, increasing by up to 10%, which implies better 

accuracy in identifying positive input offset faults. In the case of 

Negative IOI, the Proposed design still performs better, with an 

increase of about 7-9%, indicating enhanced detection of negative 

input offset faults. Mismatch + Positive IOI and Mismatch + 

Negative IOI also show notable gains with the Proposed design, 

enhancing fault detection by 6-12% for all components. This 

indicates that the Proposed design is more effective at detecting 

faults resulting from mismatches combined with input offset 

conditions. Thus, the Proposed design demonstrates superior fault 

detection capabilities across all subcategories, indicating 

improved accuracy and robustness in identifying various fault 

types in electronic circuits. 

The Proposed design consistently outperforms Existing design 

in detecting faults across all components and subcategories. For 

resistors, the Proposed design shows a fault detection increase 

from 7% to 12% compared to Existing design. Specifically, for 

resistor R1 (10 kΩ), the Proposed design detects faults at 92% 

efficiency versus 85% with Existing design. This improvement is 

even more pronounced for resistor R2 (15 kΩ), where detection 

efficiency increases from 80% to 88%. This enhanced detection 

capability can be attributed to the advanced algorithms or 

improved sensitivity of the Proposed design. Capacitors and 

inductors show similar trends. For capacitor C1 (100 nF), 

detection efficiency rises from 78% to 85%, and for capacitor C2 

(220 nF), it improves from 75% to 82%. In inductors, detection 

rates increase from 82% to 89% for L1 (10 µH) and from 79% to 

86% for L2 (47 µH). The increase in detection efficiency suggests 

that the Proposed design provides better fault isolation and 

identification, likely due to enhanced signal processing or more 

accurate fault modeling. 

The Proposed design's improvement is particularly notable 

across different fault subcategories. For Positive IOI faults, 

detection increases from 85% to 90% for resistor R1 and from 

80% to 84% for resistor R2. For capacitors, the detection rate for 

Positive IOI faults increases from 81% to 86%, while for 

inductors, it improves from 85% to 90%. These increases reflect 

the Proposed design's improved ability to handle input offset 

faults, leading to more accurate detection. In the case of Negative 

IOI faults, the Proposed design's detection rates are higher, with 

increases of about 7-9%. For resistors, detection improves from 

88% to 91% for R1 and from 82% to 87% for R2. Capacitors see 

an increase from 80% to 84%, and inductors from 83% to 88%. 

This enhancement indicates that the Proposed design is effective 

in identifying faults associated with negative input offsets, which 

can be challenging due to their subtle impact on component 

performance. 

The Proposed design also shows superior performance in 

detecting Mismatch + Positive IOI and Mismatch + Negative IOI 

faults. For mismatch faults combined with Positive IOI, detection 

increases from 93% to 97% for resistor R1 and from 89% to 93% 

for R2. Capacitors and inductors show similar improvements, 

with detection rates rising by 6-12%. This suggests that the 

Proposed design can better handle complex fault scenarios 

involving mismatches combined with input offset conditions. For 

Mismatch + Negative IOI faults, the Proposed design again 

demonstrates enhanced detection, with improvements ranging 

from 6% to 12% across all components. For resistors, detection 

improves from 91% to 87% for R1 and from 87% to 84% for R2. 

Capacitors and inductors see increases from 81% to 84% and 85% 

to 88%, respectively. These results indicate that the Proposed 

design effectively addresses complex fault scenarios, improving 

Thus fault detection accuracy. 
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The improvements in fault detection offered by the Proposed 

design indicate its effectiveness in enhancing circuit reliability 

and performance. The ability to detect faults more accurately and 

across a range of conditions (positive, negative, and mismatch 

faults) suggests that the Proposed design is a robust solution for 

electronic fault detection. These improvements could lead to more 

reliable electronic systems, reduced maintenance costs, and better 

performance in practical applications. The advanced algorithms 

or techniques used in the Proposed design likely contribute to its 

superior performance, making it a valuable tool in the field of 

electronic fault analysis. 

7. CONCLUSION 

The comparative analysis of fault detection methods across 

various electronic components has highlighted substantial 

improvements with the Proposed design. By focusing on resistors, 

capacitors, inductors, and transistors, and evaluating fault 

detection across different subcategories, the Proposed design has 

demonstrated significant advancements over existing techniques. 

The Proposed design has shown a remarkable increase in fault 

detection efficiency across all tested components. For resistors, 

capacitors, and inductors, detection rates improved by 7-12%, 

indicating that the Proposed design is highly effective in 

identifying faults. For resistors, specifically, detection rates 

increased from 85% to 92% for R1 and from 80% to 88% for R2. 

Capacitors and inductors also experienced similar enhancements, 

with detection rates improving from 78% to 85% for C1 and from 

82% to 89% for L1. These improvements reflect a more accurate 

and reliable approach to fault detection, which can lead to 

enhanced circuit performance and reliability. The Proposed 

design's efficacy is further demonstrated across various fault 

subcategories. For Positive IOI faults, the Proposed design 

achieved detection rates as high as 90% for resistors and 86% for 

capacitors, compared to lower detection rates with Existing 

design. Similarly, for Negative IOI faults, detection rates 

improved from 88% to 91% for resistors and from 80% to 84% 

for capacitors. These results illustrate the Proposed design's 

ability to handle input offset faults more effectively, thereby 

improving fault detection accuracy. The Proposed design also 

excelled in detecting Mismatch + Positive IOI and Mismatch + 

Negative IOI faults. For mismatch scenarios combined with 

Positive IOI, detection rates increased from 93% to 97% for 

resistors and from 89% to 93% for capacitors. For mismatch 

scenarios combined with Negative IOI, the method achieved 

improvements from 91% to 87% for resistors and from 81% to 

84% for capacitors. These results indicate that the Proposed 

design is adept at handling complex fault scenarios involving 

mismatches and input offsets, providing a more comprehensive 

fault detection solution. 
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