
ISSN ONLINE (2395-1680) ICTACT JOURNAL ON MICROELECTRONICS, FEBRUARY 2015, VOLUME: 01, ISSUE: 01

23

AREA AND DELAY MINIMIZED PROGRAMMABLE PREFIX ARBITERS FOR

ON-CHIP COMMUNICATIONS

Viswanathan Nallasamy
Department of Electronics and Communication Engineering, Mahendra Engineering College, India

E-mail: vissivn@gmail.com

Abstract

Network-on-chip (NoC) is an effective on-chip communication

technique; the core function of the crossbar schedulers used in the

routers located into an NoC is arbitration which is required as and

when a number of input ports of a router requests for a particular

output port. The design of the arbiters is of paramount importance as

the parameters like delay and area of the arbiters play a vital role in

determining the performance of the NoC routers. In this paper, we

present a circuit technique for the design of Programmable Prefix

Arbiter (PPA) which is described in verilog and Modelsim simulator

tool is used to validate the code. The study claims that average area

(gate count) is reduced by 7%, propagation delay is decreased by 9%

and operating frequency is increased upto 12% at the cost of 2%

increase in the energy consumption in the design of PPA compared to

that of the state of art Round-Robin Arbiter (RRA).

Keywords:

Network-on-chip, Router, Arbiters, Delay, Area

1. INTRODUCTION

Router is the backbone of an NoC interconnect architectures

and its primary function is to forward each flit that arrives on

one of its input ports to an appropriate output port [1]-[5]. A

router is responsible for delivering packets effectively and

reliably. It is a major component in an NoC that influences more

on the performance and functionality of the NoC architectures.

In the router design, input ports have First-In First-Out (FIFO)

buffers in which incoming flits are stored temporarily until the

flits are selected by the routers for further process [6]-[7]. The

routers must be simple in design and fast in operation in order to

meet the requirement of the on-chip communications [8].

Further, the routers must be implemented in an NoC by using

an approach that minimizes chip area where NoC architecture is

implemented, due to the fact that the area of a die per wafer of

silicon is limited. The designers ought to target other parameters

of latency and power constraints in addition to chip area while

designing the routers required for a NoC. The router consists of

four components which are input ports, crossbar switch, output

ports and crossbar scheduler [9].

The crossbar scheduler is an essential component in a router

which behaves like a brain of a router. The need for efficient

implementation of simple crossbar schedulers has increased in

the recent years due to the advent of on-chip interconnection

networks that require low latency message delivery.

The primary operation performed by the crossbar scheduler

is to mediate multiple input requests to access a shared resource

and the act of coordinating the access is known as arbitration. A

logic circuit implemented in a router to perform the function of

arbitration is called as an arbiter.

An arbiter resolves the contention problem occurred during

which more number of input ports requests for a particular

output port. It grants one of multiple incoming requests to an

output port based on the priority which depends on the crossbar

scheduling algorithms. In an arbiter, grant signal is generated

according to the input request signal and then the destination

address is trapped. Finally, it generates select lines which are

given to a crossbar switch to find out an output port.

The existing arbiter logic circuits are based on a symmetric

implementation. The round-robin like algorithm requires one set

of grant arbiters and another set of accept arbiters to perform the

arbitration. The modified acyclic arbiter design removes one set

of the arbiters and both the grant and accept arbitration are

performed by using another set of arbiters in a time multiplexed

fashion, thus the scheduler area can be minimized.

Fixed-priority arbiter is a basic arbiter circuit that requires

pre-established priority order among the input requests [9], [10].

The priority of the arbiters has to be dynamic rather than fixed

one so as to provide a fair allocation of resources and to achieve

high performance router operation.

In recent years, the researchers contemplate more on

designing the logic circuit for arbiters in which the priority has

to be transferred from highest priority input port to next higher

priority input port if the highest priority input port does not have

a request for message transfer.

In this paper, arbiter logic circuit is designed, synthesized

and implemented in Field Programmable Gate Array (FPGA); it

is an acyclic arbiter in nature and has the capability to transfer

priority signal if the highest priority input port does not have a

request.

Remaining part of this paper is organized as follows: In

section 2, design of the arbiter logic circuit is presented. Synthesis

and implementation of the proposed logic circuit is explained in

section 3. And the performance of the arbiter is analyzed in

section 4. Finally, the conclusions are given in the last section.

2. DESIGN OF THE LOGIC CIRCUIT

In the proposed logic circuit design for an arbiter, the priority

signal has to transfer from highest priority input port to higher

priority input port. The priority transfer in an arbiter is realized

using the concept of carry look ahead adder (CLA) [10], [11].

2.1 CARRY LOOK AHEAD ADDER

The carry bit ci of a binary addition of two bits ai and bi at

stage i is computed by using the equation,

 1 iiii cpgc

DOI: 10.21917/ijme.2015.0005

VISWANATHAN NALLASAMY: AREA AND DELAY MINIMIZED PROGRAMMABLE PREFIX ARBITERS FOR ON-CHIP COMMUNICATIONS

24

where, generate bit iii bag and propagate bit pi = ai (xor) bi

and 00 gc , 0111 gpgc and

etcgppgpg

gpgpgcpgc

,012122

011221222

CLA is implemented in three steps; the propagate and

generate bits are computed in the first step; second step

computes the carry generated for the stage i and sum of a binary

addition is computed in the final step and the final sum is si = pi

(xor) ci-1.

Using the operator „‟, Boolean variables g1, g2 and p1 and p2

can be defined as follows:

 121221122 ,,, ppgpgpgpg

The operator „‟ is an associative and hence CLA can be

computed in parallel.

2.2 THREE BITS PROGRAMMABLE PREFIX

ARBITERS

In the proposed logic circuit design, the carry generate bit gi

is replaced by the priority signal pi which is also called as

priority generate bit and instead of the carry propagate bit pi, the

inverted input request signal Ri-1 is used. The priority transfer

signal Xi is computed by using the signals pi and 1iR as

follows. The signal Xi is used to transfer the priority signal from

highest priority input to next higher priority input if the highest

priority input does not have a request [9], [12], [13].

The grant signal Gri is generated by multiplying the input

request signal Ri with the priority transfer signal Xi.

The required three priority transfer signals X0, X1 and X2 are

computed as follows:

 0112200 ,,, RPRPRPX

 012112200 ,(RRRPRPRPX

 1122200 PRRPRPX

 1220011 ,,, RPRPRPX

 2020011 PRRPRPX

 2001122 ,,, RPRPRPX

 0101122 PRRPRPX

The logic circuit implementation for the three bit arbiter is

shown in Fig.1 in which the pairs 0112 ,,, RPRP and 20 , RP

are selected in order to ensure the cyclic nature of the priority

transfer signal. The term „prefix‟ can be defined as the outcome

of an operation depending on the initial inputs. Any arbitrary

primitive operator used in an operation is associative then the

operation can be executed in parallel [14], [15].

The parallel operation is fast because the processing is carried

out in a parallel fashion. In the logic circuit shown in Fig.1, the

Boolean operations are performed in parallel and the transfer of

the priority signal is dynamic and hence the arbiter is called as

three bit Programmable Prefix Arbiter (PPA). Table.1 shows the

partial truth table of the three bit PPA. It is noted from Table.1

that the priority is transferred from P1 to P0 since the input

requests R1 and R2 are inactive and R0 has an active request.

The priority is transferred from P2 to P0 while the input

requests R0 and R1 are active and R2 is inactive; Further the

priority is transferred from P2 to P1 as the input request R1 is

active and R0 and R2 are inactive.

Fig.1. Circuit implementation for three bit PPA

Similarly, the priority transfer signals for four, eight and

sixteen input/output ports arbiters are computed and required

logic circuits are realized.

Table.1. Partial truth table for three bit PPA

Priority Signal Request Signal Grant Signal

P0 P1 P2 R0 R1 R2 Gr0 Gr1 Gr2

1 0 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0 0

0 0 1 1 1 0 1 0 0

0 1 0 1 0 1 0 0 1

1 0 0 0 1 1 0 1 0

The Fig.2 shows the block diagram for the design of sixteen

port arbiter; three input signals R, R and P are fed into the

arbiter and the priority transfer signal X is computed to generate

a grant signal Gr.

Fig.2. Block diagram for the design of sixteen port PPA

The arbiter with two, four, eight and sixteen ports is

synthesized using a synthesis tool in which 3E-XC3S500E-

5FT256C is the target technology used [15].

ISSN ONLINE (2395-1680) ICTACT JOURNAL ON MICROELECTRONICS, FEBRUARY 2015, VOLUME: 01, ISSUE: 01

25

Fig.3. Screen capture of the waveform for sixteen ports PPA

3. SYNTHESIS AND IMPLEMENTATION OF

PPA

The circuits designed in the previous section for realizing the

PPAs are synthesized in Xilinx ISE 9.2i. Source code for

realizing the circuits are written in Verilog HDL.

Modelsim simulator is used to simulate the arbiter and the

screen capture of the simulation output is shown in Fig.3. In the

Fig.3, arbiter/req-pr and arbiter/grt-pr are the sixteen ports PPA

input and output wave forms respectively. Further, more than

one request is applied to the arbiter through sixteen input ports

„arbiter/req-pr‟ at three different instances; the grant signals

„arbiter/grt-pr‟ generated from the arbiter at the three different

instances are shown in Fig.3.

It is observed from the wave forms that only highest priority

input request is granted at every instance. The priority is

transferred from highest to next higher priority port if the highest

priority port request is inactive. The PPA circuit is implemented

in Xilinx FPGA Spartan 3E-XC3S500E-5FT256C kit to verify

the operation of the PPA using both simulation and hardware

implementation. The output port selection for various requests of

input ports of a sixteen ports arbiter is observed in the kit and

verified the results with the results of the Modelsim simulator

output as shown in Table.2.

Table.2. Output port selected at various instances in a sixteen

port arbiter

Number

of

Instances

Requests for input

ports

Output port

selected by a

sixteen port arbiter

1 0000000001111000 0000000001000000

2 0000000101111000 0000000100000000

3 0000000000110110 0000000000100000

4 0000000010101010 0000000010000000

5 0000000011111101 0000000010000000

The scaling behavior of the arbiter is evaluated by selecting

the arbiter with two, four, eight and sixteen ports. The number of

input / output ports of the arbiter is selected based on 2
n
 where

n = 1, 2, 3 and 4. Round Robin Arbiter with prefix network

(RRA) used in [16] is synthesized by using the same synthesis

tool and device used for implementing the PPAs.

4. PERFORMANCE ANALYSIS OF PPA

In this section, the performance of the arbiter with two, four,

eight and sixteen ports is analyzed in respect of area (gate

count), delay and energy consumption and compared with RRA.

The experimental results of PPAs and RRAs are shown in

Table.3 and it is observed from Table.3 that the average area

(gate count) occupied by the arbiters is reduced by 7% and

propagation delay is reduced by 9% in PPA compared to that of

RRA. The reduction of area (gate count) and delay in PPA is

observed due to 7% lesser number of gates used in the circuit

design and 12% increase in operating frequency.

Further, an average 2% increase in energy consumption is

observed in PPA than that of RRA due to the increase in the

operating speed of the process. Hence it is concluded from the

analysis that PPA outperforms RRA in respect of area (gate

count), delay and operating frequency at the cost of 2% increase

in energy consumption.

PPA and RRA with sixteen input / output ports are

implemented in the routers / switches of the two topologies used

in [7]. The performance and cost metrics of the two topologies in

respect of chip area, delay and energy consumption are analyzed

under the two traffic patterns hot spot and nearest neighbor.

It is observed from the analysis that an average of 5% area

(gate count) required for implementing the arbiter and an

average of 8% propagation delay are reduced while PPA is

implemented in the routers / switches of the topologies in place

of RRA at the cost of 1% increase in energy consumption. The

increase in the energy consumption is due to 7% increase in the

operating frequency of PPA than that of RRA.

VISWANATHAN NALLASAMY: AREA AND DELAY MINIMIZED PROGRAMMABLE PREFIX ARBITERS FOR ON-CHIP COMMUNICATIONS

26

Table.3. Performance comparison of PPA with RRA

Parameters
RRA

Port -2

PPA

Port -2

RRA

Port - 4

PPA

Port - 4

RRA

Port - 8

PPA

Port -8

RRA

Port -16

PPA

Port -16

Number of Slice Flip Flops 1 1 2 2 3 3 7 4

Number of 4 input LUTs 3 3 21 19 66 58 144 143

Number of occupied Slices 2 2 11 10 35 30 77 75

Gate count for design 29 29 154 139 432 381 944 899

Max. Frequency in Mhz 467 467 163 241 90 117 75 80

Max. Delay in ns 6.34 6.34 8.68 7.85 11.49 9.83 12.31 11.37

Power Consumption in mW 104 104 93 95 92 95 96 97

5. CONCLUSION

A Programmable Prefix Arbiter (PPA) is designed,

synthesized in Xilinx ISE 9.2i and implemented in Xilinx FPGA

Spartan 3E-XC3S500E-5FT256C kit. The performance of the

arbiter with two, four, eight and sixteen ports is studied and the

performance of PPA is compared with the state-of-art Round

Robin Arbiter with prefix network (RRA). In the arbiter design,

the experimental results show that the average area (gate count)

occupied by the arbiters is reduced by 7% and the propagation

delay is reduced by 9% in PPA compared to that of RRA. The

reduction of the area and delay in PPA is observed due to 7%

lesser number of gates used in the circuit design and 12%

increase in operating frequency. Further, 2% increase in energy

consumption is observed in PPA than that of RRA due to the

increase in the operating speed of the process. It is observed from

the analysis that PPA outperforms RRA in respect of area (gate

count), delay and operating frequency at the cost of 2% increase

in energy consumption. The results and analysis of the present

work is very much useful for theoretical study and practical

implementation of routers in a NoC interconnect architecture.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chip: A new

SoC paradigm”, IEEE Computers, Vol. 31, No. 1, pp. 70-

78, 2002.

[2] W. J. Dally and B. Towles, “Route packets, not wires: On

chip interconnection networks”, Proceedings of Design

Automation Conference, pp. 683- 689, 2001.

[3] A. M. Rahmani, K. Latif, P. Liljeberg, J. Plosila and H.

Tenhunen, “Research and Practices on 3D Networks-on-

Chip Architectures”, Proceedings of NORCHIP Conference,

pp 1-6, 2010.

[4] A. Agarwal, C. Iskander and Ravi Shankar, “Survey of

Network on Chip (NoC) Architectures & Contributions”,

Scientific Journals International, Vol. 3, No. 1, pp. 1-15,

2009.

[5] Sheng Ma, Natalie Enright Jerger and Zhiying Wang,

“Whole Packet Forwarding: Efficient Design of Fully

Adaptive Routing Algorithms for Networks-on-Chip”,

Proceedings of the 18
th

 International Symposium on High-

Performance Computer Architecture, 2012.

[6] F. Dubois, A. Sheibanyrad, F. Petrot and M. Bahmani,

“Elevator-First: a Deadlock-Free Distributed Routing

Algorithm for Vertically Partially Connected 3D- NoCs”,

IEEE Transactions on Computers, Vol. 62, No. 3, pp. 609-

615, 2013.

[7] N. Viswanathan, K. Paramasivam and K. Somasundaram,

“An Optimized 3D Topology for On-Chip

Communications”, International Journal of Parallel,

Emergent and Distributed Systems, Vol. 29, No. 4, pp. 346-

362, 2014.

[8] P. Gupta and N. McKeown, “Design and implementation of

a fast crossbar scheduler”, IEEE Micro Magazine, Vol. 19,

No.1, pp. 20-28, 1998.

[9] E. S. Shin, V. J. M. III and G. F. Riley, “Round-robin

Arbiter Design and Generation”, Proceedings of the

International Symposium on System Synthesis, 2002.

[10] G. Dimitrakopoulos, H. T. Vergos, D. Nikolos and C.

Efstathiou, “A family of parallel prefix modulo 2n-1

adders”, Proceedings IEEE International Conference on

Application-Specific Systems, Architectures and Processors,

pp. 326-336, 2003.

[11] Daniel U Becker and William J. Dally, “Allocator

Implementations for Network on-Chip Routers”,

Proceedings of ACM/IEEE Conference on High

Performance Computing, Networking, Storage and

Analysis, pp. 1-12, 2009.

[12] Wladek Olesinski, Hans Eberle and Nils Gura, “PWWFA:

The Parallel Wrapped Wave Front Arbiter for Large

Switches”, Proceedings of IEEE Work shop on High

Performance Switching and Routing, pp. 1-6, 2007.

[13] Gupta Pankaj and Nick Mckeown, “Designing and

Implementing a Fast Crossbar Scheduler”, IEEE Micro,

Vol. 19, No. 1, pp. 20-28, 1999.

[14] Suyog K Dahule and M. A. Gaikwad, “Design & Analysis

of Matrix Arbiter for NoC Architecture”, International

Journal of Advanced Research in Computer Science and

Electronics Engineering, Vol. 1, No. 5, pp. 100-103, 2012.

[15] Giorgios Dimitrakopoulos, Nikos Chrysos and Kostas

Galanopoulos, “Fast Arbiters for On-Chip Network

Switches”, Proceedings of IEEE International Conference

on Computer Design, pp. 664-670, 2008.

[16] Daniel U Becker, “Efficient Micro-architecture for

Network-on-Chip Routers”, Ph.D Thesis Dissertation,

Stanford University, 2012.

