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Abstract 

Image registration in meteorological images that are acquired 

continuously for their use in weather forecast activities and other 

related scientific analysis is a critical requirement. Meteorological 

images are obtained from geostationary orbits in visible, infrared, water 

vapor channels covering a large frame of several hundreds of 

kilometres of geographical extent which generally involve bi-

directional scanning to cover larger extents. The acquired images have 

to be guaranteed for their geometric fidelity to a standard of choice 

among themselves by image registration. Registration of such images 

require to deal with low contrast, cloud and snow occlusions apart from 

navigation data uncertainties. Nevertheless, sub pixel accuracies are 

demanded for image analysis and geophysical parameters derivations. 

Feature based registration techniques are commonly used and intensity 

based techniques are also put to use in these contexts rarely. The 

proposed feature based approach uses a land water boundary data 

extraction with phase correlation of image blocks and proposed the 

intensity based approach tackles the same problem without any 

preprocessing step using a sampler-metric-transform-optimizer 

procedure. A comparison of these two approaches is pursued here in 

this article using various channel data sets of INSAT-3D satellite for 

sub pixel accuracies. 
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1. INSAT-3D SYSTEM 

INSAT-3D is the meteorological satellite launched by ISRO 

in July 2013. It has two primary sets of payloads namely the six 

channel IMAGER and the nineteen channel SOUNDER. The 

IMAGER generates images of earth and its environment in 

various spectral channels of meteorological importance whereas 

the SOUNDER provides vertical temperature and moisture 

profiles of the atmosphere. Kalpana-1 and INSAT-3A are other 

previous meteorological satellites of ISRO. INSAT-3D with its 

advanced payloads, is designed to cater to the current 

meteorological requirements of the country [1]. INSAT-3D is 

located at 84º East longitude in a geostationary orbit. INSAT-3D 

data is received and processed at the Meteorological Data 

Utilisation Centre of IMD, New Delhi as well as at Bopal Earth 

Station (BES), Space Application Center, Ahemadabad. 

1.1 SYSTEM CHARACTERISTICS AND PAYLOAD 

OPERATIONS 

For met applications, the imaging channels are designed in 

visible (0.55-0.75µm) region and Infra-red region (1-14µm). The 

telescope focuses the visible and IR radiation which is divided 

into six wavelength bands by dichroic beam splitters first 

separating the visible and short wave infrared band from the IR 

channels and further dividing the IR into four spectral bands or 

channels. These four channels are centered at 3.9µm, 6.8µm, 

10.8µm and 12.0µm. The visible signal focuses onto a silicon 

detector and the SWIR signal onto an Indium-Gallium-Arsenide 

(InGaAs) detector. The IR signals are directed to the cooled 

detectors through wavelength defining band-pass filters. The 

visible portion of the incident energy (0.57µm to 0.75µm) is 

directed to a staggered array of eight square silicon detectors of 

85µm each, which provide a nominal IFOV of 28 micro radians 

per detector. This corresponds to 1km×1km square on earth. 

Similarly, the detectors for the SWIR channel are also 8-detector 

array to provide 28 micro radian IFOV per detector. The ground 

resolution at nadir is nominally 1km×1km for Visible and SWIR 

channels, 4km×4km for MIR, TIR–1 and TIR-2 channels and 

8km×8km for WV channel [1]. 

The payload experiences diurnal temperature variations in the 

orbit due to varying position of sun. Due to sensitivity of IR 

measurements to temperature, in-orbit calibration of the Infra-red 

channels is carried out by periodic viewing of on-board black-

body and deep space during the imaging. The satellite also 

undergoes yaw-flip and orbit maintenance periodically during the 

year. As the position of the satellite is stationary with respect to 

earth, the payload scans the earth and its environs by means of 

opto-mechanical scanning. The movement of the scan mirror is 

facilitated in two directions by servo motor control [2]. The 

movement in the East-West direction is called Fast-Scan, and the 

movement in North-South direction is called Slow-scan (Fig. 2.6). 

The Scan area can be placed anywhere in the Field-of-Regard of 

the instrument. The FOR is 24deg (N-S) and 18deg (E-W). The 

start co-ordinates of the scan are defined by slow-scan and fast-

scan offset 

The imaging is carried out by bi-directional scanning 

mechanism facilitated by controlled movement of scan-mirror in 

East-West and North-South directions. The coverage is wide 

(~18degE-W×18degN-S) with repeativity of half-hour. Imaging is 

done in day as well as night time. The scan mirror operates in step 

and dwell mode to facilitate sounding. In East-West direction the 

mirror dwells at each step for 0.1, 0.2 or 0.4 sec as per ground 

command. Within the scan mechanism, there is a provision to 

accept motion compensation signals from Attitude-Orbit Control 

System (AOCS) to compensate for various spacecraft rates, orbit 

perturbations and effect of the Imager mirror slew on the 

spacecraft. It improves the registration and navigation parameters 

of the image. GEOS projection is a navigation model computation 

based on the parking longitude alone for a virtual satellite without 

any requirement on s/c navigation data used for coarser geographic 

coordinates tagging on an idealized earth model, which is a perfect 

ellipsoid with an equator radius of 6378.1690km and a polar radius 

of 6356.5838km. It provides a global and initial geometric 

reference without any ancillary data requirement. For INSAT-3D 
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with unit in meter, the above projection cab be defined by 

following string “+proj=geos +a=6378137.0 +b=6356752.3142 

+lon_0=82.0 +h=35785831.0” in GDAL library for projection 

computations as shown in Fig.1 [3]. 

 

 

Fig.1. Few Indian Meteorology Platforms and INSAT-3D 

Visible Data 0600 UTC 10th January 2014 

1.2 DATA ACQUISITIONS, PROCESSING AND 

APPLICATIONS 

Data acquired by INSAT-3D is systematically corrected to 

generate basic products called as Level 1 products. Geo-physical 

parameters (Level 2 and Level 3) are generated by parameter 

retrieval algorithms using basic data products. Radiometric 

corrections include relativization, pixel-line loss correction, 

detector normalization and generation of calibration coefficients 

for Count to Radiance (for Visible) and Count to Brightness 

temperature conversion (for IR). Geometric corrections are 

carried out for servo correction, navigation and accurate feature 

registration between the successive half hourly images. 

Geo-physical parameters such as Sea-Surface Temperature 

(SST), Upper Tropospheric Humidity (UTH), Water Vapour 

Wind (WVW), Out-going Long-wave Radiation (OLR) are 

operationally derived from INSAT-3D data and disseminated by 

IMD. Applications of INSAT-3D data include monitoring the 

growth of thunderstorms, tracking movements of tropical 

cyclones, monsoon depressions, onset and progress of monsoon 

systems and detailed atmospheric studies. The spectral bands and 

modes of IMAGER/SOUNDER are specially designed to permit 

frequent scanning to obtain understanding of dynamics of weather 

systems. 

1.3 IMAGE REGISTRATION REQUIREMENT 

INSAT-3D images obtained from imager are first required to 

be registered among themselves to carry forward for any scientific 

analysis and geophysical parameter retrievals. The emphasis on 

sub pixel accuracies in geometric fidelity is always found in the 

scientific literature as it is obvious and critical. The geometric 

fidelity requirements can’t be undermined under any 

circumstances as the images considered here are acquired at a 

coarser resolution of about 1km to 8km. And any mis-registration 

will show up directly and indirectly in derivations mentioned in 

the earlier paragraph. The Fig.2 shows the overlay of the land 

boundary data mismatch with INSAT-3D data covering left of 

Indian sub-continent before and after registration using a 

reference image. 

  

Fig.2. land water boundary overlay on INSAT-3D visible data 

2. CURRENT STATE OF PROBLEM 

RESOLUTION 

It is a very old and continuing problem to address registration 

of meteorological images and there are plenty of developments in 

this area of specialization as detailed here. Kovacs and Szcnyan 

outlined an approach in their work: Navigation models based only 

on using ground control points (GCPs) has a major disadvantage 

that the identification of such reference points is not possible in 

cloudy and open ocean regions [4]. Use of reference images and 

validation of orbital parameters is superior to the GCP based 

approach. This approach was used to register AVHRR images for 

applications related to surface radiation balance, temperature 

retrievals etc. Another model based approach experimented by 

Katamanov by using automatic selection of GCPs and attitude 

forecasting [5]. He claims to have achieved one-pixel level 

accuracy within a session of meteorology image acquisitions from 

satellites POES NOAA, MTSAT-1R and FengYun-2C with 

success rate > 95%. Land ocean separability hypothesis was put 

to use by them to increase the reliability of GCP selection. The 

land-ocean separability test is tough in complex weather 

conditions according to Katamanov work. They could show a 

scheme based on consistent orbital and attitude parameter 

correction and the scheme may be used for navigation parameter 

forecasting of adjacent satellite passes also for FY-1D images. 

Verification of sea-land separability hypothesis for automatic 

ground control point generation can increase significantly the 

opportunity of image navigation under complex weather 

conditions of observation. They also reported that full FY-1D 

images cannot be navigated accurately by orbital and attitude 

parameter correction alone. 
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Patt and Woodward [6] developed a method for SeaWiFS 

platform acquired ocean sensor data improve geometric accuracy 

to use island features as targets. In this approach, the acquired 

pixel in consideration was classified beforehand whether it is a 

land or ocean or cloud pixel. Land and water pixels’ identification 

was extended to find island pixel clusters. The island pixel 

locations were compared to catalogued island data created by the 

authors themselves. Brunel and Marsouin [7] developed an image 

navigation model that combines a precise image deformation 

model (sensor imaging model) and an automatic adjustment on 

coastal landmarks. Authors were of the view that some of the 

required input parameters of the model are not known in real time 

with sufficient accuracy. In that case above mentioned method, 

provides a physical interpretation of image navigation errors and 

the results obtained on an image can be more easily used on 

another image. 

Mao et al. [8] outlined an automatic approach for integrating 

images from multi temporal and multi sensor remote sensing 

based on coastlines derived satellite images using edge detection 

techniques. This technique was used to register SeaWiFS and 

AVHRR images using correlation-relaxation technique to find out 

correspondences between image points. They implemented a 

decision rule for grading the goodness of selected control points 

to estimate the transformation chosen. The relationship between 

the accuracy of registration and the number of GCPs indicates that 

a large number of GCPs will leads to more accurate image 

registration. The correctness of GCPs can also improve the 

accuracy of geometric registration. The approach can be used 

particularly well to register images of coastal areas. Cheng et al. 

proposed a new approach based on Affine Invariant Feature 

Matching (AIFM) with a filtering technique is proposed for 

automatic registration of remotely input image in coastal areas [9] 

[10]. The novelty of this approach was is an automatic filtering 

technique using RANdom SAmple Consensus (RANSAC) [11] 

with shoreline constraint for AIFM to remove all wrong matches 

and simultaneously keep as many correct matches as possible. To 

implement it, a progressive threshold strategy (from small value 

to large value) is presented to determine an appropriate RANSAC 

threshold, in which the progressive process is guided by shoreline 

constraint. The proposed approach (with filtering) is compared 

with standard AIFM (without filtering) using two typical image 

pairs in coastal areas. The experimental results indicate that the 

proposed approach can always provide much better matching 

results than standard AIFM for AVHRR image registration. 

These techniques discussed above are more or less hybrid 

techniques, putting a navigational model, automatic collection of 

landmarks, or coast line segments, matching them, and most 

importantly employing a procedure to remove wrong matching, 

points and improve the robustness to register meteorological 

images with at least +/- one resolution unit distance. It is easy to 

see that geostationary imaging platform acquired images portray 

a big portion of earth with weatherly influences such as clouds are 

found commonly. Any automatic registration procedure need to 

handle these type of realities. Let us understand the feature based 

and intensity based approaches with few selected data 

experiments. Though the main aim of the paper is to see the 

performance accuracy of the intensity based image registration 

approach, a comparison is always expected to validate the 

approach. In comparison, level of sophistication of the techniques 

involved needs to be matched for a fair play. So therefore, 

efficient procedures are developed in both feature and intensity 

based approaches in this work. Let us start with the feature based 

approach developed for the above purpose. 

3. PROPOSED CONTOUR FEATURE BASED 

REGISTRATION APPROACH 

Automatic registration of MET images is a difficult problem 

to deal with as the feature collection from the low contrast, low 

SNR images are extremely error prone leads to many failures in 

image matching due to homogeneous patches present in the data. 

Simple approaches may not handle such complex issues as 

apparently seen in feature based registration. A clever choice 

could be to generate a contour map separating land and water not 

occulted by cloud. Such contour regions could be used for 

correlating features which are permanent and not transient as 

clouds or snow. As we have already seen that, INSAT-3D has 

SWIR and VIS channels and they could be used generate such 

contours. 

 

Fig.3. Contour block phase correlation based registration 

3.1 LAND, WATER AND CLOUD MASK 

GENERATION 

Single image based cloud detection is generally achieved by 

checking the gray value of the pixel is greater than a predefined 

threshold. Let us reminded that VIS channel can be used during 

daytime only, and SWIR type of channels can be used during day 

and night times. The problem with threshold based approach is 

that, they have to be dynamically found, and it is difficult for 

regions with coastal features. Better techniques can be employed 

for the detection using SWIR channels effectively to separate 

water pixels to a larger extent, and VIS can be used for detecting 

cloud features. Both of these can be done using a k-means data 

clustering techniques with far spread random clusters to group 
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disjoint samples in to a definite number of clusters of equal 

variance using the sum of square minimising criteria within the 

cluster as the features targeted are well expressed in the data [12] 

- [14]. Merging smaller clusters to major ones and using VIS 

clusters over SWIR clusters in non-water regions. VIS/SWIR 

images were clustered with 10/7 classes originally and merging 

small classes into bigger one Contour detection and eliminating 

smaller contour regions can yield as a contour map. Within this 

contour map, continuous segments are captured for matching 

image portions. The complete steps in contour based image 

portion detection and matching in Fig. 3. However, a good 

number of image portions for matching shall be available and this 

can be achieved by thresholding the size of the contour area. The 

Fig.4 depicts the extracted boundaries using 20th Nov, 2017 and 

10th Jan, 2014 datasets. The top row shows the VIS and SWIR 

images themselves, and the second row shows the clustered data 

for both channels corresponding to cloud, snow and bright regions 

heighted and SWIR channel showing ocean pixels bright. The 

third row first column show the first land water separated 

boundary line segments and the second column showing the 

continuous segments in contours. The fourth row show the 

contiguous segments considered for phase correlations and the 

right column shows the sub regions marked over the data. 

3.2 IMAGE MATCHING BY PHASE 

CORRELATION 

Feature based matching uses normalised cross correlation in 

the spatial domain approach or phase correlation in the frequency 

domain approach. Phase correlation based image matching is 

employed here. Phase correlation method (PCM) is a Fourier 

domain method used for estimating translations between images 

in a robust way. It generates a phase difference map that contains 

a single peak. The location of the peak is found in proportion to 

the relative 2D shift between 2 images. The PCM is resilient to 

noise and image defects and is readily automated. It is completely 

equivalent to correlation in the spatial domain, but the calculation 

is orders of magnitude faster in the Fourier domain. Fourier Shift 

Theorem states if f1 and f2 are two images that differ only by a 

displacement (∆x, ∆y) such that, 

 2 1( , ) ( , )x yf x y f x y      (1) 
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Inverse FFT of 1 2 ( , )f f x yC    results in a direct delta function 

having a single peak. Finding out maximum of this surface in both 

row and column directions and then arriving at a middle point in 

the 2D space, we can achieve sub-pixel level information in 

matching [15] - [20]. Finding the relative displacement 
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where W is the weight matrix and minimizes (x, y) to obtain 

(x, y). 

20 Nov 2017 10 Jan 2014 

    

    

    

    

Fig.4. VIS/SWIR (Column 1 and 2) belongs to 20 Nov 2017 and 

VIS/SWIR (Column 3 and 4) belongs to 10 Jan 2014 

acquisitions 

3.3 AFFINE USING RANSAC 

An affine model is built with predicted and phase correlated 

positions of the image at those contour boxes. A RANSAC 

procedure is employed to weed out outliers before estimating a 

final affine between the image pair. The residuals before and after 

shall be estimated to measure the performance [10] [11]. 

4. PROPOSED INTENSITY BASED 

REGISTRATION APPROACH 

In intensity based approach the alignment error is minimised 

through an optimizer framework. The alignment is improved 

progressively by guessing the direction and step size estimated 

using the derivatives of the image to image matching quality 

under the chosen transformation between them [21] - [25]. The 

initial transformation should be near the final solution for a robust 

estimation otherwise, few preparatory steps are to be executed 

such as setting up a multi resolution pyramid for hierarchical 

refinement of the registration model from coarse to fine scale of 

the data as represented in the Fig.5. Let us define a fixed image 

used as reference A(x) and moving image B(x) to be warped to the 

fixed image with a transformation choice T(x,μ) with x as the 

image location and μ as the transformation parameter vector 

refined at every iterative step. The following minimization 

problem is considered: 

  ˆ arg min ,C A B T


    (5) 

where, C is the cost function that measures the similarity of the 

fixed image and the deformed moving image. The solution ̂  is 

the parameter vector that minimizes that cost function. To 
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determine the optimal set of parameters, an iterative optimization 

strategy is employed as follows. 

 ,1 kkkk da   k = 0,1, 2,…, N (6) 

where dk is the search direction at iteration k usually estimated 

from the gradient of the cost function and ak  a scalar gain factor 

either set as a constant or slow decay function controlling the step 

size along the search direction per iteration basis. The search 

directions and gain factors are chosen such that the sequence k 

converges to a local minimum of cost function C using a gradient 

descent mechanics. The cost function C mentioned in Eq.(2) is 

chosen as the negative value of mutual information M(A,B) 

between two random variables A and B can be defined as 

 ,

,
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( , ) ( , ) log
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A Ba b
A B
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It brings a measure between the joint PDF pA,B(a,b) of two 

random variables A and B and the product of their marginal PDFs, 

pA(a) pB(b), which is the measure of the match. The estimation of 

PDFs, MI, and its derivative are achieved by computing a 

stochastic joint histogram using Parzen windowed density 

estimate approach outlined in earlier works [22]. This improvises 

the whole estimate as a closed or analytical solution. The 

optimizer mechanics as mentioned earlier can be a standard 

gradient descent or an adaptive stepsize based. Then such an 

approach is termed as Adaptive and Stochastic Gradient Descent 

approach [24]. In such a scenario, every iteration different 

samples are collected randomly in the overlapping image region 

to compute joint histogram and other estimates to progressive 

update the transform parameters given in equation 6 using 

variation calculus steps. 

5. PERFORMANCE COMPARISON 

Feature and intensity approaches have been described is put to 

use to demonstrate the performance comparison of both the 

techniques. Data sets selected are VIS and SWIR channel sets. 

The Fig.6 and Fig.7 depicts the results for images acquired at 0230 

and 0530 UTC out of the 48 acquisitions in a day. The image 

shown in top left block is VIS data and right down below shown 

is the boundary data extracted using both the channel data, marked 

with correlatable blocks for feature based approach. Residual 

maps shown by three plots for input (before registration), using 

feature matching by phase correlation and the intensity based 

method advocated. The residuals obtained at 100 by 100 grid 

locations for creating pixel wise residuals by spatial binning of 

block size 64. Input shows more residuals at bottom locations 

which include some cloudy patches over ocean and land portions 

as well. The same regions in feature based method show lesser 

residuals and in intensity based approach it is further reduced 

indicating that, intensity based method scoring better in 

registration of these data sets. The scatter plots shown in a row 

also belongs to input, feature, and intensity registered sets, 

showing reducing range of residuals. The mean and standard 

deviation of the residuals are tabulated also (Table.3, Table.4 and 

Table.5 and Fig.8), after outliers rejected beyond a range of +/- 5 

pixels with 50×50 correlations. Residual maps give us better 

insights than scatter plots and table data due to outlier rejection 

criteria and computing statistics for a single performance value. 

 

Fig.5. Intensity based MET image registration scheme 

0230 UTC 

    

    

Fig.6. 10th Jan, 2014 0230 UTC VIS Image, boundary data 

extracted, Residual Map, and Scatter plots 

0530 UTC 

    

    

Fig.7. 10th Jan, 2014 0530 UTC VIS Image, boundary data 

extracted, Residual Map, and Scatter plots 
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Fig.8. Mean Residuals by feature and intensity registrations 

Table.3. Residuals estimated for VIS channel before registration 

Time 
Residual 

Time 
Residual 

Mean Std Mean Std 

0230 0.68 0.01 1230 0.91 0.3 

0300 0.45 0.16 1300 0.86 0.23 

0330 0.7 0.19 1330 0.58 0.22 

0500 0.71 0.19 1400 0.41 0.03 

0530 1.37 0.33 1430 1.41 0.04 

0600 0.0 0.0 1500 1.37 0.18 

0630 1.48 0.24 1530 0.71 0.11 

0700 1.13 0.71 1600 0.68 0.07 

0730 1.57 1.02 1630 0.3 0.14 

0800 1.69 0.24 1700 1.53 0.53 

0830 0.49 0.03 1900 0.41 0.16 

0900 0.71 0.11 1930 1.12 0.42 

0930 2.25 0.23 2000 0.99 0.16 

1000 0.91 0.01 2030 0.95 0.39 

1030 0.92 0.12 2100 0.83 0.22 

1100 1.05 0.39 2130 0.57 0.25 

1130 0.66 0.11 2200 0.88 0.44 

1200 1.72 0.66 2230 1.02 0.65 

Table.4. Residuals estimated for VIS data by feature based 

Time 
Residual 

Time 
Residual 

Mean Std Mean Std 

0230 0.91 0.12 1230 0.88 0.13 

0300 0.37 0.27 1300 0.83 0.25 

0330 0.63 0.24 1330 0.65 0.35 

0500 0.83 0.32 1400 0.47 0.01 

0530 1.59 0.46 1430 1.57 0.12 

0600 0.0 0.0 1500 0.87 0.07 

0630 1.05 0.09 1530 0.73 0.14 

0700 0.74 0.15 1600 0.73 0.05 

0730 1.61 0.5 1630 0.28 0.17 

0800 2.19 0.39 1700 1.42 0.56 

0830 0.26 0.12 1900 0.41 0.16 

0900 0.79 0.42 1930 1.07 0.28 

0930 2.88 0.48 2000 0.77 0.16 

1000 0.93 0.04 2030 0.89 0.34 

1030 0.7 0.24 2100 0.83 0.22 

1100 0.9 0.02 2130 0.59 0.31 

1130 0.93 0.37 2200 0.91 0.34 

1200 1.07 0.11 2230 0.94 0.68 

Table.5. Residuals estimated for VIS data by intensity based 

Time 
Residual 

Time 
Residual 

Mean Std Mean Std 

0230 1.17 0.44 1230 1.08 0.54 

0300 1.44 0.83 1300 1.32 0.85 

0330 0.46 0.23 1330 1.17 0.35 

0500 0.28 0.2 1400 1.52 0.45 

0530 0.33 0.12 1430 0.94 0.62 

0600 0.0 0.0 1500 1.12 0.7 

0630 0.22 0.06 1530 1.03 0.38 

0700 1.47 0.54 1600 0.79 0.07 

0730 0.53 0.01 1630 0.89 0.79 

0800 1.27 0.27 1700 1.13 0.72 

0830 0.48 0.22 1900 0.92 0.53 

0900 0.44 0.04 1930 1.65 0.97 

0930 0.74 0.16 2000 1.25 0.51 

1000 0.53 0.13 2030 0.75 0.49 

1030 1.53 0.55 2100 0.36 0.3 

1100 0.45 0.4 2130 0.81 0.01 

1130 2.26 0.43 2200 0.55 0.02 

1200 1.6 0.18 2230 1.22 0.84 

6. ATMOSPHERIC MOTION VECTORS 

DERIVATION 

Atmospheric Motion Vectors (AMVs) are the satellite derived 

winds, extracted from satellite imagery by tracking tracers such 

as clouds and water vapor through a series of consecutive satellite 

images. AMV includes cloud motion vectors and water vapor 

winds [26][27]. The validation of retrieved AMV is feasible by 

comparing to radiosonde network data analysis and calculating 

Mean Vector Difference (MVD), Root Mean Square vector 

difference (RMSVD), and BIAS. Our registration scheme agrees 

well with the AMV derived from METEOSAT-7 CIMSS data 

sets. 
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Fig.9. AMV derived with intensity based registration for TIR1 

16th May, 2014 1200 UTC 

Table.6. AMV retrieved at 00 and 12 UTC comparison 

PAR-AM 
INSAT-3D registered Meteosat-7: CIMSS 

HIGH MID LOW HIGH MID LOW 

MVD 4.71 4.64 3.96 4.53 4.25 4.19 

RMSVD 5.37 5.14 4.30 5.30 4.77 4.49 

SD 2.48 1.94 1.36 2.87 2.02 1.36 

BIAS -0.17 -.22 1.22 -0.51 -0.61 0.22 

NC 1907 487 222 3276 457 402 

*HIGH (100-400) hPa; MID (401-700) hPa; LOW (701-975) hPa 

INSAT-3D derived AMV and from METEOSAT-7 CIMSS 

data sets agree by evaluating MVD, RMSVD, SD. It testifies that, 

the registration accuracy is at reasonable level, the differences are 

found owing to the fact that, radiometry and the geometry of the 

data are different for different imaging platform. We will not 

further elaborate on the AMV derived as our main focus is kept 

on the registration scheme in this work. This exercise was an 

external exercise to show final use of the registered set and not 

included as a main contribution. 

7. CONCLUSIONS 

We could demonstrate two state of art algorithms belonging to 

two different methodologies with feature detection and matching 

and the other an intensity based one without any feature detection 

step for registering MET images acquired by INSAT-3D VIS, 

SWIR channels. In both the methods, navigation details were not 

used for preparing the images for registration. Contour feature 

based methods supposed to have a slight edge over the intensity 

based approach in these data sets as they exhibit low contrast, 

lower SNR and cloud, snow occlusions on the first scrutiny. 

However, both approaches are comparable for sub pixel 

accuracies. The boundary extraction using single images was not 

attempted in this effort, but it is not very difficult to include such 

a procedure either. 
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