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Abstract 

Fast Fractional Wavelet Transform (FFWT) is an orthogonal linear 

transform called as decomposed signals in terms of chirps transform. 

This transform is used for signal and image compression and is based 

on Eigen value decomposition. In this paper, the performance analysis 

of image compression techniques based on the FFWT was discussed. 

FFWT is combined with the Set Partitioning in Hierarchical Tree 

(SPIHT) to achieve better compression ratio and biorthogonal filter 

banks for the analysis of compression performance with respect to 

subjective quality metrics. Further, the proposed work is compared with 

the various subject quantity parameters like PSNR and MSE. 
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1. INTRODUCTION 

Digital signal compression is a digital technique of 

representing a source of data with a fewer bits as compared to 

original data. This leads to the reduction in storage space, 

reduction in time for transmission without losing any significance 

details [1]. In literature there are various types of compression 

modalities and are grouped into three types namely, direct 

compression techniques, parameter extraction techniques and 

transformation techniques [2] [3]. In these types of data 

compression techniques, the redundancy of the signal will be 

reduced due to high decorrelation of coefficients. 

It is noticed that, Fourier transform applied to obtain 

frequency domain signals finds the frequency parts present within 

the signal having zero time resolution. The fractional Fourier 

transform is viewed because the rotation of an indication through 

an angle α of Fourier transform. The fractional Fourier transform 

may be outlined generalizing the Fourier transform by rotating 

over an angle of 0.5. Similar to fractional Fourier transform the 

fractional cosine and sine transforms [4]-[6] illustrates the energy 

density each in time and frequency plane having nonzero time 

frequency resolution. These transforms can be applied for optical 

signal process, sweep frequency filtering, linear time invariant 

filtering, pattern recognition, digital signal and image 

compression. In this paper, a compression technique adopting the 

Fast Fractional Wavelet Transform (FFWT) was proposed. Each 

wavelet component is differently scaled and band pass filtered in 

frequency domain. As we know, wavelet transform gives time 

resolution effectively than the frequency resolution. Hence, the 

wavelet transform ineffective in frequency domain where energy 

is not much significant in the frequency domain. Chirp like signals 

are universal in nature and manmade systems are examples of this 

forms. Hence, new innovative tools for signal analysis were 

introduced to investigate such type of signals. Examples for such 

tool are Fractional Wavelet Transform (FRWT) [7] [8], Fractional 

Fourier transforms (FRFT) [9] [10] and Short Time Fractional 

Fourier transforms (STFFT) [11]. Although the FRFT has a 

unique features, it does not provide local information of the 

signal. Also, due its limitations, the STFT will not provide time 

and fractional domain resolutions simultaneously with increased 

arbitrarily values. 

The advantage of combining wavelet transform and the 

Fractional Resolution Fourier Transform (FRFT) is that, it is a 

linear transformation without cross term interference and is able 

to give multiresolution analysis by representing signals in the 

fractional domain. Hence, the fractional resolution Fourier 

transforms potentially helpful in the signal processing areas and 

this may give better prospects for future applications. In line with 

the fractional resolution Fourier Transform, Huang et al. [7] 

introduced the Fractional Wave Packet Transform (FRWPT) 

concept in 1998. But, this transform not attracted signal 

processing community much because of its physical interpretation 

and high computational time. Further, this transform is based on 

the fractional B-splines and is a scaled band pass filter in 

frequency plane and will not present signals in the fractional 

plane. But, still FRWPT will represent the conventional wavelet 

transform [10]. The main objective of this proposed technique is 

to provide a FFWT to compensate the drawbacks of wavelet 

transform and FRWPT. In the modified transform, every 

fractional wavelet element is scaled in a different manner so that 

perfect explicit physical interpretation can be achieved along with 

band pass filtering in the fractional domain. Therefore, this results 

lesser computational time as compared to the existing systems. 

The special coding method that well suited for data to be 

coded having more zeros than nonzero is called SPIHT. The 

SPIHT algorithm proposed by Amir Said and Pearlman [12] is an 

advanced version of Embedded Zero Tree (EZW) algorithm. This 

algorithm possesses high Peak Signal Noise Ratio (PSNR) with 

better image quality and produces the complete embedded coding 

file. This method also provides an efficient error protection 

mechanism with fast coding and decoding process. 

SPIHT is a coding method that sends coefficients first by 

transmitting MSBs of higher coefficients. This algorithm sorts out 

the within coefficients and transmits them along with the 

information which sorts bit by bit. Thus, bit rate for transmission 

can be accurately expressed so that only some of the MSBs of 

each coefficient are transmitted as like Discrete Fractional 

Wavelet Transform (DFRFT). Further, the SPIHT coding is free 

from mathematical calculations this is the most important 

advantage. In the proposed technique, significant nonzero 
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coefficients are coded by applying SPIHT and bits were 

transmitted. Therefore, SPIHT results zero error. The 

combination of fractional Fourier transform and SPIHT results 

efficient compression ratio for the given image data. 

This paper presents a scheme of transform coding for the 

application digital signal compression that uses Fast Fractional 

discrete Wavelet Transform (FFWT) as the transform domain. 

The Signal in a compact FFWT needs only a few FFWT 

coefficients and SPIHT encoding is used for binary coding of 

these coefficients. It is found that, there is an improvement in 

digital image compression as compared to the existing 

compression techniques which are available in the literature.  

After a brief introduction to the proposed technique, related 

work is presented in section 2. In section 3, the proposed 

technique of digital image compression using DFWT with FFWT 

and SPIHT combination is discussed. The experimental results 

and its comparison with various bit rates were presented in section 

4. The conclusion remarks are presented in section 5. 

2. RELATED WORK 

Samil et al. [2] proposed an image compression technique 

using the fractional Fourier transform. This technique uses 

optimal filtering coefficients for multi-channel to minimize the 

MSE between the original matrix and its multi stage and multi-

channel approximation. Further, it is observed that, the Fractional 

Resolution Fourier transform (FRFT) in the time domain for 

image compression does not yield better results as they are 

applied for synthesis and fast implementation of the shift variant 

linear system. Vijaya et al. [13] proposed a signal compression 

technique using the discrete fractional wavelet transform and 

SPIHT. It is observed that the authors analyzed various 

elementary signals such as chirps, rectangular pulse and Gaussian 

signals. 

All these signals were compressed with the SPIHT algorithm. 

It is also noticed that, the discrete fractional Fourier transform is 

suited for obtaining a better quality of reconstructed signal and 

percent RMS difference. Further, it does not require encoding the 

error signal and transmitting along with the encoded discrete 

fractional Fourier transform coefficients since the dynamic range 

of error signal is very small. Pushpa et al. [14] proposed a 

watermarking technique using the Fractional Wave Packet 

Transform (FRWPT) for medical images. In this paper, the 

FRWPT was applied for image compression. The results obtained 

with respect to the subjective metrics were quite good but the 

correlation coefficient was approximately equal to unity. 

Pei et al. [15], presented a novel method for DFRFT 

computation at any angle is computed as the weighted summation 

of the DFRFT with specified angles, which are product of 2/N for 

all odd samples and 2/N + 1 for all even samples. Narayanan et 

al. [16] discussed and investigated about the FRFT theory, 

implementation an error analysis for various parameters for 

different applications such as DSP processor with ADSP-2192. Pei 

et al. [17] proposed the discrete fractional cosine transform and 

sine transform expected that significant progress will be made in 

the area of image processing and some more interesting 

application of FRFT in the area of control system and 

telecommunication system. Hsue et al. [18] presented the Rational 

ordered discrete fractional Fourier transform that investigated the 

periodicity and Eigen decomposition properties for all possible 

rational number orders. Candan et al. [19] developed the algorithm 

for discrete fractional Fourier transform to construct the Eigen 

value of decomposition of DFT matrix using Gauss Hermite Eigen 

function. Hyeh et al. [20] proposed the generalized angular 

decomposition for the DFRFT, behind the DFRFT decomposition, 

some other fractional signal transform also can be decomposed in 

to the weighted sums and the weighted sums coefficient are just 

equal to the DFT of the Eigen value. The number of decomposition 

angle is limited to the smallest odd integer that is not less than the 

length of the signal was proposed by [21]. 

2.1 CONTINUOUS FFT 

It is observed that, the Fourier transform is linear transform, 

for a given function x(n) the transform can be defined 

mathematically as, 

   2( ) ( ) ( ) j knF x n X k x n e dn 


     (1) 

The FRFT F of order aℝ can be defined as, 

  ( ) ( ) ( ) ( , )F x n X k x n k n k dn  


    (2) 

where, 

F represents the operator of fractional Fourier transform, and 

k(n,k) is the kernel function defined by 
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and 

     for 2 1x k n k     (4)
 

The Chirps function plays a very significant role in the theory 

of FRFT. 

2.2 CHIRPS FUNCTION 

A chirps function sweeps the specific amount of frequency 

interval between [0, 1] with a regular time duration [t0, t1]. 

When the sweep rate is linear, then it can be represented in the 

form 
( )j x xe   

 and sweep rate as . The chirps function is 

defined as, 

     ,F x k n

      (5) 

Further,  
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For sweep rate of cot .x  

Thus, FRFT will be noticed by the application of a Chirpz 

convolution with cosec as the sweep rate between two Chirpz 

multiplications with a sweep rate cotx. 
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2.3 DISCRETE FRACTIONAL FOURIER 

TRANSFORM 

The NN DFT can be expressed mathematically with the Nth 

roots of unity as, 

  
21

1

0

( ) ,  where 0,1,..., -1
j kN

N

n

X k x n e k N
 



  .  (7) 

If  ,
knW

x k n
N

 , where 

2j

NW e


 is a phase factor. Then 

Eq.(7) can be written as, 

    1 1( ) ,X k X k n x n . (8) 

Here, X is the DFT matrix and satisfies X4 = I, where, I is the 

identity matrix and it incorporates Eigen values, 

   21,- ,-1, ,  0,1,..., 1
j k

i i e k N
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where, N is the Orthonormal Eigenvectors that can be arranged as 

matrix V. Then its Eigen value decomposition is
TX VHV

where, H is a diagonal matrix.  

The DFRFT forms a vector, and is given by, 

       0 , 1 ,..., 1
T

x x x x N   (10) 

In vector form, x = Xx with components defined by X 
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where, 

 
TX EH E   (12) 

X = VHVT is the Eigen value decomposition of the DFT matrix, H 

is the Sum of the circulant matrix (A) and diagonal matrix (B). 

The circulant matrix corresponds to the impulse response system 

and is expressed as, 

        1 -2 1h n n n n       (13) 

 
1B XAX   (14) 

The Eq.(13) is the diagonal matrix. Further, it can also be seen 

that, XBX-1 = X 2AX 2 = A, Since, h(n) is an even function then, 
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Finally, the DFRFT is represented as, 
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The output signal of DFRFT is computed as, 
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3. PROPOSED METHOD 

In this section, fractional wavelet transform, discrete 

fractional wavelet transform and the combination of FFWT 

combined with SPIHT were described to compute image 

compression analysis. 

3.1 FRACTIONAL WAVELET TRANSFORM 

The definition of 1-D wavelet transform is given by, 

 ,( , ) ( ) ( )x a bW a b x n t dn





   (20) 

where,  ,xW a b is the correlation between the input signal x(n) 

and the mother wavelet function  ,a b t , 

, ( )a b t   is the mother wavelet function, it can be expressed as,

  

  ,

1
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t b
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where, b is the shifting parameter, a is the scaling parameter and 

a  normalization factor. This type of property was implemented 

perfectly in digital image compression techniques. 

The fractional convolution of the FRFT for the functions x(n) 

and h(n) is defined as 

 ( )x n ⊙      
2 2cot cot

2 2

j j
n n

h n e x n e h n
 

   
   
   

 
  

 
 

 (22) 

where, ⊙ represents a fractional convolutional operator. Then 

the fractional convolution of the FRFT is given by 

 

 ( )x n ⊙ ( ) 2 ( ) (  cosec )FRFTh n X k H k   (23) 

The Eq.(22) indicates the time domain fractional convolution 

and Eq.(23) relates the wavelet transform and the classical 

convolution process with an order  and this will be written in 

terms of x(n) as, 

  ( )xW (a,b)= x n  ⊙  ,a b n  (24) 
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where, 
, , ( )a b n

 is the kernel function of the fractional wavelet 

transform which satisfies the following expression 
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The inverse FRFT that FRWT is expressed in terms of FRFT 

X(k) of the signal x(n) as, 
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where,   cosecak   represents the Fourier transform of (n), 

the Eq.(29) shows that every fractional wavelet parameter scaled 

with fractional filter. 

The FRWT expressed in Eq.(27) can be rewritten as,
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3.2 DISCRETE FRACTIONAL WAVELET 

TRANSFORM 

It is important that, FRWT should be converted into digital 

form and for this the mother wavelet function a,b(n) is first 

discretized. Before discretizing, let us rearrange the expression for 

FRWT as, 

    ,, ( ) a bW a b x n n dn 



   (31) 

where,  

    ( ) ,x n x k K k n dk


   (32) 

For optimum discretization of the mother wavelet, the popular 

method is a = 2m and b = n2m, where m and n are the integers, and 

the discretized mother wavelet function can be written 

mathematically as, 
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If the dilation parameter is fixed to 2 and localization 

parameter kept greater than zero, the fractional wavelet transform 

reduces to 
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The Eq.(34) is the inner product between signal X and 
,a b ,  

i.e. 
, ,a b a bW X    

where, 
,a bW  is the th order DFRWT coefficient and is given by 

(m,n).  

For DFRWT, the coefficient 
,a bW   is called fractional wavelet 

coefficient. Now forward fractional wavelet transform is 

expressed as, 

 ,
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Therefore, the IDFRWT can be defined as, 
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By considering the scaling factor , we get the approximation 

coefficient, 
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Satisfying ( ) 1n dn



 . 

where, 
0,0( ) ( )n n   and sometimes it is denoted as father 

wavelet.  

The scaling function   is multiplied in frequency domain to 

provide the complementary function
,a bS  term as approximated 

coefficient related to DFRWT which can be expressed as, 

 , ,( ) ( )a b a bS x n n dn 



   (39) 

The weighted averages of approximated coefficients are 

nothing but continuous factor by1 2m .  To obtain the correct 

decompression, this results to, 
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The Eq.(41), will be iteratively reduced to, 

 
1( ) ( ) ( )a a ax n x n d n    (42) 

The DFRWT is obtained by combining Fractional Fourier 

Transform (FRFT) and conventional wavelet transform. 

3.3 COMPUTING FFWT COMBINED WITH SPIHT 

Fast Fractional Wavelet Transform (FFRWT) is a 

combination of wavelet transform and FRFT. In the proposed 

method, the filter bank adopted is as per the JPEG2000 standards. 

 

Fig.1. Computation efficient Fast Fractional Wavelet Transform 

The Fig.1 shows the internal structure of the FRWT. Since the 

input samples are discrete, and samples are obtained by a digital 

computing technique, it is essential to understand the discrete 

scheme. Firstly, the input function x(n) is multiplied with the 

Chirpz signal, 
2( /2) cotj ne 

 and subsamples obtained as g(n). 

Similarly, a, b designated as scaling and translation parameters 

and are discretized. It is known that, very efficient method to 

discretize the scaling and translation parameter is by adopting the 

criteria a = 2m and b = n2m, where, m and n are the control factor 

of integers and the localization parameter, which gives Wg(a,b) 

Next, perform discrete wavelet transform with Wg(a,b) on the 

samples of g(n) taking the filter bank as 5/3, which leads to 

lossless image. Finally, obtain the product again with Chirps 

signal
2( /2) cot j be , to get the Fast Fractional Wavelet Transform of 

an original signal x(n) Although mathematically the process is 

complex, this can be easily implemented for practical 

applications. The complete overview of the proposed method 

x(n) g(n) 

 

Wg(a,b) Wx
a(a,b) 
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adopting the Fast Fractional Wavelet transform is illustrated in 

Fig.2 and Fig.3 illustrates the structural flow of the proposed 

model. 

 

Fig.2. Block diagram of the proposed method 

 

Fig.3. Structural Flow of the proposed Fast Fractional Wavelet 

Transform and SPIHT 

The following procedure gives a brief outline of the proposed 

work. 

• Multiply the original signal x(n) with Chirpz signal in the 

time domain ( ) ( ),x n g n  

where, ( ) ( )g n x n  ( )rT n  and  
2 cot

2

j
n

rT n e


 
 
   

• Apply wavelet transform to the signal g(n) 

( ) ( , ) gg n W a b , 

where, ,( , ) ( ) ( )  g a bW a b g n n  

Multiply ( , )gW a b  with the Chirpz signal in transform 

domain 

( , ) ( , )g xW a b W a b , 

where, 

( , ) ( , )x gW a b W a b   ( )rT n and ( , ) ( , )x gW a b W a b  
2( /2) cotj be   

• Apply Discrete Fractional Wavelet transform to the SPIHT 

encoder to get the bit stream.  

• Feed the encoded bit stream to the SPIHT decoder.  

• Apply the Inverse Discrete Fractional Fourier Transform to 

get back the original image x(n).  

• The chosen filter bank is biorthogonal filter bank.  

• The BFB 9/3 Filter bank has better PSNR, correlation 

coefficient and MSE compared to other filter banks. 
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Fig.4. Compressed brain image with various biorthogonal filter 

banks 
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Fig.5. Decompressed brain images with various Bi-orthogonal 

filter banks 

Table.1. Subjective Quality Metrics for Various Biorthogonal 

Filter Banks of Brain Images for α = 0.91 

Filter 

Bank 
BPP* CR* PSNR* CC* MSE* 

2/2 0.595272 5.014819 38.114915 0.990686 0.901443 

6/2 0.724743 4.638373 43.575863 0.999016 0.905334 

10/2 0.746166 4.581465 41.816692 0.998081 1.263763 

5/3 0.709087 4.680861 43.901157 0.998805 1.036697 

9/3 0.712421 4.671747 44.535501 0.999021 0.772797 

13/3 0.616394 4.949288 37.985670 0.990781 3.544785 

17/3 0.641392 4.873913 36.957780 0.988179 3.574188 

4/4 0.904080 3.802136 26.107889 0.892075 13.10260 

8/4 0.919781 4.167143 33.968086 0.985344 4.429855 

12/4 0.813717 4.410832 27.840419 0.908239 7.045502 

16/4 0.940342 4.122985 34.880892 0.986217 3.329666 

20/4 0.959034 4.083645 36.721642 0.993748 3.349854 

9/7 0.656044 4.830790 42.404882 0.997080 1.686188 

9/11 0.925201 4.155409 43.480792 0.998528 1.061035 

17/11 0.652565 4.840959 42.258411 0.997085 1.558533 

Note: BPP*= BPP=Bits per Pixel, CR*= Compression Ratio, 

PSNR*= Peak to Signal Noise Ratio, CC*= Correlation, 

Coefficient and MSE*= Mean Square Error. 

4. EXPERIMENTAL RESULTS 

The combination of FFWT and SPIHT approach was 

experimented with Matlab environment. To validate the proposed 

technique, images of brain having the size 512512 were 

considered as experimental datasets. The performance of the 

proposed model was evaluated with five performance measures 

as mentioned in Table.1. These parameters were experimented 

with the different Biorthogonal Filter Banks (BFB) with α = 0.91. 

The results are tabulated in Table.1. Similarly, Fig.4 and Fig.5 

describes the compressed and decompressed image of brain using 

various filter banks. The results were compared with the existing 

techniques [22], [23]. 

 

Fig.6. Relationship between BPP and PSNR for various 

biorthogonal filters banks 

The Fig.6, Fig.7 and Fig.8 illustrate the different filter banks 

with parameters of PSNR, bits per pixel, compression ratio and 

MSE. 

The Fig.6 shows the variation in bits per pixel versus peak to 

signal noise ratio. It is observed that BFB 9/3 provides better 

PSNR resulting good quality of compressed image as compared 

to the existing filter banks with the bits per pixel of 0.712. BFB 

5/3 has fewer bits per pixel than BFB 9/3 with less PSNR. The 

BFB 12/4 has the least PNSR which yield the worst quality of the 

compressed image, and gives more bits per pixel. The highest bit 

per pixel is BFB 9/11 with PSNR 43.48, and the least bits per pixel 

are BFB 2/2 with moderate PSNR. 

The Fig.7 shows the relation between compression ratio 

achieved and PSNR. The compression ratio is high in BFB 2/2 

compared to other filter bank with moderate PSNR. The BFB 9/3 

provides a good compressed image quality with a PSNR of 44.53 

and a compression ratio of 4.41, the BFB 17/11 has better PSNR 

and compression ratio as compared to another filter bank. The 

filter bank BFB 4/4 does not give good quality of compressed 

image with the compression of 3.80 and PSNR of 26.10. 
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Fig.7. Relationship between Compression Ratio and PSNR for 

various biorthogonal filters banks 

 

Fig.8. Relationship between Compression MSE and PSNR for 

various biorthogonal filter banks 

The Fig.8 shows the relationship between the MSE and PSNR. 

It is observed that, there is a tradeoff between MSE and PSNR 

That means as PSNR increases, MSE will decrease and vice versa. 

Higher PNSR yield less error and low PSNR yields serious error. 

The BFB 9/3 has less error with the PSNR of 44.53, and the BFB 

9/11 has moderate PNSR with average error. The BFB 12/4 has 

serious error with the PSNR of 27.84. 

5. CONCLUSION 

In this paper, the performance analysis of image compression 

based on FFWT combined with SPIHT was proposed. This 

method has explicit physical interpretation and verified the 

necessity of FRWT and SPIHT technique. Some fundamental 

results of this transform were presented including PSNR, 

Correlation coefficient, Compression ratio and admissibility 

condition. This transform considers merits of the localization 

which is present in the FRFT to improve performance in 

decompression wavelet transform. It is known fact that, the 

FRWT is good in presenting information simultaneously in time 

and fractional domain and also, presented information in the time 

fractional- frequency plane. Thus, this method will overcome the 

drawbacks of the wavelet transform and the FRFT. The proposed 

technique is very simple to implement and can be applied to any 

real time problems and less computational complexity. 
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