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Abstract 
The count of mitotic figures in Breast cancer histopathology slides is 
the most significant independent prognostic factor enabling 
determination of the proliferative activity of the tumor. In spite of the 
strict protocols followed, the mitotic counting activity suffers from 
subjectivity and considerable amount of observer variability despite 
being a laborious task. Interest in automated detection of mitotic 
figures has been rekindled with the advent of Whole Slide Scanners. 
Subsequently mitotic detection grand challenge contests have been held 
in recent years and several research methodologies developed by their 
participants. This paper proposes an efficient mitotic detection 
methodology for Hematoxylin and Eosin stained Breast cancer 
Histopathology Images using Gabor features and a Deep Belief 
Network- Deep Neural Network architecture (DBN-DNN). The 
proposed method has been evaluated on breast histopathology images 
from the publicly available dataset from MITOS contest held at the 
ICPR 2012 conference. It contains 226 mitoses annotated on 35 HPFs 
by several pathologists and 15 testing HPFs, yielding an F-measure of 
0.74. In addition the said methodology was also tested on 3 slides from 
the MITOSIS- ATYPIA grand challenge held at the ICPR 2014 
conference, an extension of MITOS containing 749 mitoses annotated 
on 1200 HPFs, by pathologists worldwide. This study has employed 3 
slides (294 HPFs) from the MITOS-ATYPIA training dataset in its 
evaluation and the results showed F-measures 0.65, 0.72and 0.74 for 
each slide. The proposed method is fast and computationally simple yet 
its accuracy and specificity is comparable to the best winning methods 
of the aforementioned grand challenges. 
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1. INTRODUCTION

In Breast cancer pathology, the single factor that best aids in 
establishing the proliferative activity of the tumor is the number 
of cells undergoing mitotic division visible under a fixed number 
of high power fields (HPF - the area of tissue under the 
microscope set to a high magnification). Studies reveal that 
mitotic count is considered the most independent prognostic 
parameter that determines patient risk [1] and is assessed through 
the strictest of protocols. However, mitotic counting is highly 
subjective, prone to inter and intra observer variability [2]. An 
automated detection of mitotic figure using image analysis could 
be an efficient, error free and time saving also making results 
obtained by different pathologists comparable. 

Automated mitotic detection has certain innate challenges due 
to the high-complexity in appearance. The most prominent feature 
of a cell undergoing mitotic division is its hyperchromaticity, and 

effective care needs to be taken to avoid counting other 
hyperchromatic elements such as lymphocytes or apoptic nuclei 
as mitoses. Another challenge is the variability in the shapes of 
mitosis in its four main phases: prophase, metaphase, anaphase 
and telophase shown in Fig.1(a-d) respectively. Specifically, a 
mitotic cell in telophase, though having two separate and fully 
divided nuclei, should be counted as a single mitotic figure. The 
Fig.1(e)-Fig.1(h) shows certain hyperchromatic nuclei which 
have close resemblance to mitotic figures. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig.1. (a-d) Different phases of mitotic figures, (e-h) Other 
Hyperchromatic nuclei in the images which closely resemble 

mitotic figures 

Given the significance of the Mitotic count and the related 
issues, this paper proposes an efficient mitotic detection 
methodology for H&E stained breast cancer histopathology 
images. From input breast cancer histopathology image the 
proposed method detects mitotic figures using automated image 
analysis and a trained Deep Belief Network - Deep Neural 
Network classifier (DBN-DNN). The method is trained and 
evaluated on breast histopathology images from dataset presented 
at MITOS contest held at ICPR 2012 conference [3] and 
MITOSIS- ATYPIA grand challenge held at ICPR 2014 [4]. 

The paper is organized as follows: Section 2 gives a short 
review of the related works. Section 3 describes the dataset and 
ground truth followed by a presentation of methodology in 
Section 4 and the results and concluding remarks are laid out in 
Section 5 and Section 6 respectively. 

2. RELATED WORKS

Very little documentation on automated mitotic detection can 
be found, on research done two decades ago, owing to the fact that 
only limited computational and tissue digitization resources were 
available at the time. Recent interest was kindled after the advent 
and widespread usage of Whole Slide scanners [5], [6]. To help 

DOI: 10.21917/ijivp.2016.0199



ISSN: 0976-9102 (ONLINE)    ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2016, VOLUME: 07, ISSUE: 02 

1367 

matters further, the benchmark datasets of breast histopathology 
images annotated with mitotic figures were made publicly 
available at certain grand challenges and have spawned numerous 
approaches proposed by various authors [3], [7]. 

An efficient pixel classification application by supervised 
Deep Neural Networks [8] won the MITOS grand challenge of 
ICPR 2012 contest. The proposed DNN construction was a max-
pooling (MP) convolution neural network (CNN) that operates on 
RGB pixels sampled from a square patch of the source image. 
Since the DNN operates on raw pixel values it learns a set of visual 
features from the training data without the need for human hand 
crafted features. It was proved to outperform all the other 
competing techniques. However the contests was held for a 
relatively small dataset (5 slides in total, 10 annotated HPFs per 
slide) and since regions of same slide were included in both 
training and testing set the issues related to inter-subject variability 
were not taken into consideration. These issues were addressed in 
the next contest, ‘Assessment of algorithms for mitosis-detection 
in breast cancer histopathology images’ AMIDA 2013.  

The methods proposed in AMIDA 2013 [7] can be roughly 
categorized into two groups: 1. Methods involving candidate 
detection which are classified based on certain hand crafted 
features into mitoses or non-mitoses classes. 2. Pixel Classifiers 
that when directly applied to the image pixels tend to classify 
them into mitotic or non mitotic class. A vast majority of the 
methods belonged to the former group wherein candidate regions 
were obtained by applying thresholding or morphological 
operations to a grayscale images or mitosis probability maps. The 
features extracted from the candidate regions were used for the 
classification task. The winning method [8] belonged to the latter 
group and proved to be more powerful in mitotic detection. It 
presented an efficient implementation of deep convolution neural 
networks to obtain a mitosis probability map for each image, from 
which mitoses were detected by non-maxima suppression.  

3. DATASET AND GROUND TRUTH

This section gives a brief description of datasets used in this
paper. The proposed model has been trained and tested on the 
publicly available dataset of the MITOS contest and the training 
dataset of its extension MITOS-ATYPIA contest. From the 
MITOS-ATYPIA dataset, only the training portion is used in the 
study as the ground truth for test dataset has not yet been made 
public. 

3.1 MITOS 

It constitutes images from a set of 5 Hematoxylin and Eosin 
(H&E) stained breast cancer biopsy slides of different patients 
scanned by two different slide scanners: Aperio Scanscope XT 
and Hamamastu Nanozoomer 2.0-HT. In each slide, 10 HPFs 
were selected by two different pathologists. An HPF has a size of 
512 μm2×512 μm2 which is the equivalent of a microscope field 
diameter of 0.58 mm. These 50 HPFs contain a total of 326 
mitoses. The training and testing set consisted of 35 and 15 HPFs 
containing 226 and 100 mitoses, respectively. Two different 
breast cancer oncologists have provided the ground truth for 
location of mitotic figures. Each image is accompanied by a CSV 
file containing the pixel locations of the manually segmented 
mitotic nuclei. 

3.2 MITO-ATYPIA 

The publicly available training dataset of MITOS-ATYPIA is 
used to evaluate the proposed framework. It constitutes images of 
a set of 1200 high power field at x40 magnification obtained from 
Hematoxylin and Eosin (H&E) stained breast cancer biopsy slides 
of 11 patients scanned by two different slide scanners: Aperio 
Scanscope XT and Hamamatsu Nanozoomer 2.0-HT. Each image 
frame at x40 magnification comes with two ground truth CSV 
files which indicate the approximate centre of each single mitotic 
figure or non mitotic figure. There are total of 1200 frames at x40 
magnification. In this research work the dataset is divided into 
training and testing set consisting of 8 and 3 slides each having 
928 and 294 high power fields respectively. A summary of the 
dataset used is provided in Table.1. 

Table.1. Summary of datasets used for on the proposed method 

Dataset/No 
of biopsy 

slides 
Scanner Resolution 

at x40 Dimensions 
No. of HPFs 

/No of Mitotic 
figures 

MITOS / 5 
slides 

Aperio 
Scanscope 

XT 

0.2456 µm 
per pixel 

1539 ×1376 
pixels 

377.824 × 
337.808 

µm2 

Training set -
35/226 

Testing set -
15/100 

Hamamatsu 
Nanozoomer 

2.0-HT 

0.2273 µm 
per pixel 

(horizontal) 
0.22753 
µm per 
pixel 

(vertical) 

1663 ×1485 
pixels 

377.998 × 
337.883 

µm2 

Training set-
35/226 

Testing set-
15/100 

MITOS-
ATYPIA/ 
11 slides 

Aperio 
Scanscope 

XT 

0.2455 µm 
per pixel 

2084 × 
2084 pixels 

Training set- 
928 /669 

Testing set- 
294/80 

Hamamatsu 
Nanozoomer 

2.0-HT 

0.227299 
µm per 
pixel 

(horizontal) 
0.227531 
µm per 
pixel 

(vertical) 

2252 × 
2250 pixels 

Training set- 
928 /673 

Testing set-
294/80 

4. METHODOLOGY

The Fig.2 shows the step-wise graphical summary of the
mitoses detection methodology. The methodology can be divided 
into a) Pre-processing, b) Candidate detection, c) Feature 
Extraction and d) Classification 

4.1 CANDIDATES DETECTION 

The most distinguishing feature of a mitotic cell is its 
hyperchromaticity. Given an input RGB image, the candidate 
detection aims at mapping a square window around every 
hyperchromatic dark object in the image that is possibly a mitotic 
cell. This is done in the following steps. 
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4.1.1 RGB to Gray using PCA: 
Principal Component Analysis is used to find the primary axis 

in the RGB color space. This is done by computing the Eigen 
decomposition of the co-variance matrix of the three color 
channels. The Eigen vector that corresponds to the largest Eigen 
value is the primary axis along which the full resolution image is 
projected using closest point, i.e. the pixel values are multiplied 
by the Eigen vector that corresponds to the largest Eigen value. 
This results in a gray image. The gray image is normalized to 
range [0 1].  
4.1.2 Gaussian Filter: 

The gray image is then subject to a Gaussian low pass filtering 
[9] of size 5×5 and standard deviation 2.  
4.1.3 Candidate Seed Location: 

This is followed by an h-minima transformation of the gray 
image resulting in candidate seed points. Herein all regional 
minima in the image lesser than an h-value is removed. The image 
is then converted to a binary image by Otsu's thresholding. Each 
connected component of the image is a hyperchromatic object. 
The intensity weighted centroid of each connected component 
gives the location of the hyperchromatic dark objects in the image 
4.1.4 Hyperchromatic Object Patch Extraction: 

A square region of size 80×80 is centered on every candidate 
seed point. This step results in detecting all the mitotic figures and 
other hyperchromatic objects in the image.  
4.1.5 Labeling the Patches as Mitotic and Non Mitotic: 

As indicated in the MITOS ATYPIA contest's evaluation 
criteria, a detected candidate is labeled as a true mitotic figure if 
its distance is within 8 µm (~32 pixels) from the centre of a ground 
truth mitotic figure (given for training dataset of MITOS ATYPIA 
by pathologists). All the hyperchromatic objects other than 
mitotic figures are labeled as non-mitotic candidates. Since the 
number of mitotic figures is relatively small compared to the non-
mitotic ones, and considering the fact that the mitotic detection 
problem is rotationally invariant, additional training instances of 
mitotic figures are generated by rotations and mirroring (original 
mitotic figure + 3 types of rotations + horizontal flip + vertical 
flip = 6 instances of a mitotic figure). In addition, the MITOS-
ATYPIA dataset provides ground truth information for locating 
non-mitotic figures which closely resemble mitotic figures. 

4.2 GABOR FEATURE EXTRACTION 

Gabor filters [10][11] when convolved with images, give 
higher responses at texture changes which are crucial for 
discriminating mitotic cells from other hyperchromatic objects in 
the image. A Gabor feature vector is extracted by 2-D Gabor 
convolution [12] of each candidate image patches. A 2-D Gabor 
filter is a Gaussian kernel modulated by a sinusoidal plane wave 
defined by the equation, 

( ) ( )ϕπ
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+


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
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= '

2

'22
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2
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where, x’ = x cosθ + y sinθ, y’ = -x sinθ + y cosθ, f is the frequency 
of the sinusoid curve, γ is the spatial aspect ratio which specifies 
the elasticity of the support of the Gabor function, θ represents the 
orientation of the normal to the parallel stripes of the Gabor 

function, ϕ is the phase offset, σ is the standard deviation of the 
Gaussian envelop. 

Fig.2. Overview of Methodology (a) Detected candidates 
marked in pink, (b) Gabor feature extraction, (c) DBN-DNN 
classification and (d) Detection results: true positives, false 
positives and false negatives marked in green, red and blue 

respectively 

Each candidate image patches are convolved with a 10×10 
complex valued Gabor filters computed for 5 scales and 8 
orientations. The filter bank of the 40 filters used is shown in 
Fig.3. The response of the real part of the filters on a detected 
candidate object is shown in Fig.4. This results in Gabor feature 
space with 40 channels of dimensions 80×80. The features are 
further reduced by applying 3×3 max-pooling on each channel 
and 1×1×1 max-pooling across the channels resulting in a 26×26 
image. The real parts of the image is selected as the features for 
classification resulting in feature vector of length 26×26 = 656 for 
each candidate.  
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(a) (b) 

Fig.3. Gabor Filter bank. (a) real part (b) imaginary part. Rows 
correspond to different orientations and the columns correspond 

to different scales 

Fig.4. Demonstration of the real part of Gabor filters applied to a 
candidate object 

4.3 CLASSIFICATION USING DEEP NEURAL 
NETWORKS 

A DNN pre-trained via stacked Restricted Boltzmann 
Machines called as Deep Belief Network-Deep Neural Networks 
(DBN-DNN) [13, 14] is used to classify the feature vectors of the 
candidates into one of the two classes: mitotic figure and non-
mitotic figure.  
4.3.1 Restricted Boltzmann Machines (RBMs): 

RBMs are the base units of the DBN-DNN. An RBM is two 
layer Neural Network: (1) Visible layer (v1,v2,...,vi) (2) Hidden 
layer (h1,h2,....,hj). Every node of visible layer is connected to 
every node in hidden layer. There is no intra-layer communication 
– this is the restriction in a restricted Boltzmann machine. RBMS
are trained in a unsupervised manner by many forward and 
backward passes. In forward pass each visible node takes a low-
level feature from an item in the feature set to be learned. In our 

case, the Gabor feature set has 656 features, so there must be 656 
input nodes on the visible layer. At each node in the hidden layer 
the inputs from the visible layer would combine. Each input is 
multiplied by a separate weight, the products are summed, added 
to a bias, and again the result is passed through an activation 
function to produce the node’s output.  

The activations of hidden layer become the input in a 
backward pass. They are multiplied by the same weights. The sum 
of those products is added to a visible-layer bias at each visible 
node, and the output of those operations is a reconstruction; i.e. 
an approximation of the original input. Because the weights of the 
RBM are randomly initialized, the difference between the 
reconstructions and the original input is often large. The 
reconstruction error can be the difference between the values 
of r and the input values, and that error is then back propagated 
against the RBM’s weights, again and again, in an iterative 
learning process until an error minimum is reached. 

In forward pass, an RBM uses inputs to make predictions 
about node activations p(h|v; w,a,b). But on its backward pass, 
when activations are fed in and guesses about the original data, 
are computed, an RBM is attempting to estimate the probability 
of inputs v given activations h, which are weighted with the same 
coefficients as those used on the forward pass. This second phase 
can be expressed as p(v|h; w,b,b). Together, those two estimates 
will lead you to the joint probability distribution of inputs v and 
activations h which is p(v, h). The Fig.5 shows a restricted 
Boltzmann machine. 

Fig.5. A RBM 

 The joint probability of neurons in the visible and the hidden 
layer of the RBM is defined by  

( , ; , , )1( , ; , , ) E v h W a bp v h W a b e
Z

=  (2)

where, Z is the partition function and E is the energy function and 
T represents the transpose operator. 
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The conditional probability of hidden state given the visible 
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 To measure the distance between its estimated probability 
distribution and the ground-truth distribution of the input, RBMs 
use Contrastive Divergence Algorithm. The change of parameter 
W using the CD algorithm is given by  

 ( )0 0 1 1
i j i jijw v h v hε∆ = −  (7) 

where, ε is the learning rate.  
In this paper, we apply the inference of RBM proposed by 

[14]. 
4.3.2 Deep Belief Networks (DBNs): 

A deep belief network (DBN) is formed by stacking RBMs. 
The states of hidden nodes inferred by the RBM of the first layer 
are used as input for the second layer. Once the first RBM learns 
the structure of the input data as it relates to the activations of the 
first hidden layer, then the data is passed one layer down the net. 
Now the first hidden layer becomes the visible layer. The 
activations from the first hidden layer are multiplied by weights 
at the nodes of the second hidden layer, to produce another set of 
activations. With every new hidden layer, the weights are adjusted 
until that layer is able to approximate the input from the previous 
layer. This is a greedy, layer wise and unsupervised pre-training.  
4.3.3 DBN-DNN: 

A DBN-DNN is formed by a adding a final decision layer to 
the DBN. The DBN-DNN is initialized by the prescribed pre-
training using the CD algorithm proposed in [14]. Finally a 
classical back-propagation is applied as supervised learning to 
fine tune the weights. The output of the (l+1)th layers are given 
by, 

 

( )1
T

l l l lq W q bσ+ = +

 

(8) 

The probability of random variable is used as the node output. 

 ( ) ( ) [ ]11
ll l lpq P ξξ ξ== = = Ε

 
(9) 

The probability (l+1)th node is given by 

 ( ) ( ) ( )( )1 1
ll

T
l l lpP W bξξ σ ξ+ = = Ε +  (10) 

In the back-propagation for the DBN-DNN two sets of 
derivatives are back propagated as given in [14]. 
4.3.4 DBN-DNN Mitotic-Figure Classifier: 

A 2 hidden layer DBN-DNN with 656-200-50-2 nodes is then 
constructed. Each instance of the input feature set to the first RBM 
is a set of Gabor feature vectors extracted from the candidate 
image patches. The ground truth information (labels) is used in 
the back propagation algorithm to fine-tune the parameters 
learned by DBN-DNN. 

Table.2. 656-200-50-2 DBN-DNN Mitotic detector 

Layer Type Neurons 

0 Visible (Input Gabor vectors) 656 N 

1 Hidden 200 N 

2 Hidden 50 N 

3 Visible (Output - Mitosis /Non- Mitosis) 2 N 

5. RESULTS 

The methodology was evaluated on the images of the test set 
of MITOS dataset and the three slides from the training set of 
MITOS-ATYPIA dataset. Results were obtained for the images 
scanned by both scanners: Aperio Scanscope XT and Hamamatsy 
Nanozoomer 2.0-HT. The performance of the proposed mitotic 
detection methodology is based on three evaluation metrics 
namely the precision (PPV), the recall (TPR) and the f1-score. 
The f-score = 2 × (precision × recall)/(precision + recall) is 
shown in Table 2. A detected candidate is regarded as a true 
mitotic figure if its distance is within 8 µm (8 / 0.2455 = 32 pixels 
for images of scanner Aperio Scanscope XT and 8 / 0.227299 = 
35 pixels (horizontal) and 8/0.227531= 35 pixels (vertical) for 
images of scanner Hamamatsu Nanozoomer 2.0-HT)) from the 
approximate center of a ground truth mitotic figure. Here True-
Positive is the number of mitoses that are ground truth mitoses 
among the detected mitoses, while False-Positive is the number 
of mitoses that are not ground truth mitoses among the detected 
mitoses and False Negatives is the number of ground truth mitoses 
that have not been detected. The Fig.6 shows the f-score of the 
proposed method on testing it for MITOS valuation dataset in 
comparison to the first four winning methods in the contest. The 
classification performance of the constructed DBN-DNN network 
is evaluated using the root mean square error calculated by 

 

2

)
1 2

1 (
N

k k
k

rmse y F x
MN =

= −∑
 

(11) 

where, M is the number of output classes, N is the number of data, 
xk represents the k-th input data, yk represents the k-th output data. 
The convergence of the network for root mean square error on the 
training and testing data of mitos dataset for 1000 iterations is 
shown in Fig.7. The learning rate was chosen to be 0.8 and the 
inital momentum was 0.5. The learning rate scale adjustment is 
0.01 for every iteration. The Fig.8 shows the mitotic detection 
results on representative images from the dataset. A closer view 
of the detection results on sub-images is shown in Fig.9. 

 

Fig.6. F-measures of various methods for Scanner Aperio 
images from MITOS dataset 
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Table.2. Performance Analysis of the proposed method on 
MITOS and MITOS-ATYPIA dataset 

 MITOS 
Evaluation 

dataset 

MITOS - ATYPIA 
Training dataset  

Aperio Scanscope 
XT  

Hamamatsu Nano 
zoomer 2.0-HT 

A15 A17 A18 H15 H17 H18 

PPV 0.77 0.55 0.62 0.77 0.67 0.62 0.79 

TPR 0.72 0.93 0.87 0.71 0.60 0.86 0.83 

F-score 0.74 0.69 0.72 0.74 0.71 0.72 0.81 
 

 
Fig.7. Convergence of training and test data on MITOS dataset 

6. CONCLUSION 

In light of the persisting need for an objective and reproducible 
method of assessment of mitotic count in breast cancer images, an 
efficient automated detection of mitotic figures in H&E stained 
breast cancer histopathology Images has been presented. The 
results show that the proposed method is accurate in detecting 
mitotic figures and worth comparable to the state-of-art 
methodology proposed by the winning method of MITOS contest. 
Moreover the method is efficient, scalable and simple to 
implement compared to the state-of-art method which are 
computationally expensive and requires immense amount of 
training data. The next phase of the work aims to validate the 
methodology on larger datasets to increase performance in 
automated detection of mitotic figures. 
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(a) 

 
(b) 

Fig.8.(a) Ground truth mitoses marked in yellow, (b) Detection 
results: true positives,  false positives and false negatives marked  

in red, green and blue respectively 

 
Fig.9. Closer view of the detection results on sub-images
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