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Abstract 
According to the report given by World Health Organization, by 2030 
almost 23.6 million people will die from cardiovascular diseases (CVD), 
mostly from heart disease and stroke. The main objective of this work 
is to develop a classifier for the diagnosis of abnormal Common Carotid 
Arteries (CCA). This paper proposes a new approach for the analysis 
of abnormalities in longitudinal B-mode ultrasound CCA images using 
multiwavelets. Analysis is done using HM and GHM multiwavelets at 
various levels of decomposition. Energy values of the coefficients of 
approximation, horizontal, vertical and diagonal details are calculated 
and plotted for different levels. Plots of energy values show high 
correlation with the abnormalities of CCA and offer the possibility of 
improved diagnosis of CVD. It is clear that the energy values can be 
used as an index of individual atherosclerosis and to develop a cost 
effective system for cardiovascular risk assessment at an early stage. 
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1. INTRODUCTION

For screening the cardiovascular diseases of the carotid 
artery, ultrasound imaging is a common procedure as the vessel 
is easily accessible with ultrasound probes [1]. Because of 
CVDs more people die annually than from any other cause. It 
has been reported by World Health Organization in a recent 
study that in the year 2008 nearly 17.3 million people died from 
CVDs. This represents 30% of all global deaths. In this 7.3 
million people died due to coronary heart disease and 6.2 million 
were due to stroke [2]. 

Arteries are blood vessels that carry blood between the heart, 
different tissues and organs of the body. They have ability to 
expand or contract to allow more blood or control the flow. 
Hollow centre through which blood flows is called lumen. CCA 
supplies oxygenated blood to skull, brain, eyeballs, ears and 
external nose [3]. When the blood supply to parts of the brain is 
suddenly interrupted, stroke occurs. Aortic stiffness has been 
proven to be a strong independent predictor of all-cause and 
CVD. Estimation of regional stiffness of the carotid artery is of 
great clinical interest [4]. The changes in stiffness with age are 
accelerated in hypertension and highly amplified by the 
association with other CVDs and concomitant risk factors [5]. 

Atherosclerosis is the thickening and narrowing of the 
arteries due to formation of plaque on the walls of the artery. It 
causes enlargement of the arteries and thickening of the artery 
walls [6, 7]. The diameter of CCA decreases due to increase in 
the thickness. This causes a reduction of the lumen with possible 
vascular problems and alters the arterial properties elasticity and 

stiffness. Precise segmentation of carotid artery allows the 
computation of various biomechanical and anatomical 
properties of the artery wall that may be useful to clinicians to 
follow the evolution of the atherosclerosis diseases [8]. 

Ultrasound imaging has the advantage that it is noninvasive 
and does not involve the use of ionizing radiation. It is therefore 
ideally suited to serial investigations. It is also relatively 
inexpensive and images are acquired in real time [9, 10]. 
Longitudinal B-mode ultrasound images are used in this work. 
The resolution of diagnostic ultrasound image is significantly 
limited by speckle noise. It is believed that speckle is a high 
frequency component of the image [11]. As the texture of 
speckle often carries useful information, it is not truly a noise in 
the typical engineering sense. Ultrasound experts with 
insufficient experience may not often draw useful conclusions 
from the images due to the presence of speckle. 

Though different methods are investigated for the analysis of 
carotid artery, the need still exists for the development, 
implementation and evaluation of an integrated system enabling 
the automated diagnosis. In the previous work boundary of CCA 
was extracted using watershed and wavelet transforms. The 
diameter was measured from the extracted boundary and used 
for the analysis of plaque deposit in the vessel [12][13]. In this 
work an effort is made to analyse the CCA using multiwavelets 
and correlate the findings with the atherosclerosis.  

Multi scale representation has proven to be useful in many 
image processing applications. Recently, multiwavelets have 
been introduced as a more powerful multi-scale analysis tool. A 
scalar wavelet system is based on a single scaling function and 
mother wavelet. But multiwavelet system is based on several 
scaling functions and mother wavelets. It has several useful 
properties such as symmetry, orthogonality, short support and a 
higher number of vanishing moments simultaneously [14].  

Multiwavelets can simultaneously provide perfect 
reconstruction, while preserving length (orthogonality), good 
performance at the boundary (via linear phase symmetry) and a 
higher order of approximation (vanishing moments). These 
features of multiwavelets are responsible for the better 
performance of multiwavelets over scalar wavelets in image 
processing applications [15,16]. Geronimo, Hardin and 
Massopust constructed one of the most well-known 
multiwavelets called GHM. GHM basis provides a combination 
of orthogonality, symmetry and compact support that is 
unachievable by any other scalar wavelet basis [17]. HM and 
GHM multiwavelets are used in this work to analyse the normal 
and abnormal CCA images. 
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2. MATERIALS AND METHODS 

2.1 IMAGE ACQUISITION AND DATABASE 

A group of 104 normal and abnormal subjects are used in this 
study. The arterial movements are recorded in the ultrasound 
machine. Value of the ultrasound scanner settings is an important 
issue affecting reliable recording of sequences of images. 
Appearance of anatomical structures and therefore the 
interpretation of the resulting images may be affected due to 
wrong settings. The probe used is a multi-frequency probe of 
range 5-10 MHz. For this application the frequency is set at 7.5 
MHz, since the CCA is at an optimum distance from the skin. The 
video is recorded for 2 to 3 cardiac cycles showing the 
longitudinal view of the CCA in B-mode at a rate of 29 frames 
per second. The blood pressure of the patient is also checked and 
recorded. The video clipping is first cut into frames and stored in 
a file ready for processing. 

2.2 LAYERS OF CCA 

 
Fig.1. Longitudinal view of CCA 

A sample image showing the longitudinal view of CCA is 
given in Fig.1. The artery wall consists of three layers. The 
outermost is called adventitia, the middle media and the innermost 
intima. In longitudinal view, the CCA is seen as a dark region 
comprised of lumen between the near walls (NW) and far walls 
(FW). Because of the poor difference in the acoustic impedance 
of the two adjacent layers, the intima layer is poorly represented. 
It is fused with the media layer. A dark grey is used to represent 
the media layer, whereas the adventitia layer appears as a bright 
grey and it is highly echogenic. The distance between the Lumen-
Intima (LI) and the Media-Adventitia (MA) boundaries is called 
IMT. Usually plaque is formed on the intima layer and narrows 
the lumen. 

 
Fig.2. Intensity profile 

The intensity profile along the vertical axis is shown in the 
Fig.2. Pixel values within the boundary of lumen are shown as 
shaded area in the profile. Formation of plaque alters the boundary 
of lumen. The multiwavelet preserves high frequency information 
in the image i.e. in boundaries. As the symmetric property of 

multiwavelets is very useful when dealing with image boundaries 
and prevents discontinuity at the boundaries and loss of 
information, abnormalities in CCA due to the formation of plaque 
can be correlated to the energy values of subbands obtained by 
multiwavelet decomposition. 

2.3 MULTIWAVELET TRANSFORM 

Multiscaling function vector Φ(x) and Multiwavelet function 
vector Ψ(x) are used in the multiwavelet system [18][19]. 
 Φ(x) = (φ1, φ2,...,φr)T (1) 
 (x) = (ψ1, ψ2,...,ψr)T (2) 
which satisfies the following two scale relations. 
 Φ(x) = √2∑k∈ZHkφk(2x-k) (3) 
 (x) = √2∑k∈ZGkφk(2x-k) (4) 

The norm of the r scaling functions is maintained by 2  with 
the scale of 2. For each integer k, Hk and Gk are matrices with size 
r×r. More degrees of freedom are provided by the matrix elements 
in these filters than a traditional scalar wavelet. The following 
useful properties such as orthogonality, symmetry and higher 
order of approximation are incorporated into the multiwavelet 
filters due to these extra degrees of freedom. All these properties 
cannot be possessed by a scalar wavelet at the same time [20]. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig.3.(a) Image (b) Prefilter along rows (c) First row 
decomposition (d) Prefilter along columns (e) First column and 

first level decomposition (f) Second level decomposition 

The Fig.3 shows the different stages of two level multiwavelet 
decompositions. Prefiltering step is more essential when using 
Multiwavelet transform to produce the required multiple streams 
[21]. In general, multiwavelets produce 4+12K number of 
subbands, for a Kth level decomposition. In the first level 
decomposition, 16 subbands are produced as shown in Fig.4.(a). 
In the second level decomposition, the four ‘low-low pass’ 
subbands of the first level are further decomposed to 16 subbands. 
In total it produces 28 subbands as shown in Fig.4.(b) that 
includes high-low, low-high and high-high subbands of first level 
decomposition [22]. 

 

Near Wall 
(NW) 
Far Wall 
(FW) 
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(b) 
Fig.4.(a) Subbands of first level decomposition (b) Subbands of 

second level decomposition 

Four main subbands with their own four subbands are 
obtained as the output of the combination of filters in each 
decomposition level. The four subbands L1L1, L1L2, L2L1 and L2L2 
are considered as approximate coefficients and remaining 12 
subbands are detail coefficients. In that L1H1, L1H2, L2H1 and 
L2H2 are horizontal, H1L1, H1L2, H2L1 and H2L2 are vertical and 
H1H1, H1H2, H2H1 and H2H2 are diagonal coefficients. In each 
level of decomposition, only the four subbands of approximate 
coefficients are decomposed into 16 subbands to produce the next 
level decomposition [23].  

GHM multiwavelet is used in this work due its versatility and 
accuracy. In GHM, there are two low pass and high pass filters 
for decomposition. GHM multiwavelet has two important features 
i.e., orthonormality of integer translates of scaling functions and 
an approximation order of two [24]. GHM scaling functions have 
short support, orthogonality and are symmetric about their 
centres. Hardin-Marasovich (HM) is also used in this analysis for 
comparison. 

After applying HM and GHM multiwavelet decomposition on 
the input CCA image. Energy is calculated for each subband. In 
an N×N subimage, energy is computed according to the following 
equation  
 Energy = ∑i∑jxij

2/N2 (5) 
where, xij is the ijth pixel value of the sub images. Energy is mainly 
concentrated in the low frequency sections after GHM 
multiwavelet transformation [25]. These subband energies are 
analysed to find if there is any correlation between CCA 
abnormalities and energy coefficients. 

3. RESULTS AND DISCUSSION 

Video of CCA with a length of 5 second is taken and converted 
into images at the rate of 25 frames per second. The proposed 
decomposition algorithm is applied on normal and abnormal CCA 
images using HM and GHM multiwavelets. 

The Fig.5 shows the first level GHM decomposed normal and 
abnormal CCA images of size 512×512. The Fig.6, Fig.7 and 
Fig.8 show only the subbands of approximation coefficients of 
second, third and fourth level GHM decomposition respectively. 
The size of second, third and fourth level images are 256×256, 
128×128 and 64×64 respectively. Decomposition is done for four 
levels as the information is lost beyond that. Subband energy 
values are calculated for all the four levels and tabulated for 
analysis. The energy values obtained for normal and abnormal 
CCA images using GHM multiwavelet are given in Table.1. 

 
Fig.5. First level GHM decomposition of normal and abnormal 

images 

 
Fig.6. Second level GHM decomposition of normal and 

abnormal images 

 
Fig.7. Third level GHM decomposition of normal and abnormal 

images 
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Fig.8. Fourth level GHM decomposition of normal and abnormal 

images 

Table.1. Subband Energy coefficients of normal and abnormal 
CCA images using GHM multiwavelet decomposition 

Sub 
band 

Normal image Abnormal image 

Level 1 
(x104) 

Level 2 
(x104) 

Level 3 
(x104) 

Level 4 
(x104) 

Level 1 
(x104) 

Level 2 
(x104) 

Level 3 
(x104) 

Level 4 
(x104) 

Ea1 0.52453 1.9183 3.4689 0.516 4.1008 15.22 54.755 12.94 

Ea2 0.22663 0.8388 1.6236 0.554 1.7721 6.619 24.455 10.41 

Ea3 0.23089 0.9545 7.0328 18.441 1.7892 6.898 25.437 209.43 

Ea4 0.09976 0.4175 2.8890 12.228 0.7732 3.009 11.043 94.64 

Eh1 0.02156 0.0821 0.1799 0.078 0.1675 0.636 2.435 2.23 

Eh2 0.00007 0.0011 0.0234 0.037 0.0005 0.011 0.153 0.53 

Eh3 0.00949 0.0411 0.3436 1.703 0.0731 0.289 1.193 11.75 

Eh4 0.00003 0.0005 0.0247 0.233 0.0002 0.006 0.127 3.61 

Ev1 0.02530 0.1273 0.5811 17.141 0.1816 0.811 4.141 74.99 

Ev2 0.01094 0.0557 0.2509 9.611 0.0785 0.353 1.898 30.94 

Ev3 0.00080 0.0113 0.6384 0.672 0.0038 0.063 1.908 4.77 

Ev4 0.00034 0.0050 0.3474 0.687 0.0016 0.028 1.025 10.21 

Ed1 0.00001 0.0056 0.0081 0.0835 0.0001 0.034 0.174 3.12 

Ed2 0.00001 0.0001 0.0069 0.0177 0.0001 0.001 0.069 1.21 

Ed3 0.00003 0.0005 0.0305 0.0099 0.0002 0.003 0.168 0.73 

Ed4 0.00001 0.0001 0.0091 0.0055 0.0001 0.001 0.099 0.65 

Ea1, Ea2, Ea3 and Ea4 are energy values of four subbands of 
the approximation coefficients. Eh1, Eh2, Eh3 and Eh4 are the 
four subband energies of Horizontal coefficients. Subband energy 
of vertical and diagonal coefficients are given as Ev1, Ev2, Ev3, 
Ev4 and Ed1, Ed2, Ed3, Ed4 respectively. From Table.1, it is 
observed that the energy is mainly concentrated in the low 
frequency bands i.e. approximation coefficients. Energy level of 
each subband obtained from normal and abnormal images using 
HM and GHM multiwavelet is plotted and analysed for all the 
four levels of decomposition. The Fig.9 and Fig.10 show the 
energy plots of first and second level HM and GHM subbands 
energy coefficients of normal and abnormal images respectively. 
Subbands of normal image are shown in white bars and the 
subbands of abnormal images are shown in black bars in the 
energy level diagram. 

 
(a) 

 
(b) 

Fig.9. Subband energy comparison of normal and abnormal 
CCA images for HM and GHM multiwavelet first level 

decomposition 
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(b) 

Fig.10. Subband energy comparison of normal and abnormal 
CCA images for HM and GHM multiwavelet second level 

decomposition 

By analysing the variations in the energy values of subbands 
of normal and abnormal decomposed CCA image, it is found that 
the diagonal energy coefficients have very little amount of energy 
in all the levels of decomposition. The horizontal and vertical 
energy coefficients have small amount of energy. But most of the 
energy is preserved in the approximate coefficients and it 
increases for every level of decomposition. Plots clearly show that 
the energy values vary for normal and abnormal image in all the 
levels. The energy values of subbands given in the Table.1 are for 
a normal and abnormal subject. Multiwavelets preserve high 
frequency information in the image i.e edges and give very good 
performance at the boundaries. As the formation of plaque is in 
the inner walls of the artery and alters the boundary, the difference 
between the normal and abnormal CCA is expected to reflect in 
the subband energy values of diagonal coefficients. While 
comparing the energy values of normal and abnormal CCA image 
given in Table.1, the same is observed. The energy values of 
diagonal coefficients of normal and abnormal images differ 
largely. Hence these values are further used for classification. 
They can be used to develop classifiers to classify the normal and 
abnormal CCA.  

4. CONCLUSION 

A method is proposed to analyze the abnormalities in 
longitudinal B-mode ultrasound common carotid artery images 
using HM and GHM multiwavelets. Normal and abnormal CCA 
image are taken and decomposed up to four levels. The energy 
value of each subband is calculated, plotted and analyzed for all 
the four levels of decomposition. It is found that most of the 
energy is concentrated in approximate coefficients and a small 
amount of energy is present in horizontal and vertical coefficients. 
The energy values obtained from normal images are compared 
with the energy values obtained from abnormal images. It is 
observed that the energy values have large difference for normal 
and abnormal images. Hence, it is concluded that the subband 
energy can be used as a feature for the diagnosis of abnormalities 

in CCA. Atherosclerosis and CVDs are highly correlated to the 
risk factors such as cholesterol, blood pressure, smoking and 
diabetics. Future work will focus on considering all these risk 
factors to validate the good features to detect abnormalities in the 
common carotid artery. Further testing of the proposed method 
has to be done in a larger image dataset to classify the healthy and 
unhealthy subjects. 
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