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Abstract 

Breast cancer remains a leading cause of mortality among women 

globally. Early and accurate diagnosis using medical imaging, such as 

mammograms or ultrasound, is critical for effective treatment. 

However, challenges such as low contrast, noise, and poor image 

quality in raw medical datasets often hinder accurate detection and 

diagnosis. Many conventional image preprocessing techniques fail to 

enhance pathological features effectively, which are essential for early-

stage breast cancer recognition. Noise artifacts and blurred edges 

further degrade the performance of diagnostic models. This paper 

proposes an integrated approach that combines advanced image 

filtering and enhancement techniques including Gaussian Filtering, 

Contrast Limited Adaptive Histogram Equalization (CLAHE), and 

Wavelet-Based Sharpening. These are applied in sequence to reduce 

noise, enhance tumor boundaries, and improve Thus contrast in 

mammographic images. The processed images are then used to train 

deep learning classifiers (e.g., CNNs) to improve detection accuracy. 

Experimental evaluations on public breast cancer imaging datasets 

demonstrate a significant improvement in diagnostic accuracy, 

sensitivity, and precision. The enhanced images yield clearer 

visualization of microcalcifications and tumor regions, leading to over 

93% accuracy in detection. 
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1. INTRODUCTION 

Breast cancer continues to be one of the leading causes of 

death among women worldwide. It is estimated that millions of 

new breast cancer cases are diagnosed every year, with a 

substantial portion leading to fatal outcomes if not detected early 

[1]. Medical imaging techniques such as mammography, 

ultrasound, and magnetic resonance imaging (MRI) have become 

the frontline tools for early breast cancer diagnosis due to their 

non-invasive nature and capability to visualize internal tissues [2]. 

Despite advancements in imaging technologies, the effectiveness 

of these methods heavily relies on the quality and clarity of the 

captured images. Poor contrast, presence of noise, and low 

visibility of microcalcifications or tumor margins often limit 

diagnostic accuracy, especially in dense breast tissues [3]. 

A significant challenge in breast cancer imaging is the 

inherent noise and low contrast in raw medical images, which 

obscures important diagnostic features [4]. For instance, artifacts, 

speckle noise, and tissue overlap in mammograms can mask or 

mimic lesions, leading to misinterpretation [5]. In addition, the 

variable anatomical structure of breast tissue across patients 

increases the complexity of universal segmentation and 

classification algorithms [6]. 

 

Manual examination of these images by radiologists is time-

consuming, prone to subjectivity, and often limited in precision, 

especially for early-stage tumors [7]. Moreover, conventional 

image preprocessing techniques fail to consistently enhance the 

necessary regions of interest, such as microcalcifications or 

spiculated lesions, critical for early detection [8]. 

The core problem lies in the lack of robust, automated, and 

adaptive preprocessing techniques that can optimize the visibility 

of cancerous regions without amplifying irrelevant details or 

noise [6]–[8]. Traditional filtering techniques either smooth out 

crucial tumor edges or over-enhance noise, degrading the 

diagnostic value of the images. Consequently, feature extraction 

and classification accuracy of subsequent deep learning models 

are adversely affected. This bottleneck calls for a hybrid, multi-

stage preprocessing pipeline capable of intelligently enhancing 

medical images for improved diagnostic performance. 

Objectives of this research include: (1) designing a robust 

image preprocessing pipeline that integrates multiple 

enhancement techniques for breast cancer detection; (2) 

improving the contrast, edge sharpness, and Thus visibility of 

mammographic and ultrasound images; and (3) integrating this 

enhanced imaging workflow into a deep learning model to boost 

classification accuracy and reduce false positives. 

The novelty of this work lies in the sequential integration of 

Gaussian Filtering, CLAHE (Contrast Limited Adaptive 

Histogram Equalization), and Wavelet-Based Sharpening, which 

collectively address denoising, contrast enhancement, and edge 

preservation in a unified framework. Unlike prior methods that 

rely on single enhancement techniques, our approach exploits the 

strengths of each stage: Gaussian filtering for noise suppression, 

CLAHE for local contrast amplification, and wavelet 

transformation for high-frequency edge detail restoration. This 

sequence ensures that critical tumor characteristics are preserved 

and highlighted for better feature learning in subsequent 

classification stages. 

The key contributions of this paper are: 

• A multi-stage preprocessing pipeline that systematically 

improves image quality using advanced filtering and 

enhancement methods tailored for breast cancer medical 

images. This pipeline significantly boosts image clarity 

without introducing artificial artifacts, making it highly 

effective for downstream AI-based classification. 

• Comprehensive experimental validation on benchmark 

breast cancer datasets using deep learning models (e.g., 

ResNet, VGG). The results show a marked improvement in 

classification accuracy, sensitivity, and precision when 

using enhanced images versus raw inputs. 
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2. RELATED WORKS  

Over the last decade, numerous studies have explored 

preprocessing and enhancement techniques to improve breast 

cancer detection accuracy in medical imaging. Early work 

focused on denoising techniques such as median and Gaussian 

filters, aimed at reducing high-frequency noise in mammograms. 

However, these methods often smooth out fine structures like 

microcalcifications, essential for early diagnosis [6]. To address 

this, researchers introduced adaptive filters and bilateral filters 

that attempted to preserve edge details while suppressing 

background noise. While effective in certain cases, these methods 

were computationally expensive and sensitive to parameter 

settings [7]. 

Contrast enhancement has also been widely studied. 

Traditional histogram equalization (HE) methods enhance image 

contrast globally but often result in over-amplification of noise in 

homogeneous regions. This led to the development of CLAHE, 

which limits contrast enhancement within local regions, 

significantly improving the visibility of subtle structures [8]. 

Studies show that CLAHE performs well across different imaging 

modalities including mammograms and ultrasound, but its 

performance degrades in extremely low-contrast images or noisy 

environments [9]. 

In terms of structural enhancement, wavelet-based image 

processing gained popularity for its ability to decompose images 

into multiple resolution levels. Researchers applied discrete 

wavelet transform (DWT) for feature extraction and 

enhancement, especially useful in highlighting fine edges and 

spiculated masses [10]. However, without careful thresholding 

and reconstruction, wavelet techniques can introduce artifacts or 

suppress important textural information. More recent works 

proposed combining wavelets with other filters or sharpening 

methods to balance detail preservation and noise suppression [11]. 

Parallelly, the rise of deep learning models such as CNNs 

revolutionized medical image analysis. CNNs automatically learn 

relevant features from image data, reducing the need for 

handcrafted features. However, these models are highly sensitive 

to the quality of input images. A number of studies revealed that 

low-quality images degrade CNN performance significantly, 

underscoring the importance of effective preprocessing [12]. 

Recent approaches thus incorporate enhancement techniques as a 

preprocessing stage before feeding images into deep learning 

pipelines. For example, preprocessing using CLAHE and bilateral 

filtering improved CNN-based classification accuracy by more 

than 10% in certain breast cancer datasets [11]. 

Researchers also explored hybrid approaches that combined 

multiple preprocessing methods. One such approach applied 

CLAHE followed by Gabor filtering for texture enhancement, 

which improved tumor segmentation accuracy. Another study 

utilized anisotropic diffusion filtering and wavelet shrinkage 

denoising prior to feature extraction, which reduced false 

positives in breast lesion classification [12]. Despite these 

advancements, the integration of multiple enhancement 

techniques in a systematic, pipeline-based manner remains 

limited in literature. Many existing works evaluate individual 

enhancement methods in isolation, rather than a cohesive, step-

wise framework for end-to-end image preparation. 

Moreover, most studies focus primarily on mammographic 

datasets, with fewer applications to ultrasound or multi-modal 

imaging where preprocessing needs are more complex due to 

speckle noise and variable tissue density. There is also limited 

work on benchmarking these enhancement strategies across 

multiple deep learning models to validate generalizability. 

3. PROPOSED METHOD  

The proposed method is a multi-stage preprocessing pipeline 

tailored for breast cancer detection. The first stage applies 

Gaussian filtering to reduce sensor and background noise in 

mammographic images. Next, CLAHE is used to enhance the 

local contrast without over-amplifying noise, which is crucial for 

visualizing fine tissue details like microcalcifications. Following 

this, Wavelet-Based Sharpening is applied to enhance the edges 

and tumor margins, preserving important diagnostic information. 

These enhanced images are then input to a Convolutional Neural 

Network (CNN) model trained for breast cancer classification, 

improving both feature learning and final prediction performance. 

• Input medical images from dataset (e.g., DDSM, MIAS). 

• Apply Gaussian Filter to remove high-frequency noise. 

• Use CLAHE to improve local contrast and highlight tumor 

regions. 

• Apply Wavelet Transform to perform image sharpening 

and edge preservation. 

• Normalize the image dimensions and pixel values. 

• Feed preprocessed images into a CNN classifier (e.g., 

ResNet, VGG). 

• Train and evaluate model on performance metrics: accuracy, 

sensitivity, precision. 

• Output: Classified result (benign/malignant) and enhanced 

visualization. 

Algorithm: Breast Cancer Image Preprocessing and 

Detection 

BEGIN 

1. Load Dataset: 

   FOR each image in medical dataset: 

       image ← read(image_path) 

2. Preprocessing Step: 

   # Step 1: Gaussian Filtering 

   filtered_image ← apply_gaussian_filter(image, kernel_size=5, 

sigma=1.0) 

   # Step 2: CLAHE Enhancement 

   clahe_image ← apply_CLAHE(filtered_image, clip_limit=2.0, 

tile_grid_size=(8,8)) 

   # Step 3: Wavelet-Based Sharpening 

   wavelet_coeffs ← wavelet_decompose(clahe_image, level=2, 

wavelet='db1') 

   modified_coeffs ← enhance_edges(wavelet_coeffs) 

   sharpened_image ← wavelet_reconstruct(modified_coeffs) 

3. Image Normalization: 

   resized_image ← resize(sharpened_image, target_shape=(224, 

224)) 
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   normalized_image ← normalize(resized_image) 

4. Classification Step: 

   prediction ← CNN_Model.predict(normalized_image) 

   IF prediction > threshold THEN 

       result ← "Malignant" 

   ELSE 

       result ← "Benign" 

5. Save and Visualize Results: 

   save_image(enhanced_output_path, sharpened_image) 

   display(result, prediction_probability) 

END 

3.1 GAUSSIAN FILTERING FOR NOISE 

REDUCTION 

Gaussian filtering is applied as the first step to smooth the 

medical image. It uses a 2D Gaussian kernel to convolve with the 

image, thereby reducing unwanted pixel-level noise. The 

Gaussian function is defined as: 
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where σ is the standard deviation that controls the smoothing 

intensity. A higher σ results in more smoothing but can blur fine 

structures. 

• Kernel size used: 5×5 

• σ: 1.0 (experimentally chosen) 

• Applied across all grayscale mammogram and ultrasound 

images. 

This step ensures that irrelevant background variations do not 

interfere with subsequent contrast enhancement or edge 

sharpening. 

Table.1. Effect of Gaussian Filtering on Image Metrics 

Image  

Type 

Original  

SNR (dB) 

After  

Gaussian Filter 
PSNR (dB) SSIM 

Mammogram 18.5 24.1 30.5 0.84 

Ultrasound 16.3 22.7 28.9 0.81 

The Table.1 shows that the signal-to-noise ratio (SNR), Peak 

Signal-to-Noise Ratio (PSNR), and Structural Similarity Index 

Measure (SSIM) improve significantly after applying Gaussian 

filtering. 

3.2 CLAHE FOR LOCAL CONTRAST 

ENHANCEMENT 

CLAHE works by dividing the image into small contextual 

regions (tiles) and applying histogram equalization to each. It then 

clips the histogram at a predefined limit to avoid over-

enhancement and applies bilinear interpolation to remove 

blockiness. 

The transformation is defined as: 
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where, CDF is the cumulative distribution function of the 

intensity values in the tile, M×N is the number of pixels in the tile, 

L is the number of gray levels. 

• Clip limit: 2.0 

• Tile grid size: 8×8 

• Applied after Gaussian filtering. 

This results in enhanced local contrast, making small tumors 

and calcifications more visible. 

 

Fig.1. CLAHE - DWT 

Table.2. Effect of CLAHE on Contrast Metrics 

Image Type 
Original  

Contrast 

After  

CLAHE 
Entropy CNR 

Mammogram 0.45 0.71 7.62 4.30 

Ultrasound 0.38 0.66 7.48 3.98 

The Table.2 illustrates an increase in contrast ratio and 

entropy, showing improved differentiation between tissue types 

and tumor regions. The Contrast-to-Noise Ratio (CNR) also 

indicates better visibility of abnormalities. 

3.3 WAVELET-BASED SHARPENING 

Wavelet decomposition breaks an image into multiple 

frequency bands. High-frequency bands contain edge 

information, which is then enhanced using sharpening filters or 

scaling functions. The image is reconstructed using inverse 

wavelet transform, preserving the improved edge information. 

Using the Discrete Wavelet Transform (DWT): 

 , , , ,

, ,

( , ) ( , )j k l j k l

j k l

f x y c x y=   

where, 
, ,j k lc are wavelet coefficients at scale j, ψ is the wavelet 

basis function.  

We enhance the high-frequency coefficients cH as: 

 
H Hc c  =   



A MUTHUMARI AND SUBHASH A NALAWADE: ADVANCED IMAGE FILTERING AND ENHANCEMENT TECHNIQUES FOR ACCURATE BREAST CANCER DETECTION IN  

                                                                                         MEDICAL IMAGING DATASETS 

 

3686 

where α>1 (typically 1.5) to amplify edges before inverse DWT. 

• Wavelet used: Daubechies (db2) 

• Levels: 2 

• Enhancement factor α: 1.5 

Table.3. Wavelet Sharpening Effects on Edge Metrics 

Image  

Type 

Original  

Edge Clarity  

(Laplacian Var.) 

After  

Sharpening 
SSIM 

Gradient  

Magnitude 

Mammogram 56.2 91.8 0.86 5.4 

Ultrasound 43.7 77.4 0.83 4.9 

The Table.3 confirms that edge sharpness is significantly 

improved post-wavelet sharpening, as measured by Laplacian 

variance and gradient magnitude. 

3.4 CNN-BASED CLASSIFICATION 

After preprocessing, the enhanced images are normalized and 

resized to feed into a CNN classifier (e.g., ResNet-18). The CNN 

learns the distinguishing features between benign and malignant 

lesions from these clearer, high-quality images. Enhanced images 

allow the CNN to focus on sharper tumor boundaries and contrast-

rich regions, improving classification. The CNN performs 

classification based on softmax output: 

 ( )
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where zc is the activation for class c. The cross-entropy loss used 

for training is: 

 ˆlog( )i i

i

y y= −L  

Table 4: Classification Results with and without Preprocessing 

Model 
Accuracy  

(Raw) 

Accuracy  

(Enhanced) 
Sensitivity Specificity 

ResNet-18 85.7% 93.2% 92.1% 94.3% 

VGG-16 83.2% 91.5% 90.6% 92.1% 

The Table.4 shows that applying the proposed enhancement 

pipeline before classification improves accuracy, sensitivity, and 

specificity significantly. 

4. RESULTS AND DISCUSSION 

The proposed breast cancer detection pipeline was 

implemented and evaluated using Python 3.11 on Google Colab 

Pro and a local machine setup. Google Colab provided access to 

Tesla T4 GPU with 16GB VRAM and 13GB RAM, ensuring 

efficient training of CNN models with enhanced image inputs. For 

local experimentation, we used a system equipped with Intel Core 

i7-12700H CPU, 32GB DDR5 RAM, and an NVIDIA RTX 3060 

GPU (6GB VRAM) running Ubuntu 22.04 LTS and CUDA 11.8 

for GPU acceleration. 

The primary simulation environment consisted of TensorFlow 

2.14 and OpenCV, along with Keras, scikit-image, and 

PyWavelets libraries. Datasets such as Mini-MIAS (for 

mammograms) and BUSI Dataset (for ultrasound images) were 

used. Both datasets were preprocessed using the proposed 

pipeline (Gaussian Filtering, CLAHE, and Wavelet Sharpening), 

and fed into CNN architectures like ResNet-18 and VGG-16 for 

classification. Training was conducted using Adam optimizer, 

early stopping, and 5-fold cross-validation to ensure robustness. 

All experiments were repeated five times to compute average 

results and reduce variance caused by random initialization. Table 

5 outlines the key experimental parameters used during training, 

enhancement, and evaluation stages. 

Table.5. Experimental Setup and Parameter Configuration 

Component Parameter Value / Description 

Dataset Mammogram, Ultrasound 
Mini-MIAS,  

BUSI Dataset 

Image Size Input Resolution 224 × 224 

Preprocessing 

Gaussian Filter  

Kernel Size 
5 × 5 

Gaussian σ 1.0 

CLAHE Clip Limit 2.0 

CLAHE Tile Grid Size 8 × 8 

Wavelet Type Daubechies-2 (db2) 

Decomposition Levels 2 

Training 

Parameters 

Optimizer Adam 

Learning Rate 0.0001 

Batch Size 32 

Epochs 100 

Loss Function 
Categorical  

Cross-Entropy 

Evaluation 
5-Fold Cross  

Validation 

Model  

Architecture 

CNNs Used ResNet-18, VGG-16 

Activation Function 
ReLU, Softmax  

(Final Layer) 

The Table.5 summarizes the consistent parameters across all 

experiments, ensuring comparability of results for both enhanced 

and non-enhanced image inputs. 

5. PERFORMANCE METRICS 

The model’s effectiveness was evaluated using the following 

performance metrics, computed after classification of the 

preprocessed images: 

1. Accuracy 

Accuracy
TP TN

TP TN FP FN

+
=

+ + +
 

It indicates the overall percentage of correctly classified 

benign and malignant cases. 

2. Sensitivity (Recall or True Positive Rate) 

 Sensitivity
TP

TP FN
=

+
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It measures how well the model identifies malignant (positive) 

cancer cases. High sensitivity is crucial for early detection. 

3. Specificity (True Negative Rate) 

Specificity
TN

TN FP
=

+
 

It evaluates how effectively benign cases are identified, 

reducing unnecessary anxiety or intervention. 

4. Precision (Positive Predictive Value) 

 Precision
TP

TP FP
=

+
 

It shows how many predicted malignant cases are actually 

malignant. Important for reducing false alarms. 

5. F1-Score 

 
Precision Recall

F1-Score 2
Precision Recall


= 

+
 

To benchmark the proposed enhancement pipeline, we 

selected three state-of-the-art methods that used either single-

stage preprocessing or hybrid models in similar datasets: CLAHE 

+ CNN-Based Classification [8, 11], 2. Wavelet + GLCM 

Features + SVM Classifier [10], CLAHE + Gabor Filters + CNN 

[12]. 

Table.6. Performance Comparison of Methods 

Epochs Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

5 

CLAHE + CNN 72.4 69.1 74.5 70.8 69.9 

Wavelet + GLCM + SVM 70.3 65.7 72.6 68.2 66.9 

CLAHE + Gabor + CNN 74.6 70.2 76.8 73.4 71.7 

Proposed Pipeline + CNN 79.3 77.5 80.1 75.8 76.6 

10 

CLAHE + CNN 75.1 72.8 76.2 74.1 73.4 

Wavelet + GLCM + SVM 72.5 69.3 74.1 71.6 70.4 

CLAHE + Gabor + CNN 77.3 74.5 78.7 76.8 75.6 

Proposed Pipeline + CNN 82.4 80.9 84.1 79.2 80.0 

100 

CLAHE + CNN 85.2 82.4 86.8 84.6 83.5 

Wavelet + GLCM + SVM 80.3 78.5 81.7 79.1 78.8 

CLAHE + Gabor + CNN 88.4 86.1 89.7 87.0 86.5 

Proposed Pipeline + CNN 93.2 92.1 94.3 91.4 91.7 

Table.7. Performance Comparison on Mini-MIAS Dataset 

Method Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

CLAHE + CNN 
ResNet-18 85.2 83.1 86.8 84.4 83.7 

VGG-16 83.6 81.2 84.9 82.1 81.6 

Wavelet + GLCM + SVM - 80.1 78.5 81.3 79.0 78.7 

CLAHE + Gabor + CNN 
ResNet-18 88.7 86.5 89.9 87.3 86.9 

VGG-16 87.1 84.6 88.4 85.8 85.2 

Proposed Pipeline + CNN 
ResNet-18 93.5 92.4 94.1 91.6 92.0 

VGG-16 91.8 90.1 92.7 90.7 90.4 

Table.8. Performance Comparison on BUSI Dataset 

Method Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

CLAHE + CNN 
ResNet-18 83.9 81.5 85.4 82.6 82.0 

VGG-16 82.2 79.6 83.7 80.7 80.1 

Wavelet + GLCM + SVM - 78.6 76.9 79.7 77.4 77.1 

CLAHE + Gabor + CNN 
ResNet-18 87.5 85.1 88.7 86.2 85.6 

VGG-16 85.8 83.3 86.9 84.5 83.9 

Proposed Pipeline + CNN 
ResNet-18 92.6 91.2 93.8 90.7 90.9 

VGG-16 90.3 88.7 91.6 89.4 89.0 

 

As shown in Table.6, the proposed enhancement pipeline 

consistently outperforms existing methods across all evaluation 

metrics over 100 training epochs. At early stages (epoch 5), the 

proposed method already shows a noticeable advantage, 
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achieving 79.3% accuracy, while the best-performing existing 

method (CLAHE + Gabor + CNN) trails at 74.6%. As training 

progresses, the performance gap widens. By epoch 100, the 

proposed method achieves 93.2% accuracy, 92.1% sensitivity, 

and 94.3% specificity, significantly higher than the next best 

method (CLAHE + Gabor + CNN) which achieves 88.4% 

accuracy, 86.1% sensitivity, and 89.7% specificity. 

The Wavelet + GLCM + SVM method, which relies on 

handcrafted features, lags behind throughout training and peaks at 

80.3% accuracy, confirming its limited adaptability to deep 

learning tasks. The F1-score and precision of the proposed 

method also remain superior, indicating both high true positive 

detection and lower false positives. This improvement is directly 

attributed to the comprehensive preprocessing that removes noise 

(Gaussian), enhances local contrast (CLAHE), and preserves edge 

information (Wavelet), resulting in clearer images for feature 

learning. Thus, Table.6 demonstrates that the proposed method 

significantly enhances model convergence and final detection 

performance in breast cancer diagnosis. 

As observed in Table.7 and Table.8, the proposed image 

preprocessing pipeline significantly improves performance 

metrics across both Mini-MIAS and BUSI datasets using ResNet-

18 and VGG-16 models. On the Mini-MIAS dataset, the proposed 

method with ResNet-18 achieves the highest accuracy of 93.5%, 

which is 4.8% higher than the best existing method (CLAHE + 

Gabor + CNN at 88.7%). It also records 92.4% sensitivity and 

94.1% specificity, which are crucial for both detecting malignant 

tumors and avoiding false positives. 

Similarly, on the BUSI dataset, the proposed method with 

ResNet-18 achieves 92.6% accuracy, outperforming CLAHE + 

Gabor + CNN by 5.1%. It demonstrates strong generalizability by 

maintaining high F1-scores above 90% in both datasets. Even 

with VGG-16, which is a less deep model compared to ResNet, 

the pipeline maintains consistent gains of 2–5% across all metrics. 

The Wavelet + GLCM + SVM method consistently 

underperforms due to its reliance on manual feature extraction, 

confirming the superiority of deep learning with enhanced inputs. 

Thus, Table.7 and Table.8 validate that the proposed method 

delivers significant and consistent improvements, especially in 

recall and precision, which are vital for real-world clinical 

applications. 

6. CONCLUSION 

This study presents a novel, hybrid image enhancement 

pipeline combining Gaussian Filtering, CLAHE, and Wavelet-

Based Sharpening tailored for breast cancer detection using 

medical imaging datasets. By reducing noise, enhancing contrast, 

and preserving fine edge details, the pipeline optimally prepares 

mammographic and ultrasound images for classification. The 

integration with CNNs allows the model to learn high-quality 

discriminative features, enabling more accurate and earlier 

detection of malignancies. Compared to existing methods like 

CLAHE + CNN, Wavelet + GLCM + SVM, and CLAHE + Gabor 

filters, the proposed approach consistently outperforms in both 

shallow and deep models, proving its adaptability and robustness. 
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