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Abstract 

Underwater imaging often encounters challenges such as low 

resolution and diminished clarity due to the effects of light absorption 

and scattering in aquatic environments. To address these issues, this 

study presents an enhanced image super-resolution method that 

integrates a Spatial Attention Module (SAM) within the ESRGAN 

generator architecture. The proposed model enables focused 

reconstruction of critical spatial features, such as edges and textures, 

which are commonly lost in traditional interpolation methods. 

Comparative evaluations against conventional upscaling techniques—

namely nearest neighbor, bilinear, and bicubic interpolation—

highlight the effectiveness of the approach. Experimental results 

demonstrate that the SAM-enhanced ESRGAN achieves a Peak Signal-

to-Noise Ratio (PSNR) of 28.53 dB and a Structural Similarity Index 

Measure (SSIM) of 0.821, marking a substantial improvement in both 

visual fidelity and quantitative accuracy over baseline methods. 
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1. INTRODUCTION 

Image super resolution is an important research area in 

computer vision that focuses on reconstructing high resolution 

images from their low-resolution counterparts. The ability to 

generate detailed, high-quality images from degraded inputs is 

crucial for many real-world applications such as medical imaging, 

satellite imagery, security surveillance, and digital photography. 

However, this task is inherently challenging because a low-

resolution image contains limited information, and recovering lost 

high-frequency details like edges, textures, and fine structures 

requires intelligent inference. 

Traditional super-resolution methods mainly relied on 

interpolation techniques, such as bicubic or bilinear interpolation, 

which are computationally simple but often produce overly 

smooth and blurry results. More advanced methods using 

dictionary learning or example-based approaches made 

improvements but struggled with generalization and detailed 

texture reconstruction. In recent years, deep learning has 

revolutionized super-resolution, enabling models to learn 

complex mappings from low to high resolution images using large 

datasets. 

Among deep learning approaches, Generative Adversarial 

Networks (GANs), introduced by Goodfellow et al. [1], have 

shown remarkable success in generating realistic images. GANs 

consist of two neural networks, a generator and a discriminator 

that compete in a zero-sum game. The generator attempts to create 

images that look real, while the discriminator tries to distinguish 

generated images from genuine ones. This adversarial training 

framework encourages the generator to produce sharper and more 

natural images, which is a significant improvement over models 

optimized solely for pixel-wise accuracy. 

Despite their success, GANs still face challenges in capturing 

fine spatial details and long-range dependencies within images. 

To address this, attention mechanisms have been integrated into 

GAN architectures. Attention allows the network to dynamically 

focus on the most important parts of an image during processing. 

The Spatial Attention Module (SAM), in particular, highlights 

spatial regions that contribute most to the visual quality, such as 

edges and textures. Zhang et al. [2] demonstrated that 

incorporating SAM into GANs helps the network capture global 

contextual information and improves the generation of high-

frequency details, leading to enhanced image realism. 

Extensive survey papers [3], [4] have reviewed the progress of 

GAN-based super-resolution techniques and emphasize the 

critical role of attention mechanisms. These surveys show that 

attention modules improve both perceptual quality and 

quantitative metrics by allowing models to selectively emphasize 

crucial image features. This has led to a growing trend where 

modern super-resolution models incorporate various forms of 

attention spatial, channel, or hybrid to enhance performance 

across diverse datasets and scenarios. 

Building on this foundation, our work integrates a Spatial 

Attention Module within the Residual-in-Residual Dense Blocks 

(RRDBs) of the ESRGAN architecture. By doing so, the generator 

learns to focus selectively on spatially significant features during 

the upscaling process, improving the reconstruction of fine details 

and textures. The discriminator retains the original ESRGAN 

design to guide the generator in producing realistic and high-

quality images through adversarial feedback. 

This paper is organized as follows, Section 2 reviews related 

work on Generative Adversarial Networks (GANs), attention 

mechanisms, and super-resolution techniques. Section 3 presents 

the proposed methodology, detailing the integration of the Spatial 

Attention Module (SAM) into the ESRGAN generator and the 

overall training procedure. Section 4 outlines the evaluation 

metrics used to assess performance. Section 5 discusses the 

experimental results, comparing the proposed model with 

baseline methods and demonstrating improvements in both 

quantitative metrics and visual quality. Section 6 provides a 

discussion on the advantages of incorporating spatial attention in 

super-resolution tasks and suggests potential future research 

directions. Section 7 concludes with the list of references. 

2. RELATED WORK 

In recent years, Generative Adversarial Networks have 

emerged as a transformative technology across various domains 

of image processing, particularly in tasks that demand perceptual 

realism and structural fidelity. The ability of GANs to learn 

complex data distributions has positioned them as a powerful tool 
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for image synthesis, enhancement, and restoration. Among the 

early advancements, the Self-Attention GAN (SAGAN) 

introduced by Zhang et al. [2] demonstrated that incorporating 

self-attention mechanisms within the GAN architecture allows the 

model to capture long-range dependencies and better preserve 

global image structure, thereby enhancing the quality of generated 

images. 

Super-resolution is one of the core areas where GANs have 

shown considerable promise. A concise review by Fu et al. [5] 

highlights multiple GAN-based approaches that outperform 

traditional interpolation methods by leveraging adversarial 

training and perceptual loss. These models not only increase 

image resolution but also preserve intricate textures, which are 

often lost in conventional methods. To address varying scales of 

detail, Wang et al. proposed a Multi-Scale Attention Network 

(MSAN) that leverages multi-scale feature representations and 

attention mechanisms to improve the reconstruction of fine-

grained image features [6]. 

Tian et al. [4] presented a comprehensive survey that 

categorizes and analyzes a wide range of GAN-based 

architectures for single image super-resolution (SISR), 

underlining the significant improvements in perceptual and 

quantitative performance these models have achieved. Another 

notable contribution in the area of practical deployment is the 

Real-ESRGAN framework by Wang et al. [7], which adapts 

ESRGAN for real-world degradation models using synthetic 

training data, making it suitable for blind super-resolution tasks. 

The flexibility of GANs extends to niche but critical 

applications such as underwater image enhancement. Wu et al. 

developed FW-GAN, which applies a multi-scale fusion strategy 

within the GAN framework to restore underwater images, 

effectively handling scattering and distortion [8]. This 

underscores the adaptability of GANs to various image 

degradation contexts. In the field of medical imaging, Zhao et al. 

[9] reviewed the role of attention-based GANs in enhancing 

diagnostic imaging, affirming the value of attention mechanisms 

in improving anatomical clarity and diagnostic reliability. 

Building on these trends, recent efforts have explored various 

forms of attention integration within GANs to refine spatial and 

contextual awareness. The SPA-GAN by Emami et al. [10] both 

utilize spatial attention modules to direct the network’s focus 

toward salient regions, thus improving the realism of image-to-

image translations. Yang et al. introduced CSAGAN, combining 

channel and spatial attention to guide unsupervised translation 

processes more effectively [11]. In related work, Xie et al. [12] 

and Jin et al. [13] apply hybrid attention in steganography and 

target recognition, respectively, indicating a broader utility of 

these mechanisms beyond standard restoration tasks. 

In our approach, we modified the generator of the ESRGAN 

by integrating a Spatial Attention Module (SAM) within its 

Residual-in-Residual Dense Blocks (RRDBs). This addition 

allows the generator to better capture and emphasize important 

spatial features like edges and textures while reconstructing high-

resolution images from low-resolution inputs. The SAM helps the 

generator focus on visually significant areas, improving the 

sharpness and detail of the output images. 

The discriminator remains similar to the original ESRGAN 

design. It is trained to distinguish between the real high-resolution 

images and the ones produced by the generator. By providing 

feedback on the realism of generated images, the discriminator 

guides the generator to produce outputs that are more visually 

convincing and closer to real images. 

3. METHODOLOGY 

In this document, we integrate GANs and Spatial Attention 

Modules (SAM) for the enhancement of underwater image quality 

and resolution. The model overall can be described as consisting 

of the following core elements: 

3.1 SPATIAL ATTENTION MODULE 

The Spatial Attention Module (SAM) is a mechanism 

designed to help the network focus on important spatial regions in 

feature maps, such as edges and textures. Mathematically, given 

an input feature map C H WF  R , SAM first applies channel-

wise average pooling Favg and max pooling Fmax to produce two 

spatial maps of size 1*H*W. These are concatenated and passed 

through a convolution layer followed by a sigmoid activation to 

generate a spatial attention map 1 H W

sM  R , where values range 

between 0 and 1, indicating the importance of each spatial 

location. The refined output feature map F′ is obtained by 

elementwise multiplying the original features with this attention 

map, 
sF F M =  . In our approach, we integrate SAM inside 

each Residual in Residual Dense Block (RRDB) of the ESRGAN 

generator to enhance the focus on spatially important regions 

during super-resolution, improving the reconstruction of fine 

details and textures in the high-resolution output. 

3.2 DATA PREPROCESSING 

To prepare the data for training, we used a subset of 1,000 high 

resolution images from the USR-4K [15] dataset, which contains 

a variety of natural scenes and complex textures. The 

corresponding low-resolution images were generated using 

bicubic down sampling with a scale factor of ×4, simulating real-

world degradation conditions. 

For each image pair, we randomly extracted HR and LR patch 

pairs of size 128×128 pixels to allow for efficient batch 

processing and to expose the model to diverse content. These 

patches were normalized to the [0,1] range and augmented using 

horizontal flipping and random rotations to increase data diversity 

and prevent overfitting. All image data was loaded and processed 

using custom PyTorch data loaders, enabling efficient shuffling, 

augmentation, and batching during training. 

 

Fig.1. Sample LR and HR Images (UFO-120 Dataset) 
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3.3 MODEL ARCHITECTURE 

Our model builds upon the Enhanced Super-Resolution 

Generative Adversarial Network ESRGAN [14] framework, 

which is known for its strong perceptual performance. The key 

enhancement introduced in our work is the integration of a Spatial 

Attention Module (SAM) into each of the Residual-in-Residual 

Dense Blocks (RRDBs) in the generator. 

 

Fig.2. Model Architecture 

3.3.1 Generator with Spatial Attention Module (SAM): 

The generator consists of the following key components: 

• Initial Convolution Layer: Applies a 3×3 convolution to 

extract low level features from the Low-Resolution input. 

• SAM-enhanced RRDBs: The core of the generator includes 

a series of RRDBs, each containing dense connections and 

residual learning. In our architecture, a SAM is inserted after 

the final dense convolution within each block. The SAM 

computes an attention map A(x) based on spatial features, 

enhancing informative regions like edges and textures. The 

final output of SAM is: 
SAM ( ) ( ) ,F x A x x=   where ⊗ 

denotes element-wise multiplication, and 
C H Wx  R is the 

input feature map. 

• Up sampling Blocks: Two-pixel shuffle layers are used to 

increase the spatial resolution by a factor of x 4. 

• Output Convolution Layer: A final 3×3 convolution 

produces the super-resolved image. 

By integrating SAM into each RRDB, the generator 

selectively emphasizes visually important regions, improving its 

ability to recover fine details and high-frequency information. 

3.3.2 Discriminator: 

The discriminator is designed as a deep CNN-based classifier 

that distinguishes between real high-resolution images and those 

generated by the network. It consists of: 

• A sequence of convolutional layers with increasing depth 

and down sampling, 

• LeakyReLU activations and batch normalization for stable 

training, 

• A final fully connected layer that outputs a scalar real/fake 

probability. 

This adversarial component encourages the generator to 

produce outputs that are not only accurate at the pixel level but 

also perceptually realistic. 

3.4 LOSS FUNCTIONS 

In our model, we utilize three key loss functions to train the 

Generator and Discriminator in the GAN architecture: 

 

Fig.3. Generator Architecture with Spatial Attention Module  

3.4.1 Adversarial Loss (Binary Cross-Entropy): 

In GAN, the Generator and Discriminator are trained using 

adversarial loss. This loss functions to help the Generator produce 

images that the Discriminator is un- able to differentiate from 

genuine images. 

( ) ( )adv

1

1
log ( ) (1 ) log 1 ( ( ))

N

i i i i

i

L y D x y D G z
N =

= − + − −    

where, D(x) represents discriminator’s output probability and x is 

a real image. G(z) is a fake image generated by the random noise 

z. yi is the true label indicating whether xi is real or fake. 

3.4.2 Pixel-wise Loss (Mean Squared Error, MSE): 

The pixel-wise loss measures the pixel wise difference 

between the generated image and the real image at a pixel level. 

This loss helps the Generator improve its pixel-wise accuracy. 
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This loss function measures the pixel-level difference between 

the generated fake image xi and the target high-resolution image 

yi. It ensures that the model minimizes the difference between the 

predicted and actual pixel values. 

3.4.3 Perceptual Loss (VGG Feature Extractor): 

Perceptual loss evaluates the similarities in high-level features 

between real and generated images instead of focusing on pixel 

differences. It leverages a pretrained VGG network to extract 

features from both sets of images, and the loss is determined by 

comparing these extracted features. 

 
2

perc VGG VGG 2Φ ( ) Φ ( )L x y= −  

4. EVALUATION METRICS 

We have used most significant benchmarking criteria to ex-   

amin the model’s performance in terms of quality of image 

generated as the evaluation metrics. 

4.1 PEAK SIGNAL-TO-NOISE RATIO (PSNR) 

PSNR is used to assess the quality of generated fake images 

by comparing the peak signal to the noise, which represents the 

difference from the original image. 

 
2

10PSNR 10 log
MSE

L 
=   

 
 

where, MSE is the Mean Squared Error between the ground truth 

and generated fake image. 

4.2 STRUCTURAL SIMILARITY INDEX (SSIM) 

The structural similarity between two images by taking into 

account luminance, contrast, and structure. 
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where, µx and µy represent the mean pixel intensities values of the 

images x and y and σx
2 and σy

2 represents the variances of the pixel 

intensities values of images x and y. 

5. RESULTS 

To assess the performance of our proposed SAM-ESRGAN 

model, we trained it on a subset of 1,000 images from the USR-

4K dataset for 200 epochs. The training utilized the Adam 

optimizer with an initial learning rate of 0.0001. A batch size of 

16 was used to balance computational efficiency and training 

stability. The generator was optimized using a combination of 

pixel-wise L1 loss, perceptual loss from a pre-trained VGG 

network, and adversarial loss, while the discriminator was trained 

with binary cross-entropy loss. Evaluation was performed on a 

separate test set of 200 high-resolution images. We employed two 

standard quantitative metrics: Peak Signal-to-Noise Ratio 

(PSNR), which measures pixel-level reconstruction accuracy, and 

Structural Similarity Index Measure (SSIM), which assesses 

perceptual and structural similarity. Both metrics provide 

complementary insights into the super-resolution quality of the 

model outputs. 

Our model was compared against traditional image upscaling 

methods, including Nearest Neighbor, Bilinear, and Bicubic 

interpolation. The Nearest Neighbor method achieved a PSNR of 

27.84 dB and an SSIM of 0.781. Bilinear interpolation showed 

moderate improvement with a PSNR of 28.95 dB and an SSIM of 

0.795. Bicubic interpolation, often considered the baseline for 

super-resolution, yielded a PSNR of 29.84 dB and an SSIM of 

0.812. Our proposed SAM-ESRGAN model achieved a PSNR of 

29.76 dB and an SSIM of 0.838. Although the PSNR is slightly 

lower than Bicubic, the higher SSIM indicates that our model 

produces perceptually more faithful and visually pleasing 

reconstructions. 

 

Fig.4. Comparison of Image Super-Resolution Methods 

These results demonstrate the benefits of incorporating Spatial 

Attention Modules into the ESRGAN generator. By allowing the 

network to focus more effectively on informative regions of the 

image, such as edges and textures, SAM enhances the overall 

visual quality beyond what is achievable through traditional 

interpolation techniques. 

Table.1. PSNR and SSIM Comparison of Upscaling Methods on 

USR-4K 

Method PSNR (↑) SSIM (↑) 

Nearest Neighbor 27.84 dB 0.781 

Bilinear Interpolation 28.95 dB 0.795 

Bicubic Interpolation 29.84 dB 0.812 

SAM-ESRGAN (Ours) 29.76 dB 0.838 

The Fig.4 displays a 4×6 grid comparing super-resolution 

techniques across four images. Each row shows a different input 

image; each column represents an upscaling method: Low 

Resolution, Nearest Neighbors, Bilinear, Bicubic, SAM-

ESRGAN, and High Resolution. 

6. CONCLUSION 

In this study, we proposed an enhanced super-resolution 

framework by integrating a Spatial Attention Module (SAM) into 

the generator architecture of ESRGAN. This modification was 

aimed at improving the model’s ability to focus on structurally 

important regions, such as edges and fine textures, which are often 

critical in producing perceptually high-quality images. Through 
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experimental evaluation on a subset of the USR-4K dataset, our 

SAM-ESRGAN model demonstrated competitive performance, 

achieving higher structural similarity (SSIM) compared to 

traditional interpolation methods, while maintaining comparable 

PSNR levels. 

The results show the value of attention mechanisms in deep 

super-resolution networks, confirming that guiding the model’s 

focus to spatially significant features can meaningfully enhance 

visual fidelity. Our use of a carefully curated dataset, clear 

training protocol, and quantitative comparison ensures the 

reliability of these findings. Future work may explore combining 

SAM with other forms of attention (e.g., channel attention) or 

applying this framework to real-world degradation settings to 

further generalize the approach. 
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