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Abstract 

With the exponential growth in multimedia content across platforms, 

real-time video understanding—particularly object segmentation and 

tracking—has become a cornerstone in applications such as 

surveillance, autonomous navigation, and augmented reality. 

Conventional video segmentation and tracking techniques often 

struggle with real-time processing, occlusion handling, and scale 

variation in dynamic environments. While deep learning models like 

YOLOv8 are highly efficient in object detection, their capability in fine-

grained segmentation and continuous object identity tracking remains 

underexplored. This paper introduces a novel Generative YOLOv8-

based architecture that integrates segmentation-aware heads and 

temporal attention modules for accurate instance segmentation and 

object tracking. A generative adversarial refinement network is 

employed to enhance boundary precision and motion continuity. The 

model leverages video frame sequences, producing temporal-aware 

object masks while maintaining consistent object IDs across frames. 

Experimental evaluations on the DAVIS and MOT20 datasets 

demonstrate superior performance of the proposed model, achieving 

real-time inference speeds (~35 FPS) with a mIoU of 82.3% and IDF1 

score of 84.7%, outperforming several state-of-the-art trackers and 

segmenters. The framework exhibits robust performance under 

occlusion, fast motion, and cluttered backgrounds, making it highly 

suitable for advanced multimedia applications. 
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1. INTRODUCTION 

The explosive growth of multimedia content in recent years, 

fueled by widespread use of video streaming, social media, and 

intelligent surveillance systems, has necessitated advanced 

techniques for extracting meaningful information from video data 

[1–3]. Deep learning models, especially those based on 

convolutional neural networks (CNNs), have drastically 

improved the performance of computer vision tasks such as object 

detection, segmentation, and tracking. Among these, the YOLO 

(You Only Look Once) family has become prominent due to its 

high-speed, high-accuracy detection capabilities, with YOLOv8 

emerging as one of the most powerful and flexible variants. While 

object detection and tracking have been extensively studied, 

integrating real-time segmentation with consistent object tracking 

across video frames remains a complex challenge. 

Despite the success of deep neural networks in static image 

tasks, several challenges persist in the domain of video-based 

segmentation and tracking [4–7]. First, real-time performance is 

critical in multimedia applications such as augmented reality, 

autonomous driving, and surveillance. However, most 

segmentation models are computationally intensive and struggle 

to achieve high frame rates. Second, maintaining temporal 

consistency in object identity across video frames is non-trivial, 

especially in cases of occlusion, appearance changes, or fast 

motion. Third, conventional tracking algorithms often rely on 

simple motion models and handcrafted association rules, which 

are not robust against cluttered scenes or complex object 

interactions. Lastly, segmentation quality suffers from blurred 

object boundaries, inconsistent masks, and fragmented tracking 

results when applied to dynamic and unstructured environments. 

The integration of video segmentation and tracking remains 

an underdeveloped area, primarily due to the computational and 

architectural limitations in existing deep learning models [6–8]. 

While object detectors like YOLOv8 excel in identifying and 

localizing objects in single frames, they lack the temporal 

awareness and segmentation capabilities required for effective 

spatiotemporal video understanding. Moreover, standalone 

tracking-by-detection systems fail to produce high-quality, 

instance-level segmentation masks and often lose track of objects 

due to lack of appearance modeling and refinement mechanisms. 

The problem, therefore, lies in the absence of a unified, efficient, 

and robust deep learning framework that can perform accurate 

segmentation and object tracking simultaneously in real time. 

This study aims to develop a unified framework that enhances 

YOLOv8 with temporal processing and generative refinement to 

handle video-based segmentation and object tracking effectively. 

The objectives are as follows: 

• To extend the detection capabilities of YOLOv8 into 

instance segmentation by integrating a high-resolution 

decoder head. 

• To incorporate a temporal attention mechanism that ensures 

consistency across video frames. 

• To introduce an object tracking module that combines 

motion prediction and appearance similarity for identity 

preservation. 

• To refine the segmentation outputs using a generative 

adversarial network (GAN) to improve boundary precision 

and mask continuity. 

The novelty of this work lies in the fusion of three 

complementary components into a single efficient pipeline: 

• While YOLOv8 is designed for fast object detection, we 

introduce a segmentation branch without sacrificing real-

time inference. 

• The inclusion of a GAN module improves the visual quality 

of segmentation masks, while temporal attention and object 

association ensure identity consistency, forming a true 

video-centric pipeline. 

This work offers the following key contributions: 
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• We propose a unified deep learning architecture that 

combines detection, segmentation, tracking, and refinement 

within an extended YOLOv8 framework, capable of real-

time processing of video streams. 

• We introduce a novel combination of temporal attention and 

GAN-based refinement to enhance the segmentation 

accuracy and visual coherence of tracked objects across 

video frames, outperforming state-of-the-art methods in 

both segmentation and tracking metrics. 

2. RELATED WORKS 

Recent years have seen a surge in research exploring video 

object detection, segmentation, and tracking, using deep learning 

approaches that span from CNN-based models to transformer 

architectures. The following review outlines key works that have 

influenced and contextualized this study. 

2.1 YOLO-BASED DETECTION AND ITS 

EXTENSIONS 

The YOLO (You Only Look Once) series has revolutionized 

real-time object detection with its unified architecture. YOLOv5 

and YOLOv6 introduced major improvements in detection 

precision and efficiency, while YOLOv7 optimized architectural 

components such as E-ELAN for speed and accuracy. YOLOv8 

introduced a redesigned decoupled head and anchor-free 

detection, improving segmentation and classification 

performance even further. However, these models are inherently 

limited to frame-by-frame detection and lack temporal modeling 

or tracking capability [9]. 

2.2 VIDEO SEGMENTATION MODELS 

Video object segmentation (VOS) aims to segment moving 

objects across a sequence of frames. Methods such as MaskTrack 

R-CNN and STM (Space-Time Memory networks) have shown 

promise in leveraging temporal memory to maintain segmentation 

consistency [10, 11]. STM introduced a memory bank to store 

previous key frames and retrieve relevant features, offering high 

segmentation accuracy. However, its computational cost limits 

real-time applicability. Similarly, SiamMask utilized a Siamese 

network for tracking and segmentation, offering a balance 

between speed and accuracy but lacking robustness under 

occlusion. 

2.3 OBJECT TRACKING APPROACHES 

Traditional object tracking approaches have evolved from 

correlation filters to deep appearance-based models. Deep SORT 

introduced appearance embeddings with motion prediction to 

improve object ID consistency across frames [12]. Tracktor++ 

leveraged regression from object detectors to maintain object 

trajectories, eliminating the need for separate trackers. However, 

these approaches often rely heavily on pre-computed detections 

and fail under occlusion or drastic appearance changes. 

2.4 TRACKING WITH SEGMENTATION 

Joint segmentation and tracking models are gaining attention. 

Methods like Detect-and-Track, TrackR-CNN, and CenterTrack 

attempt to unify detection and tracking with mask prediction. 

TrackR-CNN combines object detection and mask R-CNN 

outputs with a tracking head, while CenterTrack uses object 

centers to link detections over time. Though effective, these 

systems are often complex and non-end-to-end trainable [13]. 

2.5 TRANSFORMER-BASED MODELS 

Recently, vision transformers have been adopted for video 

tasks. The VisTR model, for instance, formulated video instance 

segmentation as a set prediction task using transformers [14]. 

Similarly, SeqFormer employs spatial-temporal attention across 

video frames. These models demonstrate excellent performance 

on segmentation benchmarks but are too computationally 

expensive for real-time applications. 

2.6 GENERATIVE APPROACHES IN VISION 

TASKS 

Generative adversarial networks (GANs) have proven useful 

in refining low-resolution outputs or recovering object 

boundaries. For instance, GANet has been used to enhance 

segmentation results by learning high-fidelity mask 

representations. In video tasks, GAN-based interpolators also 

help maintain temporal continuity. Yet, few works have 

integrated GANs into real-time tracking and segmentation 

pipelines [15]. 

While detection, segmentation, and tracking have each seen 

remarkable advances, few works have effectively unified all three 

in a real-time, robust system. Most models treat these as separate 

tasks or involve pipeline-based approaches that compromise 

speed. Moreover, GAN-based refinements are often used offline 

and not within streaming video contexts. This paper addresses this 

gap by extending YOLOv8 into a multi-task, generative, and 

temporally aware system for video understanding. 

3. PROPOSED METHOD  

The proposed method extends YOLOv8 by introducing a 

Segmentation-Tracking Hybrid Architecture using the following 

components: 

• YOLOv8 Backbone: Used for initial spatial feature 

extraction and object detection. 

• Segmentation Head: A decoder branch is appended to 

YOLOv8’s neck, predicting high-resolution segmentation 

masks per instance. 

• Temporal Attention Module: Incorporates motion history 

across frames, enabling temporal consistency in 

segmentations. 

• Object Association Module: Uses IoU, cosine similarity of 

appearance embeddings, and motion prediction to maintain 

object IDs across frames. 

• Generative Refinement Network: A lightweight GAN 

refines mask edges and interpolates between frames for 

smoother transitions. 

This hybrid system processes live or recorded videos, 

assigning consistent object labels across frames and segmenting 

their silhouettes in real-time. 

1. Input: Load video stream or sequence of frames. 
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2. Detection: Use YOLOv8 to detect object bounding boxes. 

3. Feature Extraction: Extract multi-scale features from 

YOLOv8 backbone. 

4. Segmentation: Generate segmentation masks using a 

decoder head. 

5. Temporal Attention: Fuse features from current and 

previous frames for temporal consistency. 

6. Tracking: Assign object IDs using similarity and motion 

prediction. 

7. Refinement: Use a GAN-based module to refine 

boundaries and transitions. 

8. Output: Render segmentation masks with consistent 

tracking IDs on video frames. 

Algorithm 

# Step 1: Initialization 

Load YOLOv8 backbone 

Initialize segmentation decoder 

Initialize temporal attention and tracking modules 

Load GAN-based refinement network 

# Step 2: Video Input Processing 

for each frame_t in video_sequence: 

    detections = YOLOv8(frame_t)                          # Step 2a: 

Object detection 

    features = extract_features(frame_t)                  # Step 2b: Feature 

extraction 

    # Step 3: Segmentation 

    masks = segmentation_head(features)                   # Predict 

instance masks 

    # Step 4: Temporal Processing 

    if t > 0: 

        features_prev = get_cached_features(t-1) 

        features = temporal_attention(features, features_prev) 

    # Step 5: Object Tracking 

    embeddings = get_appearance_embeddings(detections) 

    motion_preds = kalman_predict(previous_tracks) 

    current_tracks = associate_objects(detections, embeddings, 

motion_preds) 

    # Step 6: Mask Refinement 

    refined_masks = GAN_refine(masks, frame_t) 

    # Step 7: Output Results 

    render_output(frame_t, refined_masks, current_tracks) 

    # Step 8: Cache current state 

    cache_features(features) 

    update_track_history(current_tracks) 

3.1 FEATURE EXTRACTION AND OBJECT 

DETECTION USING YOLOV8 

The backbone of YOLOv8 extracts rich spatial features from 

each video frame. This model uses CSPDarknet as the feature 

extractor and a decoupled head to predict bounding boxes, object 

classes, and objectness scores. 

  

Fig.1. YOLOv8 

Let the input frame be denoted as 3H W

tI   . The YOLOv8 

backbone generates multiscale feature maps Backbone( )t tF I= , 

which are passed to a detection head that outputs: 

  
1

( , , , , , )
N

t i i i i i i i
D x y w h c s

=
=  

where, 

(xi,yi,wi,hi): Bounding box coordinates 

ci: Class label 

si: Objectness score 

N: Number of detected objects in frame t 

Table.1. Detection Output from YOLOv8 (Frame t) 

Object ID Class x y Width Height Confidence 

1 Car 56 72 120 80 0.92 

2 Person 110 180 40 90 0.89 

As shown in Table.1, YOLOv8 identifies the initial set of 

objects and regions of interest for further segmentation and 

tracking. 

3.2 INSTANCE SEGMENTATION DECODER 

HEAD 

Unlike traditional YOLO models that stop at bounding boxes, 

our extended architecture includes a segmentation decoder. It 

predicts a binary mask Mi,t for each detected object i in frame t, 

where: 

 ( ), Decoder( )i

i t tM F=  

where, i

tF represents the RoI-aligned features corresponding to 

object i, and σ is the sigmoid activation ensuring pixel-wise 

probability values between 0 and 1. 

Table.2. Mask Quality Scores for Frame t 

Object ID IoU with Ground Truth (%) 

1 87.5 
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2 81.2 

As seen in Table.2, the segmentation decoder can deliver 

accurate object silhouettes which are essential for refined object 

representation. 

3.3 TEMPORAL ATTENTION FOR CROSS-

FRAME CONSISTENCY 

Temporal attention bridges information between consecutive 

frames. Features from the previous frame Ft−1 are aligned to the 

current frame using optical flow estimation or motion embedding, 

then combined with Ft as: 

 fused

1Attention( ,Warp( ))t t tF F F −=  

This helps the model retain object identity, especially when 

occlusions or motion blur occur. The fused features improve mask 

continuity and tracking robustness. 

Table.3. Effect of Temporal Attention on Mask Stability 

Object ID IoU without TA (%) IoU with TA (%) 

1 75.2 87.5 

2 69.3 81.2 

The Table.3 shows how incorporating temporal attention 

significantly boosts segmentation stability by maintaining frame-

to-frame coherence. 

3.4 MULTI-CUE OBJECT TRACKING MODULE 

To maintain consistent object IDs across frames, we apply a 

hybrid tracking mechanism that uses: 

• IoU Matching for spatial consistency 

• Cosine Similarity of appearance embeddings Ei 

• Kalman Filtering for motion prediction 

The tracking score Si,j between detection i in frame t and track 

j in t-1 is computed as: 

 
, 1 2IoU( , ) cos( , )i j i j i jS B B E E =  +   

where 
1 2 1 + = , and Bi is the bounding box of detection i. 

Table.4. Tracking Score Matrix between Frame t and t-1 

 Track 1 Track 2 

Obj 1 0.92 0.35 

Obj 2 0.28 0.87 

As per Table.4, object 1 is associated with track 1, and object 

2 with track 2, enabling continuity in tracking. 

3.5 GENERATIVE ADVERSARIAL REFINEMENT 

(GAR) MODULE 

The final masks produced by the decoder can be coarse around 

edges. To enhance their quality, a GAN-based refinement 

network is introduced. The refinement loss includes: Adversarial 

Loss 
advL , Mask Reconstruction Loss 

maskL , Edge-Aware 

Smoothness Loss 
edgeL . The total loss is given by: 

 
total adv mask edge  = + +L L L L  

where α,β,γ are tuning weights. The generator enhances the 

predicted mask Mi,t by learning a mapping to realistic boundaries. 

Table.5. Mask Refinement Comparison 

Method mIoU (%) Boundary F1 (%) 

Before GAN 82.3 74.1 

After GAN 87.6 81.9 

The Table.5 confirms that the GAR module significantly 

improves segmentation precision, especially along object 

boundaries. 

4. RESULTS AND DISCUSSION 

To evaluate the performance of the proposed Generative 

YOLOv8-based segmentation and tracking framework, extensive 

experiments were conducted using standard video datasets and 

real-time processing environments. The implementation was 

carried out using the PyTorch deep learning framework (v2.1) due 

to its flexibility and high performance on GPU-accelerated 

computing. Model training and inference were conducted on a 

Linux workstation equipped with an NVIDIA RTX 4090 GPU 

(24GB VRAM), Intel Core i9-13900K CPU, 128 GB DDR5 

RAM, and Ubuntu 22.04 LTS. The deep learning environment 

included CUDA 12.1, cuDNN 8.9, and Python 3.10. Training was 

accelerated using mixed precision (FP16) to enable faster 

convergence without sacrificing accuracy. All models were 

trained using AdamW optimizer with a cosine learning rate 

scheduler. 

The experimental datasets used were: 

• DAVIS 2017: For video instance segmentation (720p 

videos). 

• MOT20: For object tracking in crowded scenes. 

The Table.6 outlines the key training and inference parameters 

used in the simulation and benchmarking processes. 

Table.6. Experimental Setup and Parameters 

Parameter Value 

Framework PyTorch 2.1 

Hardware RTX 4090 GPU, Intel i9-13900K 

Training Dataset DAVIS 2017, MOT20 

Input Frame Resolution 640 × 640 

Batch Size 16 

Optimizer AdamW 

Learning Rate (initial) 1e-4 

Learning Rate Scheduler Cosine Annealing 

Total Epochs 100 

Loss Function (Total) GAN + BCE + IoU + Smoothness 

Inference Speed (Average) 34.7 FPS 

Mixed Precision Enabled (FP16) 

As shown in Table.6, the model was trained under optimized 

settings that support both speed and accuracy, making it suitable 

for real-time multimedia applications. 
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4.1 PERFORMANCE METRICS  

To thoroughly assess the performance of the proposed 

method, key metrics were used: 

• Mean Intersection over Union (mIoU): Measures the 

overlap between predicted and ground truth segmentation 

masks. 

 
1

| |1
mIoU

| |

N
i i

i i i

M G

N M G=


=


  

• Higher mIoU indicates more accurate segmentation. 

• Boundary F1 Score (BF Score): Evaluates the precision 

and recall of object boundaries in segmentation masks. 

 
2 Precision Recall

BF
Precision Recall

 
=

+
 

It is especially important in fine-grained tasks like medical or 

video segmentation. 

• IDF1 Score: Measures the accuracy of object tracking, 

evaluating how consistently object IDs are maintained 

across frames. 

 
2

IDF1
2

IDTP

IDTP IDFP IDFN


=

 + +
 

where IDTP, IDFP, and IDFN are true, false, and missed ID 

associations. 

• MOTA (Multiple Object Tracking Accuracy): Combines 

errors from false positives, false negatives, and ID switches 

into a single score. 

 

( )

MOTA 1
t t t

t

t

t

FN FP IDSW
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= −
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• Frames per Second (FPS): Measures real-time capability 

by calculating how many frames are processed per second. 

Essential for deployment in time-sensitive applications like 

surveillance or autonomous driving. 

To establish a comparative baseline, the following three state-

of-the-art methods from the related works section were selected: 

SiamMask [10], STM (Space-Time Memory Network) [11] and 

TrackR-CNN [13]. 

Table.7. Metric-wise Performance Comparison 

a) Mean Intersection over Union (mIoU %) 

Epochs SiamMask STM TrackR-CNN Proposed Method 

10 63.2 68.7 66.1 70.5 

20 65.8 71.2 68.9 74.1 

30 66.9 73.1 70.5 76.2 

40 67.5 74.4 71.7 78.0 

50 68.3 75.9 72.4 79.3 

60 68.7 76.5 72.9 80.1 

70 69.0 77.3 73.3 81.0 

80 69.2 77.9 73.5 81.6 

90 69.4 78.1 73.7 82.0 

100 69.5 78.2 73.8 82.3 

b) Boundary F1 Score (BF %) 

Epochs SiamMask STM TrackR-CNN Proposed Method 

10 55.4 59.2 58.0 62.5 

100 62.8 68.5 66.3 74.1 

c) IDF1 Score (%) 

Epochs SiamMask STM TrackR-CNN Proposed Method 

10 56.7 61.9 65.3 67.5 

100 62.1 70.7 77.5 84.7 

d) MOTA (%) 

Epochs SiamMask STM TrackR-CNN Proposed Method 

10 59.1 64.3 67.8 70.4 

100 63.5 70.2 75.9 82.6 

e) FPS (Frames per Second) 

Epochs SiamMask STM TrackR-CNN Proposed Method 

All 28.2 11.5 17.6 34.7 

As shown in Table.7, the proposed method consistently 

outperforms existing methods across all evaluated metrics over 

100 epochs. The mean IoU (mIoU) shows significant 

improvements, rising from 70.5% to 82.3%, compared to only 

69.5% for SiamMask, 78.2% for STM, and 73.8% for TrackR-

CNN. Similarly, the Boundary F1 Score reaches 74.1%, 

indicating better precision along object edges—a key strength of 

the GAN-based refinement. 

Table.8. Performance on DAVIS 2017 Dataset 

Method mIoU (%) BF (%) IDF1 (%) MOTA (%) FPS 

SiamMask 69.3 60.5 59.2 64.1 28.2 

STM 77.8 66.3 65.0 70.5 11.5 

TrackR-CNN 73.5 64.8 72.4 75.6 17.6 

Proposed 82.3 74.1 84.7 82.6 34.7 

Table.9. Performance on MOT20 Dataset 

Method mIoU (%) BF (%) IDF1 (%) MOTA (%) FPS 

SiamMask 66.4 58.2 61.3 63.9 26.9 

STM 72.5 64.7 67.9 68.3 10.4 

TrackR-CNN 71.2 62.9 75.1 74.0 16.5 

Proposed 78.5 71.3 82.1 80.4 33.9 

In tracking evaluation, the IDF1 score, which measures 

consistent object identity tracking, increases steadily to 84.7%, 

surpassing TrackR-CNN’s 77.5%, STM’s 70.7%, and 

SiamMask’s 62.1%. The MOTA, representing Thus tracking 

accuracy, reaches 82.6%, confirming strong temporal stability 

and low ID switches. 

Finally, the proposed method maintains real-time performance 

with 34.7 FPS, substantially faster than STM (11.5 FPS) and 

TrackR-CNN (17.6 FPS), and even better than SiamMask (28.2 
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FPS). This highlights the advantage of the unified architecture and 

efficient backbone. 

Thus, the results in Table.7 validate the effectiveness of the 

proposed Generative YOLOv8 framework, proving it excels in 

both segmentation quality and tracking accuracy while preserving 

real-time throughput. 

As shown in Table.8 and Table.9, the proposed Generative 

YOLOv8-based framework delivers superior performance on 

both DAVIS 2017 and MOT20 datasets across all key metrics. On 

DAVIS 2017, it achieves a mean IoU of 82.3%, outperforming 

STM (77.8%) and TrackR-CNN (73.5%), highlighting its high 

segmentation precision. The Boundary F1 score is also the highest 

at 74.1%, indicating the effectiveness of the generative mask 

refinement in maintaining detailed object edges. For tracking-

related metrics, the proposed method records the highest IDF1 

score of 84.7% and MOTA of 82.6% on DAVIS 2017, proving its 

superior ability to maintain object identity across frames. On 

MOT20, which involves dense and occluded scenes, the proposed 

method again leads with 82.1% IDF1 and 80.4% MOTA, 

outperforming TrackR-CNN by a significant margin. 

Furthermore, it consistently delivers real-time inference speeds, 

achieving 34.7 FPS on DAVIS and 33.9 FPS on MOT20. These 

results (Tables 8 and 9) confirm that the proposed system offers a 

robust and real-time solution for both segmentation and tracking, 

combining high accuracy with practical usability across diverse 

video environments. 

5. CONCLUSION 

This study introduced a novel Generative YOLOv8-based 

framework that unifies object detection, instance segmentation, 

temporal attention, and generative refinement into a single, real-

time pipeline for video segmentation and object tracking. Unlike 

traditional systems that treat detection, segmentation, and 

tracking as separate stages, the proposed model leverages a tightly 

integrated architecture to preserve temporal consistency, improve 

boundary accuracy, and ensure object ID continuity across 

frames. Through extensive evaluations on DAVIS 2017 and 

MOT20 datasets, the proposed method shown superior 

performance across all key metrics, achieving mIoU up to 82.3%, 

IDF1 of 84.7%, and real-time processing at 34+ FPS. The 

temporal attention module effectively maintains mask 

consistency, while the GAN-based refinement enhances edge 

clarity and segmentation quality. Compared to existing state-of-

the-art methods like STM, TrackR-CNN, and SiamMask, the 

proposed framework showed significant improvements, 

especially in crowded scenes and under occlusion. 
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