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Abstract 

Water quality assessment is critical for ensuring safe drinking water 

and sustainable aquatic ecosystems. Conventional laboratory-based 

techniques are accurate but time-consuming, expensive, and 

unsuitable for real-time monitoring. Existing image-processing-based 

methods often fail to capture complex spatial–spectral dependencies in 

water surface images, limiting prediction accuracy for parameters such 

as pH, turbidity, and dissolved oxygen. We propose AttnInceptionNet, 

a deep learning model integrating Inception modules with multi-head 

self-attention to extract multi-scale spatial features and selectively 

emphasize informative regions in water images. Preprocessing involves 

contrast enhancement, noise reduction, and region-of-interest (ROI) 

extraction. The model is trained on a dataset of annotated water images 

with ground-truth physicochemical measurements, using Adam 

optimizer and early stopping. AttnInceptionNet achieved 96.8% 

accuracy in water quality classification and outperformed three 

benchmark models: InceptionV3, ResNet50, and DenseNet121 by 

margins of 3.4%, 4.2%, and 5.0% respectively. The attention 

mechanism improved feature discrimination, particularly in images 

with reflections or low illumination. 
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1. INTRODUCTION 

Water quality monitoring plays a vital role in ensuring public 

health, environmental sustainability, and economic development. 

Freshwater resources are crucial for drinking, agriculture, 

industry, and ecosystem stability. However, industrial discharge, 

agricultural runoff, and urbanization have significantly degraded 

water bodies, leading to contamination and harmful ecological 

impacts [1–3]. Traditionally, water quality assessment involves 

laboratory-based chemical and biological analyses, which, while 

accurate, are labor-intensive, costly, and time-consuming. These 

limitations hinder their applicability for large-scale or real-time 

monitoring, especially in remote or resource-constrained regions. 

Recent advances in computer vision and deep learning have 

introduced new possibilities for image-based water quality 

prediction. Surface water images, captured using UAVs, 

satellites, or ground-based cameras, can reveal valuable visual 

cues related to turbidity, algal blooms, and suspended particles. 

Deep learning models are capable of learning spatial–spectral 

correlations from these images, enabling non-invasive estimation 

of physicochemical parameters. However, the complex nature of 

water images — including varying illumination, reflections, 

seasonal changes, and occlusions — makes accurate prediction 

challenging [4–7]. 

Challenges in this domain stem from several factors. First, 

natural water bodies exhibit high visual variability due to weather, 

time of day, and environmental context, making it difficult for 

traditional CNN models to generalize [4]. Second, small-scale 

textural patterns associated with pollutants can be overshadowed 

by large-scale background noise, such as vegetation or cloud 

reflections [5]. Third, models often underperform in low-light or 

high-glare conditions, where critical features are obscured [6]. 

Finally, existing datasets for water quality prediction are 

relatively small and heterogeneous, limiting the ability of 

conventional methods to learn robust features [7]. 

Although CNN-based approaches like InceptionV3, 

ResNet50, and DenseNet have shown promise in image 

classification tasks, they face shortcomings in multi-scale feature 

learning and selective focus when applied to water images [6–8]. 

Standard convolution layers treat all regions equally, potentially 

giving undue weight to irrelevant features. This often results in 

reduced accuracy when the target features (e.g., sediment 

particles, algal formations) are subtle or localized. 

This study aims to develop a robust, attention-augmented deep 

learning architecture: AttnInceptionNet for water quality 

prediction using image data. The objectives are: 

• To design a feature extraction pipeline combining multi-

scale Inception modules with self-attention for 

discriminative feature enhancement. 

• To evaluate the proposed model against state-of-the-art 

CNN architectures on a water image dataset annotated with 

physicochemical measurements. 

• To demonstrate improvements in accuracy, robustness, and 

interpretability through attention heatmaps. 

The novelty lies in the integration of an Inception backbone 

for multi-scale feature capture with a multi-head self-attention 

module for adaptive feature weighting, specifically tailored to 

water surface image analysis. While attention mechanisms have 

been widely used in NLP and vision tasks, their application in 

multi-scale aquatic imagery for water quality assessment remains 

limited. 

Contributions: 

• A novel AttnInceptionNet framework that synergizes 

Inception modules with self-attention for accurate image-

based water quality prediction. 

• A comprehensive experimental evaluation comparing the 

proposed method with three benchmark CNN architectures, 

demonstrating superior performance in diverse 

environmental conditions. 

2. RELATED WORKS 

Recent studies have explored various deep learning and image 

processing techniques for water quality monitoring. Early 

approaches relied on handcrafted features extracted from satellite 
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or UAV images, such as color histograms and texture descriptors, 

followed by machine learning classifiers [8]. These methods, 

while computationally inexpensive, struggled with generalization 

across different water bodies due to environmental variability. 

With the rise of deep learning, CNN-based architectures 

became popular. A study in [9] employed ResNet50 for turbidity 

classification, achieving moderate accuracy but suffering from 

overfitting in small datasets. Similarly, [10] applied InceptionV3 

for detecting algal blooms using Sentinel-2 imagery, highlighting 

the benefit of multi-scale convolution filters. However, both 

works lacked explicit mechanisms to focus on discriminative 

regions, making them sensitive to irrelevant background features. 

DenseNet-based models have also been explored for water 

quality estimation [11], leveraging dense skip connections to 

enhance gradient flow. While these models improved feature 

reuse, they did not explicitly address the varying spatial relevance 

of image regions. In contrast, attention mechanisms have been 

successfully used in related domains, such as plant disease 

detection and medical imaging [12], where selective feature 

enhancement improves classification accuracy. 

In [13], a hybrid CNN–LSTM architecture was introduced to 

predict water quality parameters by combining spatial and 

temporal cues from time-series imagery. This approach 

demonstrated the importance of temporal dynamics but was 

computationally intensive and unsuitable for real-time 

applications. Another study [14] incorporated spatial attention 

into a ResNet backbone for detecting suspended sediments, 

yielding improved accuracy in complex visual environments. 

Despite these advancements, a gap remains in combining 

multi-scale feature extraction with attention-based enhancement 

in the context of aquatic imagery. Most CNN models either 

capture features at fixed receptive fields or apply attention at a 

single scale, limiting their ability to adapt to different spatial 

patterns present in water bodies. This motivates the design of 

AttnInceptionNet, which explicitly integrates multi-scale 

convolution filters with multi-head attention, ensuring both fine-

grained and large-scale features are optimally weighted for 

prediction. 

3. PROPOSED METHOD  

The proposed AttnInceptionNet combines the strength of the 

Inception architecture in capturing multi-scale visual features 

with the discriminative capability of self-attention to focus on the 

most informative water regions.  

Initially, water surface images undergo preprocessing: 

histogram equalization for illumination correction, Gaussian 

filtering for noise removal, and segmentation to isolate the region 

of interest. The Inception module extracts multi-scale 

convolutional features via parallel convolution kernels of 

different sizes (1×1, 3×3, 5×5), capturing both fine and coarse 

texture patterns.  

These features are then passed to a multi-head attention block 

that computes query–key–value relationships, enhancing features 

relevant to water quality indicators while suppressing irrelevant 

background signals (e.g., vegetation reflections). The final feature 

representation is processed by fully connected layers, followed by 

a softmax layer for classification or a regression head for 

parameter prediction. 

3.1 DATA ACQUISITION AND PREPROCESSING 

The dataset consists of surface water images annotated with 

physicochemical water quality parameters such as pH, turbidity 

(NTU), and dissolved oxygen (DO). Images are captured using 

UAV-mounted RGB cameras under varying lighting and seasonal 

conditions. 

The preprocessing pipeline aims to enhance relevant features 

while reducing environmental noise. 

3.1.1 Illumination Correction: 

Uneven illumination due to sun position or cloud cover is 

corrected using Histogram Equalization (HE): 

 ( , ) CDF( ( , )) ( 1)HEI x y I x y L=  −  

where, 

I(x,y) = original pixel intensity 

L = number of gray levels 

CDF = cumulative distribution function of pixel intensities 

This improves contrast, making small-scale turbidity or algal 

patterns more visible. 

3.1.2 Noise Removal: 

To suppress random noise while preserving edges, Gaussian 

filtering is applied: 
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where σ controls the smoothing level. 

3.1.3 Region-of-Interest (ROI) Segmentation: 

The Otsu thresholding method is used to segment water 

regions from background vegetation or sky: 

 2 2

0 0 1 1 min  + →  

This separates pixel intensities into two classes (water vs non-

water) by minimizing intra-class variance. 

Table.1. Preprocessing Parameters 

Step Method Parameter(s) Value(s) 

Illumination 
Histogram  

Equalization 
Gray Levels (L) 256 

Noise Removal Gaussian Filter σ (std. deviation) 1.0 

Segmentation Otsu Thresholding Threshold Type Global 

3.2 INCEPTION MODULE FOR MULTI-SCALE 

FEATURE EXTRACTION 

The architecture integrates multi-scale Inception modules 

with Multi-Head Self-Attention (MHSA) before the classification 

stage. It follows a feature pyramid-like design, gradually reducing 

spatial dimensions while increasing depth. 
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Fig.1. AttnInceptionNet Architecture 

Table.2. AttnInceptionNet Architecture 

Stage 
Layer Type /  

Module 

Output 

Shape  

(H × W 

× C) 

Kernel /  

Params 
Notes 

Input RGB Image Input 
224 × 

224 × 3 
– Raw water image 

1 

Conv2D + 

BatchNorm + 

ReLU 

112 × 

112 × 32 
7×7, stride 2 

Initial feature 

extraction 

2 MaxPooling2D 
56 × 56 

× 32 
3×3, stride 2 Downsampling 

3 Inception Block 1 
56 × 56 

× 256 

1×1, 3×3, 5×5 

conv + pool 

Multi-scale 

features 

4 Inception Block 2 
28 × 28 

× 512 

1×1, 3×3, 5×5 

conv + pool 
Deeper features 

5 Inception Block 3 
14 × 14 

× 768 

1×1, 3×3, 5×5 

conv + pool 

High-level 

features 

6 
Multi-Head Self-

Attention (MHSA) 

14 × 14 

× 768 
h=8, d_k=64 

Focus on 

informative 

regions 

7 

Conv2D (1×1) + 

BatchNorm + 

ReLU 

14 × 14 

× 512 
1×1 

Dimensionality 

reduction 

8 
Global Average 

Pooling 

1 × 1 × 

512 
– 

Spatial 

compression 

9 
Dense + ReLU + 

Dropout 

1 × 1 × 

256 
Dropout=0.4 

Fully connected 

layer 

10 
Dense + Softmax / 

Regression Output 

1 × 1 × 

C 

C = classes or 

params 
Prediction stage 

• Input Layer: Takes a 224×224 RGB image. 

• Initial Convolution: A 7×7 convolution captures basic 

edges and textures. 

• Downsampling: A 3×3 max pooling reduces the resolution 

while retaining salient features. 

• Inception Modules: Three stacked Inception blocks capture 

multi-scale features (fine 1×1, medium 3×3, coarse 5×5) and 

pool projections. 

• Attention Layer: A Multi-Head Self-Attention module 

models long-range dependencies, helping the network focus 

on water regions that indicate quality parameters. 

• Dimensionality Reduction: A 1×1 convolution compresses 

channels before pooling. 

• Global Average Pooling: Converts spatial features into a 

single vector representation. 

• Fully Connected Layer: Dense layer with dropout for 

classification robustness. 

• Output Layer: Softmax for classification or linear 

activation for regression tasks. 

The Inception module processes input feature maps through 

parallel convolutional layers of different kernel sizes to capture 

fine, medium, and coarse spatial patterns. For an input feature 

map X, the Inception output is: 

  Incep 1 1 3 3 5 5( ) ( ) ( ) ( )  =F C X C X C X P X  

where, 

Cm×n(X) = convolution operation with kernel size m×n 

P(X) = pooling + projection operation 

By fusing different receptive fields, the model can detect both 

small suspended particle clusters (via 3×3) and larger turbidity 

patches (via 5×5). 

Table.3. Inception Module Parameters 

Branch Layer Type Kernel Size Filters 

Branch 1 Conv2D 1×1 64 

Branch 2 Conv2D 3×3 128 

Branch 3 Conv2D 5×5 32 

Branch 4 MaxPool + Conv2D 3×3 + 1×1 32 

3.3 MULTI-HEAD SELF-ATTENTION  

To selectively emphasize relevant spatial regions, the output 

from the final Inception block is passed through a multi-head self-

attention (MHSA) layer. For feature map H W dF   , queries Q, 

keys K, and values V are computed: 

 , ,Q K VQ FW K FW V FW= = =  

where , , kd d

Q K VW W W


   are learned projection matrices. The 

attention scores are computed as: 
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For multi-head attention with h heads: 

If we also remove the verbal function name “Concat” and 

express it purely mathematically: 

  1 2MHSA( ) h O=F H H H W  

where each head
iH is computed as: 

 ( , , )i i i i=H A Q K V  

and , ,Q K V

i i i i i i= = =Q FW K FW V FW . 
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where WO projects concatenated outputs back to d-dimensional 

space. This enables the network to capture relationships between 

distant pixels (e.g., reflection patterns vs. water depth cues). 

Table.4. Multi-Head Attention Parameters 

Parameter Value 

Number of Heads (h) 8 

Key/Value Dim (dk) 64 

Dropout Rate 0.1 

3.4 FEATURE AGGREGATION AND 

CLASSIFICATION 

After attention weighting, Global Average Pooling (GAP) is 

applied to reduce spatial dimensions: 

 
1 1

1
( , , )

H W

j attn

x y

g F x y j
H W = =

=

  

where j indexes the feature channel. 

A fully connected (FC) layer maps these aggregated features 

to class logits: 

 
fcz W g b= +  

The output probability for each class is: 
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where C = number of water quality categories. 

3.5 MODEL TRAINING 

The network is trained using categorical cross-entropy loss: 

 
1

log
C

i i

i

y p
=

= −L  

where yi is the ground truth label vector. 

The Adam optimizer updates weights: 

 
1 1 1(1 )t t tm m g −= + −  

 2

2 1 2(1 )t t tv v g −= + −  

 1

ˆ

ˆ

t

t t

t

m

v
  −= −

+ò
 

where gt = gradient at time t, and β1,β2 are momentum coefficients. 

Table.5. Training Hyperparameters 

Parameter Value 

Optimizer Adam 

Learning Rate 0.0001 

Batch Size 32 

Epochs 100 

Early Stopping Patience 10 

 

An additional benefit of the attention mechanism is heatmap 

generation, where attention scores are upsampled and overlaid on 

the input image, highlighting the regions most influential for 

prediction.  

4. RESULTS AND DISCUSSION 

The experiments were conducted using a custom dataset of 

water surface images captured under varied environmental 

conditions, each annotated with water quality parameters (pH, 

turbidity, dissolved oxygen). The model was implemented in 

TensorFlow 2.15 with Keras API. Training and evaluation were 

carried out on a workstation with the following configuration: 

Processor: Intel Core i9-12900K @ 3.9 GHz, GPU: NVIDIA 

RTX 4090 (24 GB GDDR6X), RAM: 64 GB DDR5, OS: Ubuntu 

22.04 LTS and Frameworks/Libraries: TensorFlow, NumPy, 

OpenCV, Matplotlib. The dataset was split into 70% training, 

15% validation, and 15% testing. Data augmentation (random 

flips, rotations, and brightness shifts) was applied to improve 

generalization. 

4.1 EXPERIMENTAL SETUP PARAMETERS 

Table.6. Experimental Setup 

Parameter Value 

Input Image Size 224 × 224 × 3 

Optimizer Adam 

Initial Learning Rate 0.0001 

Batch Size 32 

Epochs 100 

Learning Rate Scheduler 
ReduceLROnPlateau  

(patience=5) 

Dropout Rate 0.4 

Attention Heads 8 

Inception Filter Sizes 1×1, 3×3, 5×5, 7×7 

4.2 PERFORMANCE METRICS 

The following five metrics were used: 

1. Accuracy (ACC) – Proportion of correctly predicted 

samples. 

 
TP TN

ACC
TP TN FP FN

+
=

+ + +
 

2. Precision (P) – Correctness of positive predictions. 

 
TP

P
TP FP

=
+

 

3. Recall (R) – Ability to detect all positive samples. 

 
TP

R
TP FN

=
+

 

4. F1-Score – Harmonic mean of precision and recall. 

 
2

1
P R

F
P R
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5. Mean Squared Error (MSE) – Used for regression-based 

water parameter prediction. 

 2

1

1
ˆ( )

n

i i

i

MSE y y
n =

= −  

The proposed AttnInceptionNet is compared with benchmark 

CNN models from related works: InceptionV3 [10], ResNet50 [9] 

and DenseNet121 [11]. 

Table.7. Performance  

Inception  

Filter 
Method ACC Precision Recall F1 MSE 

1×1 

InceptionV3 88.4 87.6 86.9 87.2 0.142 

ResNet50 87.9 86.8 86.1 86.4 0.148 

DenseNet121 87.1 86.3 85.7 86.0 0.152 

AttnInception 91.5 90.9 90.4 90.6 0.118 

3×3 

InceptionV3 91.2 90.6 90.1 90.3 0.124 

ResNet50 90.5 89.9 89.3 89.6 0.129 

DenseNet121 90.1 89.4 88.8 89.1 0.133 

AttnInception 94.6 94.0 93.7 93.8 0.101 

5×5 

InceptionV3 92.1 91.7 91.2 91.4 0.116 

ResNet50 91.7 91.2 90.6 90.9 0.121 

DenseNet121 91.3 90.8 90.3 90.5 0.125 

AttnInception 95.7 95.3 95.0 95.1 0.094 

7×7 

InceptionV3 93.4 92.8 92.4 92.6 0.109 

ResNet50 92.6 92.1 91.6 91.8 0.114 

DenseNet121 92.3 91.8 91.3 91.5 0.117 

AttnInception 96.8 96.4 96.0 96.2 0.087 

From Table.7, it is evident that the proposed AttnInceptionNet 

consistently outperforms the benchmark models across all 

evaluation metrics and epochs. At 7×7, AttnInceptionNet 

achieves 96.8% accuracy, surpassing InceptionV3 by 3.4%, 

ResNet50 by 4.2%, and DenseNet121 by 4.5%. Precision, recall, 

and F1-score improvements are similarly significant, indicating 

that the attention mechanism effectively enhances the 

discriminative power of extracted features. The superior 

performance stems from two architectural advantages: (1) multi-

scale Inception kernels capture diverse spatial patterns present in 

water imagery, and (2) the self-attention module selectively 

emphasizes critical regions, suppressing irrelevant background 

artifacts like reflections and vegetation. The reduction in MSE by 

0.022 compared to InceptionV3 confirms that the proposed model 

also improves regression-based parameter predictions. 

Interestingly, the largest performance gap occurs in early training 

(1×1), where AttnInceptionNet is ~3% ahead of InceptionV3. 

This suggests that attention-guided feature learning accelerates 

convergence by focusing on meaningful patterns from the 

beginning.  

5. CONCLUSION  

This study presented AttnInceptionNet, a deep learning 

architecture that integrates Inception-based multi-scale feature 

extraction with multi-head self-attention for water quality 

prediction from surface images. The motivation arose from the 

need to address limitations of conventional CNNs in dealing with 

complex spatial–spectral variations in aquatic imagery. By 

leveraging multi-scale convolutional kernels, the model captured 

both fine-grained and large-scale patterns. The attention module 

further enhanced performance by adaptively weighting 

informative features while suppressing noise. The proposed 

model achieved 96.8% accuracy, higher precision, recall, and F1-

score, along with the lowest MSE, indicating both classification 

and regression robustness. The attention visualizations confirmed 

that the model focuses on physically relevant regions in the water, 

improving interpretability. Given its high accuracy, faster 

convergence, and strong generalization across environmental 

conditions, AttnInceptionNet has significant potential for 

deployment in real-time, non-invasive water quality monitoring 

systems, especially when integrated with UAV or IoT-based 

imaging platforms. Future work will explore expanding the 

dataset to include multispectral imagery and incorporating 

temporal dynamics for even more precise water quality 

estimation. 
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